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Abstract

Detecting the features of significant patterns from their own historical data is so much crucial to good performance
specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet
analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other
methods. The reason is that wavelet analysis theoretically makes much better local information according to different time
intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support
for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales.
The specific local properties of wavelets can for sxample be particularly useful to describe signals with sharp spiky,
discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent
high trequencies, while conserving the signal bearing high frequency terms of the signal.

To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study.
we focus on several wavelet thresholding criteria or techniques to support muliti-signal decomposition methods for financial
time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study.

One of the most important problems that has to be solved with the application of the filtering is the correct choice of the
filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to
overfit or undertit the data. It is otten selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently,
new and versatile techniques have been introduced related to that problem.

Our study is o analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition
algorithms within the neural network architectures specially in complex financial markets.

Secondly, through the comparison with different filtering techniques’ results we introduce the present different filtering
criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the
optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract
significant input features for the forecasting model.

Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we
propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known
neural network models.

Kev words: Discrete Wavelet Transform, Wavelet Packet Transform. Wavelet Thresholding Techniques, Neural Networks

Linear models can give good prediction results for
simple time series, but can fail to predict time sgries with a

1. Introduction wide band spectrum (i.e. called as Granger shape). a
stochastic or chaotic time series, in which the power
Traditionally. the fluctuation in financial market is treated spectrum is not a useful characterization.
as white noise. However, it is not true when trend is A number of new nonlinear techniques. such as neural
properly removed and we can clearly observe some networks, wavelet. and chaos analysis. promise insight that
bustness cveles. though they evolve with time. The goal of traditional linear approaches cannot provide (Geva. 1998).
forecasting is to identifv the pattern in the time series and Filtering techniques aiso have been shown to be usetul
use the pattern 1o predict its future path. in estimating coetficients of forecasting models. The
The issue of generalization in this interpretation principle advantage of applying filtering methods is that
becomes one of how to extract usetu! information from the the techniques make it possible to isolate relevant
noise-contaminated data. and to rebuiid the pattern as frequencies.
closely as possible, while ignoring the useless noises. While  wavelets  have recently  been  used by
There is a wide and strong interest in feature discovery econometricians, they have played an important role in
and transtormation among practitioners from  statistics. other fields since the carly 1990s {Jensen. 1998; Ramsey
pattern recognition, duta mining, and knowledge discovery and Zhang, 1998: Ramsey and Lampart, 1998). Scientists
since data preprocessing (s an essential step n the in diverse fields have observed tme series where
knowledge discovery process for real-world applications. observations that are far apart (in time or space) were
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correlated too strongly to be modeled as independent data
or classical autoregressive. moving average modeis
{ARMA). This concept of long-memory has grown rapidly
and can be found in a broad scattering of fields such as
astronomy, chemistry. engineering, environmental sciences,
and mathematics. etc. For literature about the purpose and
techniques of wavelet analysis in financial markets, refer
to Table 4.

Wavelets are mathematical constructs with  great
potential in statistical methodology. They have been
applied extensively in diverse applications, including data
compression. signal processing, image analysis, object
detection. turbulence, numerical analysis. neural networks,
¢cconomics,  astronomy. and  statistics.  Specially,
statisticians are interested in wavelets as a modeling tool
in the general nonlinear regression scheme. Some
particular problems of interest are de-noising, density and
function estimation. long range dependence, and change
point detection. Though the wavelet regression is very
attractive, it has limitations stemming from the intrinsic
properties of wavelets.

Denoising by thresholding in the wavelet domain has
been developed principally by Donocho et al (1993).
Donoho and Johnstone (1994) introduced RiskShrink with
the minimax threshold. VisuShrink with the universal
threshold. and discussed both hard and soft thresholds in a
general context that included ideal denoising in both the
wavelet and Fourter domains. Donoho and Johnstone
(1993) introduced SureShrink with the SURE threshold,
WavelS with the James-Stein threshold, and LPJS also
with the James-Stein threshold but in the Fourier domain
mnstead of the wavelet domain.

The dirferences of All these techniques discussed above
are distinguished cach other as follows. That is, they can
pe classified by transform domain, Fourier versus wavelet,
as well as by intent of use. ideal versus practical. An tdeal
procedure requires a prior knowledge of the noise,
whercas a practical procedure does not. so that ideal
procedures are only used for purposes of comparison in
simulation experiments. Moreover, the procedures can be
classitied according to whether they use a singte threshold
elobally for all relevant parts of the transform. or multiple
thresholds locally for different parts of the transform
{Fourier frequency bands or wavelet multiresolution
levels).

Restricting attention to the practical procedures, SUR,
WIS, and FIS appear to perform well. but it is not possible
to deciare any of the procedures as the best under all test
cases and sample sizes.

The extensive literature on wavelet thresholding mainly
focuses on two questions. The tirst is which threshold rule
to use, Most popular are hard and soft thresholding. The
second. and perhaps most important

Determining the most appropriate procedure necessarily
Involves experiments to compare the performance of a
wavelet shrinkage denoising method (comprised of the
cffective  combination  of transtorm
parameters and denoising rules and thresholds for the

¢ of sample sizes and noise levels expected) with any

most wavelet

other methods under consideration.

Data analysis. for exploratory purposcs. or prediction. iy
various data transformation  and
recoding. In fact we would hazard a guess that 90% of the
work invoived in anaiyvzing data iies i this mival stage of

usually preceded by
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data preprocessing (Murtagh and Aussem, 1996).

This study is intended to explore the wavelet universal
thresholding algorithm for denoising data and to compare
its performance with that of other commonly used
smoothing filters in financial forecasting.

All reconstruction filters are evaluated on the basis of
the root mean square error (RMSE). That 1s. we evaluate
the effectiveness of both these transform such as discrete
wavelet transform and wavelet packet transform on a
series of Korean Won/US Dollar exchange rate market.

The estimation techniques studied in this paper do not
assume a priori knowledge about the underlying spectrum,
besides the presumption that the signal contains significant
coarse-scale coefficients. When a priori information is
available, special techniques may be developed to improve
performance.

The remainder of this study is organized as follows. The
next section reviews time-frequency decomposition, and
then discrete wavelet transform (DWT) and wavelet
packet transform (WPT). Section 5 introduces threshoid-
ing techniques for financial forecasting. Section 6, 7, and §
describes best-basis selection criteria techniques (Tree
Pruning Algorithm). The fifth section describes
experimental results and the conclusion contains final
comments.

2. Time-Frequency Deocompositions

The Fourier transform is not to be used in case of non-
stationary signals.

In the multiscale fast wavelet transform of Mallat and
Zhong (1992), the time series is decomposed into different
scales of the wavelets, in order to extract its internal
representation. Each scale of wavelet coefficients provide
a different dimension of the time series in the both time
and frequency domains. Recently, due to the similarity
between wavelet decomposition and one-hidden-layer NN,
the idea of combining both wavelet and NN has been
proposed in various works (Bakshi and Stephanopoulos,

1993. 1995, Zhang and Benveniste, 1992; 1997, Geva,
1998).
Our task is to approximate a time series at different

levels of resolution using muitiresolution decomposition.
The individual time series resulting from the
decomposition, taken together, can provide a detailed
picture of the underlying processes. Nonetheless, knowing
the current state ot these processes may not be sufficient:
that is, in order to make valuable statements about the
future, additional, historical information may be required.
A naive approach would be to apply a bank of filters,
with varving frequencies and widths, to the data.
Unfortunately, choosing the proper number and type of
filters for this is a difticult task. Wavelet transtorms
provide sound mathematical principles for designing and
spacing filters. and for making trade-offs berween these
objectives, while retatning the original relationships in the
time series. These principles define a set of filters obtained
by rescaling a given function several times. using what is
often called a mother wavelet. which is compressed or
expanding in the time domain to produce the waveiets,

3. Discrete Wavelet Transform



Recently, the wavelet transtorm was introduced as an
alternatively technique tor time-frequency decomposition.

Wavelets are building block functions and localized in
time or space. They are obtained from a single function
wit). called the mother wavelet. by translation and
dilations. Projection of the signal onto wavelet basis
functions is called wavelet transform (WT).

Wavelet transform is a powerful method for
multiresolution representation of signal data (Szu e al.,
1992).

As any transform, the WT aims to transform the signal
from the original to another domain in which some
operations on the signal (i.¢. denoising, compression) can
be carried out in an casier way. The inverse transtorm
atlows to go back to the original domain.

Wavelets are any of a set of special functions satistying
certain regularity conditions {Daubechies, 1988; 1992;
1993). Their support is {inite; they are non-zero on a finite
interval. and they are defined within finite frequency
bands. There are two types of wavelet functions: mother
wavelet, w(t), which describe high-frequency and detail
components of a signal, and father wavelets, §(t). which
describe low-frequency and smooth components. The
major properties of wavelets are smoothness, compactness
in both time and frequency, the number of oscillations, and
orthogonality, the preference for which is specified by the
application. Orthogonality is a property which allows for
reconstruction of the original data from the wavelet
transtorm.

The discrete wavelet transform expresses a time series
as a linear combination of scaled and translated wavelets.
Knowing which wavelets appear in a transtorm can
provide information about the frequency content of the
signal for a short time period. Short-time Fourier
trransforms have been used in the past for this type of
information, but how the wavelet transform differs is
while the short-time Fourier transform must use a constant
time interval for the whole analysis. the wavelet transtorm
uses varying intervals.

The time-scale nature of the WT results in several
useful properties.

We assume that N is a multiple of 2' and consider an
orthonormal, discrete wavelet transform (DWT) for
siganls on the interval [0, N-1]. The transform is
implemented using an iterated bank of subsampled
lowpass and highpass quadrature-mirror, finite-impuise-
response filters g{/) and h(/), respectively.

We denote by y(t) the (continuous) wavelet associated
with the filter bank (Daubechies, 1992). [n order to keep
the exposition of basic concepts clear, the theoretical
results which motivate our approach are presented for the
simple case of periodic wavelets. This is equivalent to
assuming that the signals are periodic beyond the
boundaries at /=0 and /=N-1.

The two-scale relation for the Daubechies wavelets is in
the torm:

Given a mother wavelet wit), for all real a, b (a=0), we
construct a sequence of wavelets by translations and
dilations of wit).

’,»"/ac“): a“"’ ()

where a presents the dJilation parameter and b

translation parameter.

The special feature of the Daubechies wavelet famiiy s
the presence of orthogonality in combination with
compact support. To achieve this, we must put up with
asymmetry and low regularity.

The low-pass filter with n coefficients can be
considered as a smoothing filter, which resembles a
moving average of n points. In the field of signal
processing the pair of filters is known as the quadrature
mirror filters (QMF). The low-pass and the high-pass
filters are also called the scaling and wavelet filters.
respectively. These filters are used to construct the filter
matrices, denoted as G and H. For the signal containing
eight data points and filter number 2 (characterized by
tour coefficients) the G and H matrices have the following
structure:

(a) Wavelet transform matrix
L6, ¢ G ¢ ——> scaling function
L, -G G -C, —— mother wavelet

'

! GGG G
1 G -T2 G -Gy
L oo G
G -G G -G
G G Cy, €
% G -Gy Cy -L;é

(b) Inverse wavelet transform matrix

GG GG
GG eos oc
G Gao
C]'G) C,-C)
GGGG
G-GG-C
C GGG
GGG G

(¢) The filter coefficients of Daubechies 4 Wavelet

C# Value

0 (1+43) w2 = 0482962913
1 (3“’3’)/’4;5 = 0.836516303
2 (3-3)evz = 0224143868
3 (f, ~ Vg)/ 47 = - 0.129409322

Figure 1. Daubechies 4 wavelet

Once the filters have been defined, one applies the
recursive decomposition algorithm introduced by Mallat
(1989) and known as the pyramid algorithm or tree
algorithm, which offers the hierarchical, multiresolution
representation of function (signal).

When we think about performing a wavelet ranstorm



on 4 data sets. we can ook at it as running the data
through a smoothing (losspass) filter. This is. in etfect,
computing a moving average of the data. The difference
between this computation and that of any other moving
average is that the weights are chosen in a very particular
manner.  This lowpass filter is known as a scaling
function {§(x)). Convolving the data with ¢(x) gives us
an approximation of the original series. except with some
{high trequency) detail filtered out.

If instead we wish to obtain the detailed information,
then we must pass the data through a differencing
(highpass) filter. This highpass filter is known as the
wavelet ( , () )

Scaling functions and the corresponding wavelets are
detined by the following dilation equations;

- 2
3(x) =23 co(2x - k). (@)
Wi :2i”“\“‘:-“’{3/“"‘(> (J)
where N=1= p is the order of regularity of the wavelet.

This higher the order of regularity of the wavelet, the
smoother the wavelet is.

Level 0 a’ original signal
G *“.“H
Lavei | a‘ dli—
G T H
Level2 . @’ d?
iy @

Figure 2. The tree or pyramid algorithm (Mallat, 1989)
{G: The lowpass (or scaling) filter; H: The highpass (or
waveler) filter: The highpass filtered data: the wavelet
wansform detail coefficients (d' = {d,'. d,". ... dy,,'}) at
the first level of resolution: The lowpass filtered data : the
approximation coeffcients (a' = {a,'. a,', ..., ays.,'}) at the
first level of resolution.)

As shown in Figure 2.0 in the tree algorithm. the set of N
input data is passed through the scaling and the wavelet

fiters.

4. Wavelet Packet Transform (WPT)

in the pvramid algorithm the detail branches are not used
for further calculations. i¢. onlv the approximations at
cach level of resolution are trzated to vield approximation
and detatt obtained at level m+1. Application of the
transtorm  to both the detail and the approximation
cocilictents results in an expansion of the structure of the
wavelet transtorm tree algocithm to the full binary tree
iCotfman and Wickerhauer, 1993: Coitman er al.. 1993).

Coitman and Wickerhauser (1993) developed a waveiet
packet transform: this is a more generali transform than the
discrete wavelet transform. The main difference is that
while in the discrete wavelet transform the detail
coefficients are kept, and the approximation coefficients
are further analyzed at each step, in the wavelet packet
transform both the approximation signal and the detaii
signal are analyzed at each step. This results in redundant
information, as each level of the transform retains n
samples. The process is illustrated in Figure 3.

Level 0 | a’ original signal

L —

G ‘} : H
Level | El1 d!
G H G H

Level2 | a® | d2 LAl d?

I i {

Gi THG ' H G PHGH H

[ op | e LT :
Level p i1 aP dP‘ I aP | dp! [aP! dp :af dp1

Figure 3. The wavelet packet transform as a complete
binary tree (Coifman et al., 1993: Cody, 1994)

The main characteristic of the wavelet packet transform
is that it produces an arbitrary frequency split. which can
be adapted to the signal. While wavelet packet create
arbitrary binary slicing of frequencies (with associated
time resolution), they do not change over time. Often a
signal is first arbitrarily segmented, and then, the wavelet
packet decomposition is performed on each segment in an
independent manner.

5. Wavelet Thresholding Techniques for
Financial Forecasting

QOver the past few years, there has grown up a tremendous
literature (Greenblatt, 1995; Donoho ef al., 1993) on the
use of the wavelet transform for a wide array of
applications. [t has been wused extensively for
approximation due to its time-frequency localization
properties and its multiresolution analysis approach.

Often it is useful to use different bases at ditferent
levels of resolution. Although the wavelet decomposition
can approximate at a number of resolutions at once. it isn't
adaptive.

Thresholding s a rule in which the coefficients whose
absolute values (energies) are smaller than a fixed
threshold are replaced by zeroes. In this study. we define
wavelet thresholding as denoising and smoothing
techniques including best basis algorithm to extract
significant multi-scale information from the original time
series, -

The rationale for wavelet thresholding is that usually the
signal will be compressed into a few large coefficients
whereas the noise component will give rise to small
coctlicients everywhere.



Wavelet thresholding methods in general give better
rzsuits than other nonparametric smoothing methods such
as spline smoothing or Fourier analysis and uses a
computationally fast algorithms {(Downie and Silverman,
1996). The idea is to express a function in terms of an
orthonormai wavelet basis. where the basis functions are
translations and dilations of a mother wavelet function.
The wavelet transformation is often good at compressing a
signal into a tew large coetficients. [f the original signal
contains noise then a thresholding method will throw away
the small noise coetficients and keep the large signal
coetticients.

Wavelet smoothing techniques capitalize on the
different properties of signal and noise wavelet
components. Techniques such as thresholding or shrinkage
of the noisv wavelet coefticients, and reconstruction from
the local minima of the wavelet transform, have been
successfully used in a variety of denoising problems
(Mallat and Hwang, 1992; Lu et al, 1992; Donoho and
Johnstone. 1992a. 1992b: Donoho et al., 1992; Donoho.
1992, Johnstone et al., 1992; Moulin, 1993, 1994).

There are many ways to threshold. Basically, the
process of thresholding wavelet coefficients can be
divided into two steps: the policy choice and the choice of
a threshold parameter.

Donoho and Johnstone (1994, 1995) and Doncho et al.
{19935) showed that such wavelet estimators with a
properly chosen threshold rule have various important
optimality properties. The choice of thresholding rule,
therefore, becomes a crucial step in the estimation
procedure. Several approaches to thresholding have been
introduced in the literature: a minimax approach (Donoho
and Johnstone, 1994; 1995), multiple hypothesis testing
{Abramovich and Benjamini, 1995; 1996, Ogden and
Parzen. 1996a; 1996b), cross-validation (Nason, 1995;
1996: Weyrich and Warhola, 1995). The idea of
thresholding has also been studied in the context of
correlated errors (Wang, 1996; Johnstone and Silverman,
1997).

One of the most important problems that has to be
solved with the application of digital filters is the correct
choice of the filter type and the filter parameters. The most
difficult choice is that of the cut-off frequency of the filter
which has to be specified either explicitly or implicitly
(Mittermayr et al., 1996). It is otten selected arbitrarily or
bv adopting a certain theoretical model. Thus this study
focuses on a comparative study to motivate the choice of
the ftilter parameters that are most appropriate for a
specific problem.

During the last decade a new and very versatile
technique. the wavelet transform (WT), has been
developed as a unifying framework of a number of
independently developed methods (Mallat, 1989, Meyer.
1989; Daubechies. 1992).

Bv setting all coefficicnts above a certain frequency f]
{the cutoff frequency) to zero one tries to remove only
noise, while preserving the information on the signal
(;aussian white noise by definition has a constant
contribution to all frequencies and thus one has to
compromise when setting the cutoff frequency (Larivee
and Brown. 1992).

The parsimony of wavelet transtormations ensures that
the high trequency features of the series can be described
by a relative small number of wavelet coetficients.  We
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can separate the high frequency component and the low
frequency component of the time series by wavelet
threshoiding.

. Wavelet | | Ll Waveiet . | .
Raw Data rﬂpxompcslt.oﬂ Threshold Compression | Processed Data
| ; P! ]

Figure 4. Inference on Wavelet Coeflicients (Moulin.
1994)

Prior studies (Abramovich and Benjamini, 1994;
Doncho and Johnstone, 1994; Donoho. 1995; Donoho et
al., 1995. Nason, 1996) discuss several different
thresholding techniques for single wavelet decompositions.
These aim to reduce the noise in an observed signal.

Vidakovic (1995) proposed a thresholding method
based on the Lorentz curve for the energy in the wavelet
decomposition. Replace the pgx 100% of the
coefficients with the smallest energy with zero.

1

dDa? <d?) @
-

where 7 is the mean of the energies (o2 &2 ....¢%).

The value p, represents the proposition at which the gain
by threshclding an additional element will be smaller than
the loss in the energy. Besides, a few researchers studied
these methods differently (Table 1).

[n summary, we show a list about wavelet thresholding
techniques in Table 1.

Table 1. Wavelet Thresholding Techniques

Authors Thresholding Tresholding
Methods Rules
Donoho and Universal( VisuShrink) | ;- zs0g(n)5-
Johnstone - Minimax approach | ;1 i1y 1o -4
(1994) for all the
wavelet
coefficients d
Donoho and Adaptive (SureShrink) Based on
Johnstone - Minimax approach Estimator of
11995) Risk

Nason{1994,1993 Cross-Validation
,1996), Jensen
and Bultheel

(1997)

’n
CV = g2
ny(y 14

Test if each
wavelet
coetticient is
zero or not.

Abramovich and
Benjamini
(1995, 1996),
Ogden and
Parzen (1996)

Multiple hypothesis
tesis

Vidakovi¢
11994, Clyde et
al. (1993),
Chipman et al.
(1997)

Bayes Rule

Goel and
Vidakovic
(1993)

Lorentz curve




Abramovich and | The False Discovery

Benjamini Rate {FDR) approach
(1995 to multiple hypo.
testing
Johnsione and Level-dependent
Silverman Threshoid
99n |
6. Best Basis Selection Criteria

Techniques (Tree Pruning Algorithm)

The tlexibility ot the WPT is in choosing the appropriate
basis for the particular problem.

Detinition of the best-basis for a set of signals is
problem dependent. The best basis for spectra that will be
used for classification purposes can differ from the best
basis for calibration purpose. {f we are interested mainly in
data compression, the best basis preserving best the data
variance can be considered as the optimal one (Walczak
and Massart, 1997).

Elimination of the small wavelet coetficients related
with the noise of variance spectrum allows significant
compression of the best basis.

The definition of the best-basis can also explicitly

contain the criterion of the coetficient selection. For stance.

the best basis can be defined as the basis with the minimal
number of coefticients, whose absolute value is higher
than the predefined threshold.

One way of selecting an efficient basis from all possible
orthonormal bases (i.e. form a library of wavelet packet
bases) is to apply the entropy or information criterion
(Coifman and Wickerhauser, 1992; Coifman et al., 1994),
since the amount of information is a measure of inequality
of distribution. A basis with coefficients all giving more or
fess the same values would yield a low information or high
entropy value. The best basis can be defined as the basis
giving the minimum entropy or maximum information for
its distribution of coetticients. This definition of the best
basis requires the criterion of the coefficients selection.

The chosen wavelet basis should correspond to the
expected smoothness of the function or signal.  The types

of wavelet basis are various (i.e. Haar, Daubechies, Coitlet.

Morlet. ete. ).

6.1. Best Orthogonal Basis

Coifman and Wickerhauser (1992) have suggested a
method for adaptively selecting the best basis. If we were
to check every combination of components that make up
orthogonal bases. it would be incredibly computationally
imtensive. Fortunately. the proposed approach does not
require us to examine every possibie basis. Instead. it
places the decomposition into a tree structure and provides
ctfictent algorithms for searching that tree.

They defined the best basis to be that which minimized
an information cost function M and chose the Shannon
entropy as their archetype tor M.

The Best-Ortho-Basts methodology of adaptive time-
frequency analysis (Coifman er al. 1994) has. more

recently. caught the interest of a wide community of

applied mathematicians and signal processing engineers.
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Based on ideas ot recursive partitioning of the time-
requency plane, it develops, from an analysis of a given
signal, a segmented basis, where the segments are terminal
nodes in a data-driven recursive segmentation of the time
axis.

Table 2. Best Basis Wavelet Packet: The Single-Tree
Algorithm
Authors Best basis Contents
algorithms
Daubechies | Method of Frames | Synthesis direction
(1988) (MOF) approach
A straight-forward
linear algebra
Coifman and Best Orthogonal | - Shannon entropy
Wickerhauser Basis
(1992)
Mailat and Matching Pursuit | -Synthesis
Zhang (1993) direction approach
Chen and Basis Pursuit - Similar to MOF
Donoho -A large-scale
(1995a,b}, constrained opt.
Chen (1993)
Donoho CART - Shannon entropy
{1995)

6.2. Matching Pursuit

Mallat and Zhang (1992) and Davis et al. (1994)
developed a matching pursuit algorithm to represent a
function in terms of wavelet packets using the wavelet
packet functions as a dictionary of atomic waveforms. The
algorithm searches the data for matches to the dictionary
of waveforms up to a specified number of waveforms. The
gauge for matching is the highest correlation between the
signal and the waveform.

The matching pursuit algorithm (Mallat and Zhang,
1992; Davis et al.. 1994) matches a signal to a dictionary
of wavelet packets. The signal can then be broken into
multi-resolution components as in the discrete wavelet
transtorm. The method for transient analysis begins with
transforming the signal into the wavelet domain, using
either the discrete wavelet transform or the matching
pursuit algorithm, and thresholding by retaining only those
components with the largest wavelet coetficient
magnitudes.

Mallat and Zhang (1993) presented a greedy algorithm
for the selection for the selection of the best matching
pursuit decomposition of a signal into time-frequency
packets from a large dictionary of such packet wavetorms.

Matching pursuit (Mallat and Zhang, 1993) is an
intuitively appealing approach to decomposing a data
series/function. The basic approach is simple.

When the Fast Wavelet Transform extracts an
approximation from the original signal, Matching Pursuit
starts with a zero vector and builds up an approximation te
he signal. This approach encourages a sparser repre-
sentation of the signal. '

Where the Fast Wavelet Transform (FWT) starts with
the original and extracts an approximation from it
Matching Pursuit starts with a zero vector and builds up an
approximation to the signal. This approach encourages a



sparser representation of the signal.

We determine which atom to select by ranking them
according to the magnitude of each atom'’s inner product
with the current residual. This method is a sensible
approach if we look at it intuitively because the atom is
always large where the magnitude of the signal is large
and so the magnitude of the inner product wiil be large.

6.3. Mlethod of Frames

The Method of Frames {(MOF) ailows us 1o approach the
approximation problem from the direction of synthesis
rather than analysis (Daubechies, 1988). [n order to find a
representation of a signal as synthesized from a dictionary
of atoms, we must find a vector of coefficients, a that
satisties
da=s (3

Computational experience shows that the coefficient
vector obtained from the MOF solution provides
acceptabie starting values for our BP decomposition.

6.4. Basis Pursuit

Basis Pursuit (BP) finds signal representations in
overcomplete dictionaries by convex optimization (Chen,
1995: Chen and David, 1993a; 1995b). With Basis Pursuit
(BP). we are attempting to find the solution of the
svnthesis problem with minimal /' norm.

We avoid the myopia problem of Matching Pursuit
(MP), because we optimize over all coefficients at once
with BP rather than one at a time with MP. Since we are
looking at all coefficients at once in a sparse framework,
we are able to superresolve with BP. This accounts for
another of our desirable properties.

But, there is one important disadvantage to BP as
compared to MOF. BP is much more computationally
intensive. MOF involves solving a straight-forward linear
algebra calculation. but BP requires the sotution of a large-
scale constrained optimization problem.

6.5. Near-Best Basis

Search algorithms for tinding signal decomposition calied
near-best bases using decision criteria called non-additive
information costs have recently been proposed by Taswell
(1994) for selecting bases in wavelet packet transtorms
represented as binary trees.

Once the best basis with the minimum entropy has been
selected. one needs to tormulate the criterion for the
wavelet transtorm coetticients selection.

7. Data Compression

The compression features of a given wavelet basis are
primarily linked to the relative scareness of the wavelet
Jomain representation for the signal. The notion behind
compression is based on the concept that the regular signal
component can be accurately approximated using the
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following clements: a smali number of approximation
coefficients (at a suitably chosen level) and some of the
detail coefficients.

8. Research Model Architecture

Qur study is to analyze wavelet thresholding or filtering
methods for extracting optimal multi-signal decomposed
series (1.¢. highpass and lowpass fiiters) as a key input
variable fitting a neural network based forecasting model
specially under chaotic financial markets (Figure 3).

e Rioural Network Architecture |

Multi-Scale decomposition

input x(t) | / Prediction

, e -x.)
Nonlinear § — Wavelet || Error
Dynamic x(t=1) ! Transformation aft+1)
Analysis x(t-2) -
x(t-3) i I __Supervised Learmng
B | + [Hill Climbing)
i Theory based or Data-cnven
| Thrashoiding critena (i )
for Cotimal Mufti-scale
Decomposition
Figure 5. Integration Framework of  Wavelet

Transformation and Neural Networks

9. Neural Networks

For time series predictions, the most popularly used neural
networks are clearly time delay neural networks (TDNN:
Weigend, Huberman, and Rumelhart, 1990) and recurrent
neural networks (RNN; Elman, 1990). The time delay
neural networks can be analyzed by using standard
methods and more the results of such analysis can be
applied for time series predictions directly, but they may
not be sufficient to characterize the patterns of highly
dynamic time series. On the other hand, the recurrent
neural networks are suited for applications that refer to the
patterns of genuinely time dependent inputs such as time
series predictions due to their dynamic feature.

While in the dynamic context the recurrent neural
networks can outperform the time delay neural networks.
they occasionally are difficult to be trained optimally by a
standard backpropagation algorithm due in part to the
dependence of their network parameters (Kuan and Hornik.
1991).

[n this study, The basic model we experiment with is
Backpropagation neural network (BPN) models which
have a parsimonious 4 input nodes. 4 hidden-nodes and 1
output node with single wavelet fiiter, i.e. highpass.
lowpass. or bandpass filter within the network structure.
The other model we experiment with is BPN models
which have 8 input nodes, 8 hidden-nodes and 1 output
node with multiple filters.

10. Experimental Results
In this section, we evaluate prior methodology about

wavelet thresholding using a case of the daily Korean Won
' U.S. Dollar exchange rates are transtormed to the returns



asing che logarithm andg through standardization from
January 10, 1990 to June 23, 1997 That is. the retumns
are detined as the logarithm of today’s exchange rate
divided by the logarithm of vesterday's exchange rate.
The fearning phase involved observations from January 10,
1990 10 August 4. 19935 while the testing phase ran from
August 7. 1995 1o June 25. 1997 Further more. using a
scaling function equal to 2. the 2048-point wavelet
transtorm  automatically produces (log,2048) -1 or 10
separate filters or band [0 data because the data was
svmmetricaily extended from points 1023-2048.

We transtorm the daily returns into the decomposed
series such as an approximation part and a detail part by
Daupechies wavelet transform with order 4 tor neural
network forecasting models in our study.

By the transformation, we approximate a time series at
different  ievels of resolution wusing multiresolution
decompositon. The individual time series resulting from
the decomposition. taken together, can provide a detailed
picture of the underlying processes.

The threshold A determines the number of non-zero
robust residuals. Setting A too big will result in leakage of
outiiers into the signal and setting ~ too small will cause
distortion of the signal. We set » so that an average of
100*p®a  non-zero  robust  residuals  remain  atter
thresholding inthe Gaussian case. The tuning parameter p
5 setl to some small value (e.g. 01). A table for 7 is
sbtained by simulation based on the Gaussian model. This
value of x is quite insensitive to the stochastic
characteristics of the underlying signal.

lo summary. we use thresholding strategies shown in
table 5 and then compare cach other in forecasting
performance using test samples. The results are shown in
lable 3-7.

{able 3. Thresholding (Data Compression or Denoising)
Mcthods by Entropy Tvpes

Tvoe Description

Shannon Non-normalized entropy involving the
logarithm of the squared value of cach signal

sample

Threshold The number ot samples for which the
absolute value of the signal exceeds a

threshold A,

The concentration in IP nonm with 1<p <2

The logarithm of energy, detined as the sum
| over ail samples

A threshold-based method in which the
threshold equals:

SURE(Stem's
Unbiased
Risk

Fstimate)

. 2log,niog (n))
i Where s the number of samples in the
; signal.

I our experiments. fow-pass and high-pass tilters are
~oth wavelet transtform. and  ther

complementary use provides signal analysis and senthests.

constdered v the
Fhe dinest scale provides the original data, ~ =v. and the
approximaiion at scale m where m = 2 2
Fhe ineremental detil added in going from x, 1o
Jetail signall is vielded by the wavelet ranstorm.
Theretore. the original signal can be expressed as an
addirive combination of the wavcelet coefficients. at the

dirferent reselution levels.

! PR
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For additivity of the wavelet transtorm decompesition.
we must of course consider the wavelet coefficients given
by the convolution of data and low-pass filter. We can
think of the successive convolution as something like a
moving average of N increasingly distant points.

We tirst try to select the most efficient basis out of the
given set of bases to represent a given signal. [n other
words, we intend to find a basis, in which some of the
coefficients attain high values (i.e. the respective basis
vectors represent relevant information), while the
remaining ones show low values. [n this way we wish to
obtain the greatest possible differentiation within the set of
coefficients (Refer to Figure 6).

Figure 6. Best Orthogonal Basis of daily Korean Won / US
Dollar returns data

Table 5, 6, and 7 compare thresholding performances from
different preprocessing methods in forecasting models.
Firstly our experimental results (Table 3-7) show that
wavelet transforms have proved to be very good methods
for noise filtering and compressing data. This
doubtlessly due to the fact that varying resolution scaies
are treated, thus taking into account a range of
superimposed phenomena.

Table 5 and 6 contain the comparison between hard and
soft thresholding. Soft thresholding has a difference from
hard thrsholding in the experimental results.

Table3-7 also show the results about the different
performances among compression. denoising, best basis
method. best level method. and cross-validation, etc.

But, except cross-validation method, any other method
didn't outperform the others. That is, only cross-validation
method significantly has the best performance among their
technigues and the other methods have almost the same
results.

Prior studies show that wavelet shrinkage denoising has
been theoretically proven to be nearly optimal from the
‘ollowing perspective: spatial adaptation, estimation when
local smoothness is unknown. and estimation when global
smoothness is unknown. In etfect, no alternative procedure
cun  perform  better without knowing a  priori  the
smoothaess class of the signal. But it is not appfopriate to
use a procedure that is theoretically optimal and seneral
ander most measures of local and global crror tor data
appiied 10 the domain specitic problems.

Through our experimental resuits. we conclude that

is



choosing the most appropriate shrinkage or thresholding
srocedure necessarily involves experiments to compare
the performance of a wavelet thresholding method with
any other methods under consideration. Specially, in our
case study a cross-validatuion method is the best wavelet
thresholding technique among all of them.

11. Conclusions and Future Research

Our research was motivated by a problem central in time
series analysis: how to extract non-stationary signals which
may have abrupt changes. such as level shifts, in the
presence of impulsive outlier noise under short-term
financial time series. A variety of techniques have been
emploved to deal with the problem. Our research indicates
that a wavelet approach is basically an attractive
aternative. offering a very fast algorithm with good
:heoretical properties and predictability in forecasting
model design.

That reason is that the multiresolution property of the
discrete wavelet transform enables the separation of
rransient. seasonal, and diurnal compenents of financial
time series and also the dual time-frequency localization
property of wavelets allows identification of features of
wransient  events. This property has allowed for
characterization of transients by location, duration and
magnitude.

From our experiemntal results, wavelet shrinkage
denoising has also been theoretically proven to be nearly
optimal from the following perspective: spatial adaptation,
estimation when local smoothness is unknown, and
estimation when giobal smoothness is unknown (Taswell,
1998). In the future, the availability of these techniques
will be promising more and more according to the domain
teatures.

In summarv. our experimental results show that cross-
validation threshoding gives the best result in viewpoint of
neural network based forecasting performance. That means
that in general, the root mean square €rror measure of
estimates as a data driven thresholding method is better
than the other methods.

But, the data driven approach has some limitation as
follows. That is. in fact, varying results can be obtained
with different experimental conditions (signal classes,
noise levels. sample sizes, wavelet transform parameters)
and error measures, i.c. a cost function for global model
optimization.

Ideally. the interplay between theory-based and
experimental or data driven approach to implement an
optimal wavelet thresholding should provide the best
performance  of a model according  to the above
experimental conditions.

Theretore. in the future we will suggest a new hybrid
svstem of wavelet thresholding methodology and neural
networks using  genetic  algorithms  to  overcome the
limitation.
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Table 4. Prior Case Studies Using Wavelet Transform Techniques Applied to Financial Markets

——

Author(Year) | Purpose Data

Basis function Methodology Results
Pancham {1994) Test the multi-tractal Monthly, weekly, daily - - Accepted the multi-
market hypothesis {ndex fractal market hypo.
Cody, M.{1994) Present the concept of General financial DWT, WPT Multi-scale linear Suggested possibie
wavelets and the WT market data prediction system applications of the
methods ! DWT to tinancial
‘. market analysis
Tak (1993) Forecasting univariate | Standard & Poor’s 500 Mexican-hat ARIMA, detrending Qutperformed than
time series index wavelet and AR, random original data
watk. ANN
(reenblatt Analysis for structure in Foreign exchange Coif-1,Coif-3 Best orthogonal Found structure i
(1996) financial data rates basis, Matching financial data
pursuit, Method of
frames, Basis pursuit
T . . .
McCabe and ¢ Determine at which DM/US Dollar Haar wavelet Predictive linear Rarely better than
Weigend (1996) time-scale the series is models for predicting the mean of
most predictable multiresolution the process
analysis
Hog (1996) Estimate the fractional Monthly US 3-year Haar wavelet ARFIMA(0,d+1,0) 7 =0.900
differencing parameter yields on pure where H =d+1/2 95% S
in Fractional Brownian discount bonds .3(” CZ;‘?dT“‘f
Motion models for (1965.11-1987.02) imerval for © -
interest rate having the (0.8711,0.9289]
term structure
Hog (1997) Analyze non-stationary US interest rate Haar wavelet ARFIMA Showed mean
but possibly mean- reversion of US
reverting processes interest rate
Aussem el al. Predict the trend-up or S&P 500 closing A trous Dynamic recurrent 86% correct prediction
(1998) i down - 3 days ahead prices wavelet NN & | nearest of the trend
neighbors

Table 5. A Discrete Wavelet Transform Thresholding Performance Using Test Samples

Threshold Entropy Type U Global | Network RMSE
Strategy& Techniques | Threshold |  Structure
- - 1 - Random Walks | 2.939007
- - - | BPN(4-4-1)° 1.754325
Cross-validation BPN(8-8-1) 1.676247
(HP&LP)*
Hard-Compression - 0.5905 BPN(5-3-1) 1.768216
Soft-Denoising Fixed Form - BPN(4-4-1) 1.767864
(LPY Rigorous SURE
Heuristic SURE
Minimax
Soft-Denoising Fixed Form - BPN(8-8-1) 1.751537
(HP&LP) Rigorous SURE
Heuristic SURE
Minimax |
Hard-Denoising Fixed Form J - BPN(4-4-1) 1.766579
(LP} Rigorous SURE
Heuristic SURE |
Minimax |
Hard-Denoising Fixed Form - BPN(8-8-1) 1.754131
(HP&LP)
Rigorous SURE
Heuristic SURE B
Minimax

a: Highpass ~ Lowpass tilters, b: Lowpass filter,
Input nodes: H: # of Hidden nodes; O: # of output nodes).

¢ BPN(I-H-O) = Backpropagation NN{I: # ot
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Table 6. Wavelet Packet Transform Thresholding Pertorimance Using Test Samples

Methods Entropy Tipe Global Network RMSE
Threshold Structure
- - ‘ . BPN(4-4-1) 1.754325
Hard- Shannon 5717 BPN(4-4-1) 1.774456
Compression Threshold
(LP) Norm )

Log Energy |
SURE(Stein's Unbiased
Risk Estimate)

Hard- Shannon 5.717 BPN(8-8-1) 1.759434
Compression Threshold
(LP&HP) Norm
Log Energy
SURE(Stein's Unbiased
Risk Estimate)
Soft-Denoise Shannon 4.336 BPN(4-4-1) 1.774456
(LP) Threshold
Norm
Log Energy
SURE(Stein's Unbiased
Risk Estimate)
Soft-Denoise Shannon 4.336 BPN(8-8-1) 1.759434
{LP&HP) Threshold
Norm

Log Energy
SURE(Stein's Unbiased
Risk Estimate)

Table 7. The Model Performance Comparison Between Best Basis Selection and Best Level Techniques Using Test samples

Criteria Contents Filter Types BPN(#-#-1) RMSE
Best Basis Cotfman-Wickerhauser LP (4-4-1) 1.764243
Best-Basis algorithm LP&HP (8-8-1) 1.74329
Best Level - LP (4-4-1) 1.767424
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