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ABSTRACT 
General rotor systems possess both stationary and rotating asymmetric properties, whose equation of motion 

is characterized by the presence of periodically time-varying parameters with the period of half the rotation. This 
paper employs the Floquet theory to develop the complex modal analysis method for periodically time-varying 
linear rotor systems. The approach is based on decomposition of state transition matrix, leading to the 
periodically time-varying eigensolutions. The modal analysis approach using the Floquet theory is then 
compared with the modulated coordinate transform method, which transforms the finite order time-varying 
matrix equation into an equivalent infinite order time-invariant linear equation.  
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1   INTRODUCTION 
According to the mechanical properties of the rotor and stator parts, rotor systems may be classified into four 

types [6, 10]: isotropic (symmetric) rotor system - both rotor and stator parts are axisymmetric; anisotropic rotor 
system - the rotor part is axisymmetric but the stator part is not; asymmetric rotor system - the stator part is 
axisymmetric but the rotor is not; general rotor system - neither rotor nor stator parts are axisymmetric. The 
general rotor system, an asymmetric rotor with anisotropic stator, thus reveals the coupled effects of anisotropic 
and asymmetric rotor systems. 

The asymmetric (anisotropic) rotor system may look like a periodically time-varying linear system when the 
equation of motion is written in the stationary (rotating) coordinates, but it can be easily transformed into a time-
invariant linear system by rewriting the equation of motion in the rotating (stationary) coordinates. Thus the 
asymmetric (anisotropic) rotor system alone essentially reduces to a time-invariant linear system, whose modal 
analysis scheme is well established in the literature [6, 10, 11]. On the other hand, the general rotor system, 
which is inherently a periodically time-varying linear system, can not be transformed into a time-invariant 
system by such a simple coordinate transformation. It leads to a difficulty in modal analysis of the general rotor 
system due to mathematical complexity associated with treatment of periodically time-varying system matrices. 

Many attempts have been made for dynamic analysis of periodically time-varying linear systems by 
employing the periodically time-varying eigenvectors [3, 9, 13, 14]. Since these methods were strictly based on 
the time domain analysis, the stability analysis was of major concern. For example, Sinha, et al. [14] proposed 
use of the Liapunov-Floquet transformation for expanding the periodic system matrices in terms of the shifted 
Chebyshev polynomials of a same period, so that the original differential problem reduces to a set of linear 



algebraic equations. However, their method is still limited to enhancement of the stability analysis. Calico and 
Wiesel [2] applied the Floquet theory to develop a modal analysis method for periodically time-varying control 
systems, introducing the periodically time-varying eigenvectors derived from periodicity of the state transition 
matrix. Although their modal analysis method is mathematically sound, it requires the accurate integration of the 
state transition matrix over a period and it lacks the natural extension to the frequency domain analysis.  

There are few investigations on complete modal analysis of periodically time-varying systems valid in both 
time and frequency domains. The major difficulty is because the conventional modal analysis developed for 
linear time-invariant systems cannot be directly applicable to linear time-varying systems, unless they can be 
transformed into an equivalent time-invariant system [3, 14]. Irretier [7] developed a mathematical foundation 
for modal testing of periodically time-varying rotor systems by expanding the periodically time-varying modal 
vectors in Fourier series and introducing an intuitive, but not rigorously proven, relation between modal 
parameters. In addition, although the resulting mathematical treatments are found to be correct, neither the 
computational procedure for eigensolutions nor the frequency domain analysis for modal testing was described.  

For asymmetrical rotors with isotropic stators, the periodically time-varying linear differential equation 
expressed in the stationary coordinates can be transformed to the time-invariant linear differential equation 
expressed in the rotating coordinates or in the modulated stationary coordinates [15]. Then the modal analysis 
becomes essentially the same as the ordinary complex modal analysis method developed for anisotropic rotors, 
which possess asymmetric properties only in the stator part [8, 12]. On the other hand, the asymmetric rotor 
system with anisotropic stator cannot be transformed to a finite order equation of motion with the time-invariant 
parameters by coordinate transformation only. 

In this paper, the complex modal analysis of periodically time-varying linear rotor systems is developed 
using the Floquet theory and its computational efficiency in calculation of eigensolutions is discussed, compared 
with the use of the reduced order Hill’s matrix, which results from the modulated coordinate transform approach. 

2   COMPLEX MODAL ANALYSIS OF PERIODICALLY TIME-VARYING ROTOR SYSTEMS 

2.1 Equation of motion in complex form 
For a rotor system with rotating and stationary asymmetry, the equation of motion can be conveniently 

written in the complex stationary coordinates, referring to Fig.1, as [6, 10, 4, 1]  
2( ) ( ) ( ) { ( ) ( ) ( )} { ( ) ( ) ( )} ( )j tt t t t t t e t t tΩ+ + + + + + + +f f f b b b r r rM tp C p K p M p C p K p M p C p K p = g                (1) 

Here, the N×1 complex response and force vectors, ( )tp  and g(t), defined by the real response vectors, y(t) and 
z(t), and the real excitation vectors, f  and f , respectively, are 

y (t) z (t)

y z y z( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ),= + = − = + = −t t j t t t j t t t j t t t jp y z p y z g f f g f f t                          (2) 
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Figure 1: General rotor system: simple analysis model 

 
where j means the imaginary number; N is the dimension of the complex coordinate vector; g(t) includes the 
force and moment; Ω is the rotational speed; ‘-‘ denotes the complex conjugate; M , C  and  denote the 
complex valued N × N generalized mass, damping and stiffness matrices, respectively; and the subscripts f, and, 
b and r refer to the mean value, and, the deviatoric values for anisotropy (stationary asymmetry) and asymmetry 
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0

0 0

(rotating asymmetry), respectively. For an isotropic rotor, ; for an anisotropic 
rotor, ; and, for an asymmetric rotor, . Note here that the periodically time-varying 
terms, which are preceded by  in Eq. (1), inherently appear, as both rotating and stationary asymmetries 
exist in the system and that Eq. (1) includes the external and internal damping, gyroscopic moment and Coriolis 
effect. When either rotating or stationary asymmetry does not exist, the equation of motion becomes, or it can be 
transformed to, a time-invariant differential equation. 

b b r r rC K M C K= = = = =

r r rM C K= = = b bC K= =
2j te Ω

In the following section, the Floquet theory is applied for complex modal analysis of the periodically time-
varying linear rotor system (1). And its computational efficiency in calculating the unbalance response and the 
dFRFs is discussed. 

2.2 Complex modal solution by Floquet theory 

(1)  Eigenvalue and adjoint problems 

From Eq. (1) and its complex conjugate form, the complex equation of motion can be constructed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t+ + =M q C q K q f ,                                                               (3) 
where 
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Equation (3) can be rewritten in the state space form as 

                                     ,                                                                  (5) ( ) ( ) ( ) ( ) ( )t t t t tA w = B w + F
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Utilizing the Floquet theory for this periodically time-varying system in homogeneous part of Eq. (5) with the 
period /T π= Ω , we can express the 4N×1 complex state vector, w(t), in terms of the state transition 
matrix, , as [2, 3, 9, 13, 14] ( , )t tΦ

 ( )( ) ( ,0) 0 ,t t=w Φ w                                                                         (7) 

where  satisfies the differential equation, subject to the initial condition ( ,0)tΦ 4 4(0,0) = N N×Φ I , 

1( ) ( )( ,0) = ( ,0)t tt −⎡ ⎤⎣ ⎦A BΦ tΦ

N

                                                                (8) 

and the matrix decomposition relation given, subject to , by [9, 2] (0) = ( )TR R

1( ) (0)( ,0) = ttt e −JR RΦ .                                                                     (9) 

Here, J is the Jordan normal form of matrix, whose diagonal entries, , 1, 2,..., 4i iµ = , are termed Poincare 
exponents, equivalent to the eigenvalues for time-invariant systems.  

Substituting  t = T into Eq. (9), we obtain   
1(0) (0)( ,0) = TT e −JR RΦ , or, equivalently,  [ ]( ,0) (0) =iT ω−Φ I R 0 .                                  (10) 

It implies that  and  are the eigenvalues (characteristic multipliers) and the corresponding matrix 
of eigenvectors, respectively, of the monodromy matrix . Substituting Eq. (9) into Eq. (8), we obtain 

iT
i eµω = (0)R

( ,0)TΦ

1( ) ( ) ( ) ( ) ( )t t t t−= ⎡ ⎤⎣ ⎦R A B R R t− J t⎤⎦    or, equivalently,                       (11) 1( ) ( ) ( ) ( )t t t µ−= −⎡⎣r A B I r

where  is a column vector of .  ( )tr ( )tR
 Now we can construct the adjoint problem, introducing the adjoint state vector ( )tz , to the original system 

(5) with  as [2, 9] ( )t =F 0



1( ) ( )( ) = ( )
T

t t t−⎡ ⎤−⎣ ⎦A B tz z ,                                                                   (12) 

from which we can define the adjoint matrix ( )tL  such that  

1( ) ( ) ( ) ( ) ( ) ,
T

t t t t−= − +⎡ ⎤⎣ ⎦L A B L L t J  or, equivalently, { }1( ) ( ) ( ) ( )
T

t t t µ−⎡− ⎢⎣ ⎦
−l = A B I l t⎤

⎥
             (13) 

where ( )tl  is a column vector of ( )tL . 
We can rewrite Eq. (11), using the identity relation , as  1( ) ( ) =t t−R R I

1 1 1( ) ( ) ( ) ( ) ( )t t t t− − − −= − +⎡ ⎤⎣ ⎦R R A B JR 1 t

it t

.                                                         (14) 

From direct comparison of Eq. (13) with Eq. (14), we can obtain the biorthonormality condition as [2] 

                or, equivalently,        j4 4( ) ( )T
N Nt t ×=L R I ( ) ( )T

i j δ=l r ,      ; i, j = 1 to 4N,                           (15)  

where  
ijδ  is the Kronecker delta, the superscript T means the transpose, and, and  are the i-th column 

vector of and , respectively.  
( )i tr ( )i tl

( )tR ( )tL
 

(2) Structure of the eigenvectors and the adjoint vectors  

Substituting the relation { }( ) ( ) ( ) ( ) ( )
TT Tt t t t tη=w = q q r  with ( ) ( ) ( )t t tη= cq u

 
and Eq. (11) into the 

homogeneous part of Eq. (5), we obtain the relation given by  

{ }( ) ( ) ( ) ( )
TT T Tt t t tµ+c c cr = u u u .                                                               (16)   

Likewise, substituting the relation ( ) ( ) ( )t t tζ=z l  with ( ) ( ) ( )Tt tl = A l t and Eq. (13) into the adjoint equation 
(12), we obtain the relation given by  
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Here, the modal and the adjoint vectors are composed, respectively, of  

       { }ˆ( ) ( ) ( )
TT Tt t tcu = u u ,  { }ˆ( ) ( ) ( )

TT T Tt t tcv = v v ,                                (18) 

and, for the complex equation of motion as in Eq.(1), it holds, in general, 

    ˆ ( ) ( )t t≠u u ,    ˆ ( ) ( )t t≠v v .                                                           (19) 

Note that the eigenvector  and the adjoint vector ( ) (and thus ( ))t cr tu ( ) (and thus ( ))t cvl t  are periodically time-
varying vectors with the period /T π= Ω . 

For the time-invariant system, i.e. ( ) ,t =r r  ( ) Tt = Al l,  ( )t =A A  and ( ) ,t =B B  Eqs. (11) and (13), and, Eqs. 
(16) and (17) reduce to the form of 

µ =A Br r ,     T Tµ =A Bl l ,                                                                    (20) 
and                                   

        { }TT Tµ c cr = u u ,        { }TT Tµ c c= v vl ,        { }ˆT T
T

cu = u u ,      { }ˆT T
T

cv = v v ,             (21) 

respectively, which are consistent with the previous results in [11].  
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(3)  Modal equations and eigensolutions 

The complex state and adjoint vectors, w(t) and z(t), can be expanded in terms of the eigenvectors and the 
adjoint vectors, respectively, for the rotor system (5), as 
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}t{ } {
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where the prime notation in the summation implies exclusion of 0r = , ( )tη  and ( )tζ  are the principal 
coordinates of the original and adjoint systems, respectively, and the superscripts B and F refer to the backward 
and forward modes, respectively, following the well-established convention for mode classification in 
rotordynamics [11]. Substituting Eq. (22) into Eq. (5), using the relation (11), premultiplying by kT

sl  and using 
the biorthonormality condition (15), we can obtain the 4N sets of complex modal equations of motion as 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )+ ( ) ( )i i i iT i i iT iT
r r r r r r r rt t t t t t t tη µ η µ η= + = +cv f v g v g t  ; r = ±1, ±2, …, ±N ; i = B, F.                     (23) 

Recalling the Floquet theory that, from the one periodic solution, the entire time response of the eigensolutions 
can be expressed periodically with the base of that period, we can expand the eigenvector  and the adjoint 
vector  in Eq. (18) by Fourier series as [7]  
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where ,  are the complex Fourier coefficient vectors associated with the complex 

harmonic function of
( ) ( ), ˆi i

r m r mu u ( ) ( )ˆ and  i
r m r mvv i

2j m te Ω . 
From Eqs. (23) and (24), we can obtain the forced response of the general rotor system (5) as 
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2

; ( ) ( ) j n t
n t t e Ω=g g . 

 
 

(4)  Direct numerical solution method 

In this direct modal analysis approach for the periodically time-varying parameter system (1), the 
eigenvalues and the corresponding periodically time-varying eigenvectors can be analytically obtained from Eqs. 
(8) to (15) at least in theory. However, the closed form solutions are limited only to a few simple cases because 
of mathematical complexity. For most of practical applications, numerical approach is, instead, taken as follows. 
First, the monodromy matrix, , is obtained by numerical integration of Eq. (8) with respect to time for 

given  and initial condition .  Second, the characteristic multipliers 
( ,0)TΦ

( ),  ( )t tA B 4N 4N(0,0) = ×Φ I iω  and the 
corresponding matrix of eigenvectors R(0) of ( ,0)TΦ   are calculated from Eq.(10). Then, the Jordan normal 
form of matrix J  is formed with its diagonal entries ( )log /i i Tµ ω=  and  R(t) can be solved by numerical 
integration of Eq. (11) with the initial condition R(0). The same procedure applies to the adjoint matrix L(t) 
using R(t) and the biorthonormality condition (15). Note that, once the periodically time-varying modal (adjoint) 
vectors are obtained, calculation of the Fourier coefficient modal (adjoint) vectors, which are constant vectors, in 
Eq. (24) becomes straightforward.  

Although the above procedure looks like a novel, analytical approach, one of its critical drawbacks is the 
numerical instability, since it suffers from serious accumulated error with extensive numerical integration 
processes [5]. For example, the complex Fourier coefficient modal (adjoint) vectors are very vulnerable to the 
numerical errors with R(t) and L(t).  



(5) Infinite order directional frequency response matrix (dFRM) 

Fourier transforming Eq. (25), we obtain  
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where ( )jωP , ( )jωG  and ˆ ( )jωG  are the Fourier transforms of , ( )tp ( )tg  and ( )tg , respectively, and it holds 

{ }; ( ) ( 2 )n j j nω ω= − ΩG G ;
ˆ ( )n

, { }ˆ ( 2 )j nω= + ΩG .                                     (26b) jωG

Although there are still an infinite number of dFRMs in Eq. (26), we introduce four dFRMs, that are important in 
characterizing the system asymmetry and anisotropy, as 
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Here, ( )jωgpH  is referred to as the normal dFRM that represents the system symmetry, ˆ ( )jωgpH  is referred to 
as the reverse dFRM that represents the effect of system anisotropy, and, ( )jωgpH  and ( )jωgpH  are the 
modulated dFRMs that represent the effect of system asymmetry and the coupled effect of system anisotropy and 
asymmetry, respectively.  

2.3 Complex modal solution by coordinate transformation 
 It has been proven that introduction of complex modulated coordinates successfully transforms the finite 
order time-varying matrix equation into an equivalent infinite order time-invariant linear equation, leading to an 
infinite set of constant eigensolutions [6]. Then the modal analysis of the time-invariant linear system becomes 
straightforward, defining the Hill’s infinite order matrix.  
 It can be easily shown that the modulated coordinate transform approach leads to the expressions for the 
dFRMs identical to Eqs.(26) and (27). However, the numerical procedures for the dFRM estimates are different 
from each other. In particular, the truncation schemes of the infinite series expansion (or, equivalently, the 
infinite summation) with respect to the index m are differenent. For example, truncation of the infinite 
summation is done with the complex Fourier series expansion of the periodically time-varying eigenvectors, 
Eq.(24), for the Floquet approach, whereas the order reduction is done with the Hill’s infinite order matrix for 
the coordinate transform approach [6]. 

 
3  NUMERICAL EXAMPLE 

This section demonstrates and compares the modal analysis methods with a simple, yet general rotor system 
model, which consists of a rigid rotor with asymmetric mass moments of inertia, a massless shaft with 
asymmetric shaft stiffnesses, and two orthotropic bearings, as shown in Fig. 1. The detailed descriptions of the 
rotor model are treated in [6, 12]. 

The eigensolutions of the analysis rotor model were calculated by using the Floquet approach with the three 
term approximation (the index m was taken to be -1, 0 and 1 in Eq. (24)) for the complex Fourier series 
expansion of the time-vaying eigenvectors. The calculated eigenvalues were in good agreement with those from 
the reduced Hill’s matrix of order 24, which was found to yield fairly accurate results [6].  

Figure 2 compares the typical unbalance responses of the rotor calculated by four different methods. Note 
that both the reduced Hill’s matrix of order 24 and the Floquet’s method with three term approximation yielded 
non-distinguishable results from the exact numerical one. Both methods are found to be superior in calculation of 
unbalance response to the conventional harmonic balance method [4], as shown in Fig. 2.  
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Figure 2:  Unbalance response at 4,000 rpm ( 0.3δ = ∆ = ):            Numerical integration; 
Hill’s matrix of order 24;            Floquet’s method;  -- -- Harmonic balance method 
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Figures 3 and 4 compare the waterfall plots for the magnitude of the four important dFRFs (given in 
Eq.(27)) obtained by the Floquet method using the three term approximation and the reduced Hill’s matrix of 
order 24, respectively, as the rotational speed is varied up to 10,000 rpm for the analysis rotor model with 

0.3δ = ∆ = .  The number of assumed modes used for calculation of dFRFs is kept unchanged for the latter 
method, but it varies for the former method, depending upon the type of dFRFs, due to the inherent nature of 
approximation. It often leads to relatively large discrepancies in the logarithmically scaled dFRF estimates 
obtained by two methods. The dFRFs shown in Figs. 3(a) and 4(a) are almost identical, but other types of dFRFs 
show some discrepancies with the order of magnitude less by 5 to 6 than the dominant peak values in the normal 
dFRFs, which corresponds perhaps to the measurement noise level in practice. The overall trends of the dFRFs, 
particularly the resonant peaks, are not much different for both methods. Some discrepancies are, however, 
noticable, at the anti-resonant regions and near the unstable regions. 

In general, the number of assumed modes used in the Floquet method is less than, or equal at best to, the 
coordinate transform method. Thus, it can be concluded that the coordinate transform method is superior in 
estimation of dFRFs than the Floquet method. Note that the coordinate transform method, which is essentially a 
frequency domain approach, succeeds in approximating the dFRFs with a limited number of assumed modes 
(Ritz vectors), whereas the Floquet method, which is essentially a time domain approach, fails in using an 
effective set of base harmonics required to better estimate the dFRFs in the frequency domain. Theoretically 
speaking, as the number of assumed modes increases indefinitely, both methods will eventually lead to the 
identical results. Although there exist some discrepancies in the logarithmic magnitudes of dFRFs, the typical 
response calculations in the time domain by both methods yield little difference, as demonstrated previously in 
Fig.2. 

 

4   CONCLUSION  

The complex modal analysis by the Floquet theory is developed for periodically time-varying linear rotor 
systems and compared with the coordinate transform approach. The Floquet method provides clear physical 
understanding of the eigenvalues and the corresponding eigenvectors. It is found that the Floquet method with a 
few approximation terms estimates the eigenvalues and the eigenvectors of lower order with fair accuracy, 
leading to satisfactory response calculations in the time domain. However, it is not efficient in calculating the 
eigenvectors of higher order and thus the frequency domain characteristics, including the directional frequency 
response functions, compared with the coordinate transform approach.  
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Figure 3:  Waterfall plots of dFRFs by the Floquet method: δ = =∆ 0.3  
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Figure 4:  Waterfall plots of dFRFs from the Hill’s matrix of order 24: δ = =∆ 0.3  
(a)  (b) 

0g pH ( ω)j
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