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A Hybrid System of Joint Time-Frequency Filtering Methods and
Neural Network Techniques for Foreign Exchange Rate Forecasting

Taeksoo Shin’, Ingoo Han"

Abstract

Input filtering as one of preprocessing methods is so much crucial to get good performance in time-series forecasting.
There are a few preprocessing methods (i.e. ARMA outputs as time domain filters, and Fourier transform or wavelet
transform as time-frequency domain filters) for handling time-series. Specially, the time-frequency domain filters
describe the fractal structure of financial markets better than the time domain filters due to theoretically additional
frequency information. Therefore, we, first of all, try to describe and analyze specially some issues on the
effectiveness of different filtering methods from viewpoint of the performance of a neural network based forecasting.
And then we discuss about neural network model architecture issues, for example, what type of neural network
learning architecture is selected for our time series forecasting, and what input size should be applied to a model. In
this study an input selection problem is limited to a size selection of the lagged input variables. To solve this problem,
we simulate on analyzing and comparing a few neural networks having different model architecture and also use an
embedding dimension measure as chaotic time-series analysis or nonlinear dynamic analysis to reduce the
dimensionality (i.e. the size of time delayed input variables) of the models. Throughout our study, experiments for
integration methods of joint time-frequency analysis and neural network techniques are applied to a case study of
daily Korean won / U.S. dollar exchange returns and finally we suggest an integration framework for future research

from our experimental results.
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1. Introduction

Making predictions and building trading models are
central goals for financial institutions as an investor or
financial manager. However, the difficulty in
forecasting chaotic time series such as economic or
financial data makes them fall into a dilemma. It is
sometimes attributed to the limitation of many
conventional forecasting models, while it would
reversely give many researchers a opportunity to
develop more predictable forecasting models.

For example, the models using artificial intelli-
gence such as neural network techniques have been
recognized as more useful forecasting models than the
conventional statistical forecasting models (Hill et al.,
1994; Tang et al., 1991; Tang and Fishwick, 1993).

Recently, more intelligent forecasting models have
been developed through integration methods between
neural network techniques and other learning
algorithms. This study introduces joint time-frequency
analysis and focuses on the integration of signal
processing algorithms (such as Fourier or wavelet
analysis) and neural network techniques to gain more
meaningful time series features for the efficient and
effective learning. For example, a discrete wavelet
transform (DWT) allows us to compute wavelet
coefficients from coarse to fine scale levels efficiently
and so reduces the training time of the neural network
(Tsui et al., 1995).

To date, economic and financial data are often
analyzed in either time domain or frequency domain.
If the data is stationary, then these are useful
approaches. However, economic and financial data are
usually non-stationary or non-homogeneous in some

sense. In these cases, it is instructive to look at the
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data either on the time-frequency dimension or on
multiple scales over time. Time- frequency or time-
scale methods allow us to observe the changes in
behavior over time.

As noted by Ville (1948) there are two basic
approaches to time-frequency analysis. The first
approach is to initially cut the signal into slices in time,
and then to analyze each of these slices separately to
examine their frequency content. The other approach
is to first filter different frequency bands, and then cut
these bands into slices in time and analyze their energy
content.

The first of these approaches is used for the
construction of the short time Fourier transform and
the Wigner-Ville transform, while the second leads to
the wavelet transform. The wavelet transform is a
mechanism used to dissect or breakdown a signal into
its constituent parts, thus enabling analysis of data in
different frequency domains with each component
resolution matched to its scale.

Alternatively this may be seen as a decom- position
of the signal into its set of basis functions (wavelets),
analogous to the use of sines and cosines in Fourier
analysis to represent other functions. These basis
functions are obtained from dilations or contractions
(scaling), and translations of the mother wavelet. The
important difference that distinguishes the wavelet
transform from Fourier analysis is its time and
frequency localization properties.

When analyzing signals of a non-stationary nature,
it is often beneficial to be able to acquire a correlation
between the time and frequency domains of a signal.
In contrast to the Fourier transform, the wavelet
transform allows exceptional localization in both the

time domain via translations of the mother wavelet,



and the scale (frequency) domain via dilations.

Specially, the wavelet analysis is a robust tool that
may be used to obtain qualitative information for
highly nonstationary time series, i.e. to detect a small-
amplitude harmonic forcing term even when is chaotic
and even for short total times (Permann and Hamilton,
1992).

The purpose of this study is to introduce new
filtering methodologies based on Fourier and wavelet
transforms that use signal decomposition algorithms
and so can forecast with greater accuracy than others
models. First of all, the original series of daily Korean
won / U.S. dollar returns are applied to several models
including random walk, mean reverting, ARMA, and
artificial neural networks as a benchmark model. And
then the Fourier filtered and wavelet filtered time
series decomposed by time scale are applied to our
neural network models.

This paper is organized as follows. The next section
reviews the financial market heterogeneity. The third
the series

The

and fourth section describe time

decomposition methods and filtering methods.
fifth section presents the integration methods of joint
time-frequency analysis and neural networks learning
and then their experimental results and the conclusion

contains final comments.

2. Financial Market Heterogeneity

Market heterogeneity suggests that the different

intentions among market participants result in
sensitivity by the market to several different time-
scales (Refer to Fig. 1). Miiller et al. (1993, 1995)
present that the heterogeneous market hypothesis has

been associated with fractal phenomena in the
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empirical behavior of foreign exchange rate (FX)
markets. Based on the hypothesis, a scaling law
relating time horizon and size of price movements

(volatility) has been identified in Miiller et al. (1990).

short-term traders short-term
g Q information
Q long-term
long-term traders

[Figure 1] Heterogeneous Financial Market Structure

For example, short-term traders are constantly
watching the market; they re-evaluate the situation and
execute transactions at a high frequency. Long-term
traders may look at the market less frequently. A quick
price increase of 0.5% followed by a quick decrease of
the same size, for example, is a major event for an FX
intraday trader but a non-event for central banks and
long-term investors.

Sometimes, small short-term price moves may have
a certain influence on the timing of long-term traders
transactions but never on their investment decisions as
such. Long-term traders are interested only in large
price movements and these normally happen only over
long time intervals.

Therefore, long-term traders with open positions
have no need to watch the market every minute. In
other words, they judge the market, its prices and also
its volatility with a coarse time grid. It means that a
coarse time grid reflects the view of long-term trader
and a fine time grid reflects that of a short-term trader.

In summary, these different types of traders create
the multi-scale dynamics of the time series. Specially
the multi-scale nature of wavelet analysis makes it

useful for detection and characterization of self-



similar or scaling behavior, such as is common for

chaotic processes.

3. Time Series Decomposition Methods

Conventionally, time series have been thought to
consist of a mixture of trend (T,), seasonal (S,), cycle
(Cy), and irregular components (e;). We can write the

time series Z; as
Z, =f(7,5.,C e) (1)

But, when the coverage of forecasting is much
short-term, time series mainly consist of cyclic and
irregular components. A traditional way of decompo-
sing a time series into cycles of different frequencies
has been through spectral analysis. The spectrum of a
series gives an alternative way of looking at the series
in the frequency domain instead of the time domain.
The spectrum of a series can be interpreted as the
decomposition of the variance of the series. A peak in
the spectrum at specific frequency o indicates that a
cycle of frequency o is present in the series and that it
gives an important contribution to the variance of the
series. If at a frequency o , the spectrum of the
series is almost zero, it means the existence of no cycle
of frequency ® with substantial contribution to the
variance of the series. Taking in a series the cycles of
high frequency and those of low frequency as detected
by the spectrum it is possible to decompose the series
into components of high and low frequency
fluctuations.

Secondly, in time series analysis, the focus has also
been on regular, periodic cycles. In Fourier analysis,

we assume that irregularly shaped time series are the

sum of a number of periodic sine waves, each with
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differing frequencies and amplitudes. Spectral
analysis attempts to break an observed irregular time
series, with no obvious cycle, into these sine waves
(Refer to Fig. 4). Peaks in the power spectrum are
considered evidence of cyclical behavior. Spectral
analysis imposes an unobserved periodic structure on
the observed nonperiodic time series (Peters, 1994).

There is no intuitive reason for believing that the
underlying basis of market or economic cycles has
everything to do with sine waves or any other periodic
cycle. Spectral analysis would be an inappropriate tool
for market cycle analysis.

On the contrary, in chaos theory, nonperiodic cycles
exist. These cycles have an average duration, but the
exact duration of a future cycle is unknown. In that
situation, we need a more robust tool for cycle analysis,
a tool that can detect both periodic and nonperiodic
cycles. That is, rescaled range (R/S) analysis can
perform that function (Refer to Section 6). R/S
analysis is useful for uncovering periodic cycles, even

when the cycles are superim- posed on one another.

R/S analysis can discern cycles within cycles.

Frequency

[Figure 2] Fourier power spectrum on a log-log scale
of Korean Won/U.S. Dollar (1992. 1. - 1996. 6.)

Fig. 2 shows an example of the cyclic features from
the viewpoint of R/S analysis. That is, the power

spectra of Korean won / U.S. dollar series are flat and



represent a broadband power spectrum. It shows that
the initially straight downward trend of the power
spectrum on a log-log plot is characteristic for a fractal

(i.e. possibly chaotic) signal.

4. Signal
Methods

Decomposition Filtering

A filter in our study is defined as a means of
separating the various periodic components of a time
series into individual series.

The following sections describe several filtering

methods.

4.1. Time Domain Filters-ARMA Filter

Time domain filters mean linear filters using statistical
parameters of such statistical models as ARMA in our

study.
4.1.1. Moving average (MA) models

Y, = ib/eH =be +be_ +..+be_, @
=0

Equation (2) describes a convolution filter: the new
series y; is generated by an qth-order filter with
coefficients by, ..., by from the series e, ..., .4 Itis
called an qth-order moving average model, MA(q).

The moving averages technique performs quite well
when the market is in a state of trend but performs
rather poorly around turning points and/or oscillations,

because it receives delayed signals of the abrupt

changes (Refenes, 1995).
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4.1.2. Autoregressive (AR) models

MA filters operate in an open loop without
feedback; they can only transform an input that is
applied to them. If we do not want to drive the series
externally, we need to provide some feedback (or

memory) in order to generate internal dynamics:

0
=2

/=1

a,)/Xf_/, +e, A3)

Equation (3) is called a pth-order autoregressive
model, AR(p) or an infinite impulse response (IIR)
filter (because the output can continue after the input
ceases). Depending on the application, et can represent

either a controlled input to the system or noise.
4.1.3. ARMA models (Weigend, 1994)

The next step in complexity is to allow both AR and
MA parts in the model. This is called an ARMA(p,q)

model.

o q
Y, = 2 aY,;+ 2 be,_,

/=1 /=0

4)

Equation (4) has the mixed features of AR and MA

model shown from Equation (2) and (3).

4.2.
Filters

Joint Time-Frequency Domain

4.2.1. Fourier Transform

Knowledge of the frequency components provides a

means of estimating where in each cycle the present
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time series reached, with important consequences for
predicting future behavior. Thus a Fourier spectrum
indicates the frequencies, and their strengths, inherent
in a time series. However this assumes the signal, or
signals, to be stationary. For a general nonstationary
time series the Fourier transform provides no
information on the time localization of spectral
components, rather the frequency spectrum would
reveal wide band features characteristic of noise. A
single abrupt change in the time series would, for
example, affect all the components of the frequency
spectrum. A transform designed for stationary signals
cannot resolve features of a nonstationary signal.

In the beginning, the communications industry has
developed many different types of filters. These
filters not only are used in electronic communications,

but also have an application base that includes radar

and sonar imaging, electronic warfare, medical
technology and so on.
N/2
=Y [a, cos(w,t) + b, sin(ot)+e, t=12,.,N. (5
k=0
st [ = R, cos(6,)
b, =—-R, sin(6,)

o, : sinusoidal frequency

R, : amplitude of the variation
6, : phase

€ : stationary random series

Equation (5) is called the Fourier series of the
sequence y,. The a, and by, are called Fourier
coefficients.

By the Fourier coefficients, all the application-
specific filter implementations can be grouped into
four general filter types: lowpass, highpass, bandpass,
and bandtop filter. The characteristic frequency

response of these filters is depicted in Fig. 3.

3 (1999.6)

Especially, the adaptive filter can reproduce the
characteristics of any of the four basic filter types,

alone or in combination (Freeman and Skapura, 1991).

Amplitude Amplitude,

lLf

Frequency(KHz) Frequency(KHz)

a) Lowpass filter (b) Highpass filter

Amplitude Amplitude,

ﬂw

Frequency(KHz)
c) Bandpass filter

(d) Bandstop filter Frequency(kHz)

Figure 3] Frequency-Response Characteristics of the
Four Basic Filter Types

One of popular Fourier transforms is a Fast Fourier
transform (FFT). It works by recursively splitting the
series in half, transforming each half separately in a
quarter of the time that would be taken to transform
the entire series, then quickly merging the results. FFT
has three requirements about the time series data as
follows (Hartle, 1994).

First, the data must have the major trend removed,
as a cycle length longer than the data being analyzed
will skew the values of the power spectrum. One
method to remove the trend is to measure the trend
using the linear least-squares method and subtract the
trend values from the original data.

Second, the beginning and end points of the data
must have approximately the same values for FFT.

An FFT assumes that the cycles continue to repeat
into the future. If you apply an FFT to data with
different beginning and ending points, the output of
the FFT will be incorrect. To adjust the data so it has
the same beginning and end points, the data must be
processed with a Hanning window. This step will
eliminate endpoint discontinuities.

Finally, the last requirement for FFTs: the data
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period must be a power of 2 - that is, 64, 128, 256 or
greater periods. Thus, we must augment the data by
adding zero to the data so the final array has a value
equal to a power of 2.

Fig. 4 shows that the FFT decomposes summed
cycles such as combined cycle A and B into separate

cycles according to the power and frequency of each

cycle.

3.00 e ‘ Cycle B
2.00 > Lowpass - 0.0 o - (long term
1.00 /\ filter Inverse HD\ 357 91181 parts)
0.00 /\ 2 Fourier 1

1.0 [\/\/ * """y Highpass | Transform @ / Cycle A

—2.00 filter a0 (short term

Original data . sl 28 \s i 16 arts

[Figure 4] An Example of Using Fourier Transforms

4.2.2. Wavelet Transform

A new decomposition method, wavelet analysis is
significantly different from Fourier analysis as follows.
While Fourier analysis gives us only frequency
information, wavelet analysis gives us both frequency
information and time information and so can represent
a nonstationary process better than Fourier analysis by
allowing us to look at the series through wavelets of
variable sizes. While the wavelet theory has brought
about significant advancements in representation of
functions, not much work on its applicability to
forecasting has been made. Although an initial attempt
to provide the statistical framework for wavelet
analysis was made by Basseville ef al. (1992a, 1992b),
the applicability of wavelet analysis to forecasting
needs to be further developed. Tak (1995) introduced
new methodologies based on wavelet decomposition
that can forecast with greater accuracy than existing
models and utilized the simplest wavelets and a

univariate case.
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Besides, there has been a rapidly-growing liter-
ature on the use of wavelets for denoising and
smoothing (Donoho, 1992; Donoho and Johnstone,
1994, 1995a, 1995b; Donoho et al., 1993, 1994).
Wavelets are well suited to the above problem because
of time (or space) localization. When approximating a
wavelets  can local features

signal, preserve

(discontinuities, turning points, etc.) while still
removing noise.

There are many different types of DWTs which
have been explored since the original work in the
1980s. That is, unlike sines and cosines, which define
a unique Fourier transform, there is not a unique set of
wavelets; in fact, there are infinitely many possible
sets (i.e. scaling functions). Roughly, the different sets
of wavelets make different trade-offs between how
compactly they are localized in space and how smooth
they are.

The DWT shown in Fig. 5, as developed by
Daubechies (1988), is similar to FFT. Both take an
input vector whose length is normally a power of two
and output a different vector of the same length. The
entire process is also reversible, which means that the
transform data can be used to reconstruct the original
input at any point in the procedure. But, the wavelet
transform yields a decomposition which is neither
continuous nor unique. So unlike the FFT, the DWT
does not have the limited time-frequency resolution of
the FFT and thus provides more accurate re-
presentation of the input (Rioul and Vetterli, 1991).

The DWT consists of applying a wavelet coefficient
matrix hierarchically, first to the full data vector of
length N, then to the smooth vector of length N/2, then

to the smooth-smooth vector of length N/4, and so on

until only a trivial number of smooth-,...-smooth



components (usually 2) remain. The procedure is
sometimes called a pyramidal algorithm. The output of
the DWT consists of these remaining components and
all the detail components that were accumulated along
the way.

Suppose the finest scale provides the original data,
XN = X, and the approximation at scale m is xm where
usually m = 2, 24,..., 2y. The incremental detail added
in going from x,, to X,+1, the detail signal, is yielded
by the wavelet transform. If em is this detail signal,
then the following holds:

X . =H (mx, +G (m)e (6)

m

where H(m) (i.e. defined as scaling function or father
wavelet in Fig.5-(c)) and G(m) (i.e. defined as mother
wavelet in Fig.5-(d)) are matrices (linear trans-
formations) depending on the wavelet chosen, and T
denotes transpose (adjoint). An intermediate approxi-
mation of the original signal is immediately possible
by setting detail components e,; to zero for m' = m
(thus, for example, to obtain X,, we use only x,, €, and
e1). Alternatively we can de-noise the detail signals
before reconstituting x and this has been termed
wavelet regression (Bruce and Gao, 1994; Murtagh,
1996).

Define e as the row-wise juxtaposition of all detail
components, {ey}, and the final smoothed signal, X,

and consider the wavelet transform W given by

Wx:e:[eN_1---e0x0]T )

Taking W'W = I (the identity matrix) is a strong

condition for exact reconstruction of the input data,
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and is satisfied by the orthogonal wavelet transform.

G ¢, ¢, ¢; —> scaling function
G -G, G -, —> mother wavelet
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(a) Wavelet Transform Matrix
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(b) Inverse Wavelet Transform Matrix

. _1+43 . _3+43 . 343 . _1-43
NN N N
1
0.5 |
0 scaling
function
2 3 4 5 6 7 8 9 1
-0.5
-1

(c) Scaling Function (or Father Wavelet)

06 1
0.4 r
02 r mother

0 wavelet
-0.2 F 2 3 4 7 \8 /9 10 11 12

-0.6

(d) Mother Wavelet
[Figure 5] Daubechies Wavelet with Order 4
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Throughout our study, we use the Daubechies
wavelet transform with order 4 (DAUB4) as examples

of these orthogonal wavelets (Fig. 5).

5. Integration of Filtering Methods

and Neural Networks

In this section, we present three types of neural
networks for univariate time series forecasting as

follows.

(1) NN technique using the real values

(2) NN technique using the time domain filters
(AR, MA, and ARMA Models)

(3) NN technique using the time-frequency domain

filters (Fourier transform, and wavelet transform)

In this study, we use a fast Fourier transform (FFT)
as a Fourier transform method and Daubechies wavelet
as a wavelet transform method of the log price change
data.

In this section, we suggest two integration methods
of filtering methods and neural network techniques.

One integration method is to forecast one period-
ahead return using single neural network model. The
other integration method forecasts each scale (i.e.
lowpass filtered data and highpass filtered data) using
followed by

multiple neural network models,

combining of the individual forecasts.
5.1. Recurrent Neural Networks (RNN)

Several researchers confirm the superiority of
RNNs over feedforward networks when performing

nonlinear time series prediction (Connor and Atlas,

1991; Logar et al., 1993). Especially, RNNs can yield
good results because of the rough repetition of similar
patterns present in time series. These regular but
subtle sequences can provide beneficial forecast ability.
However, a large network size is often needed and its
training generally requires an excessively long history
of input. In general, context units of RNNs accumulate

a weighted moving average or trace of the past output

values.

@)
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Output

@0 -00] %100 ele)

(Input Vector) (Context Vector)

(a) RNN(1) : Stornetta et al. Model[1988]
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(b-1) RNN(2) : Elman Model[1988,90]
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(b-2) RNN(2) : Modified Elman Model
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(c) RNN(3) : Jordan Model[1986,89]
[Figure 7] Recurrent Neural Network Architectures

Stornetta et al. Model (1988) in Fig. 7- (a) RNN(1)
can perform sequence recognition tasks. The only
feedback is now from the context units to themselves,
give them decay properties, but their input is now the
network input itself, which only reaches the rest of the
network via the context units.

Elman (1990) suggested the architecture shown in
Fig. 7- (b-1) RNN(2). The input layer is divided into
two parts: the true input units and the context units.
The context units simply hold a copy of the activations
of the hidden units from the previous time step.
Modified Elman model in Fig. 7- (b-2) modified
RNN(2) has additional parts, i.e. the feedback from the
context units to themselves.

Fig.7- (c) RNN(3) shows the Jordan (1986, 1989)
architecture. It has the context units fed from the
output layer and also from themselves.

Generally RNN(1) is less well suited than RNN(2)
and RNN(3) to generating or reproducing sequences.

Based on the above models, we suggest the
following integration models. First of all, we use a
general integration model of the time domain filtering
methods and neural networks as benchmark
integration model (Fig. 8A).

Next, we describe a new integration model of joint
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time-frequency filtering methods and neural networks.
It consists of two types of integration approach, i.e. (a)
single recurrent neural network model (RNN)
combined with the filtering methods and (b) multiple
recurrent neural network model (MRNN) combined
with the filtering methods (Fig. 8B).

In our integration models (Fig. 8B), we use each
filter type such as highpass type (short-term part) and
lowpass type (long-term part) as joint time-frequency
domain filters applied to single RNN models. And also
we design the second model of two integration
methods on a condition that time series consist of
highpass filtered parts and lowpass filtred parts (i.e.
time series = highpass part + lowpass part). That is,
two sub-integration models separately forecast one day
ahead each lowpass output and highpass output and
then two forecast filtered outputs are summed up for

forecasting final output.

AR
Filtered input (input

®)
vector) Q

or

— O

MA

N
1O

Filtered input OC(—\ (final
( output)
context

or vector)
ARMA
Filtered input
Time-Domain filtered Input Hidden Output
time lagged data layer layer layer

[Figure 8A] Integration of Time Domain Filtering
Methods and Neural Network Learning Algorithms

- 10-



Lowpass
Filtered input (input

3
vector)

or

— O

Highpass

@E‘QQ‘

N

Filtered input OCC\ (final
( output)
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(a) Single Recurrent Neural Network (RNN) Model
Combined with Frequency Domain Filtering Method
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7 =
=
/
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(b) Multiple Recurrent Neural Network (MRNN)
Model Combined with Time-Frequency Domain
Filtering Method (Output = lowpass filtered data +
highpass filtered data)

[Figure 8B] Recurrent Neural Network Model
Combined with Time-Frequency Filtering Analysis

6. Empirical Analysis and Results: A

Case Study of Korean Won / U.S.
Dollar Exchange Rate Market
The daily Korean won / U.S. dollar exchange rates

are transformed to the returns and then standardized

from January 10, 1992 to June 25, 1996. The returns
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are defined as the logarithm of today's exchange rate
divided by the logarithm of yesterday's exchange rate.
The learning phase involves observations from
January 10, 1992 to August 4, 1995, while the testing
phase runs from August 7, 1995 to June 25, 1996.

In our study, the returns are basically decomposed
into an approximation part and a detail part of the
daily series by the FFT and the DAUBA4 filter.

Theoretically, the joint time-frequency filters de-
composes the input signal into detail signals, and a
residual or the time series into varying scales of
temporal resolution. On the contrary, the original
signal can be expressed as an additive combination of
the filter coefficients, at the different resolution levels.

We show the effectiveness (performance) of
different forecasting models by two comparative
analyses of different filtering methods in the following

sections.

6.1. Highpass and Lowpass Filters

In this paper, we select the input size based on
chaos analyses from the experimental results. That is,
The number of input nodes used in the neural
networks is chosen by the nonlinear dynamic analysis
(estimating embedding dimension) and the analysis
was proved useful from a set of values we tested,
because it gave nearly the smallest in-sample
prediction error.

Therefore, throughout our study, the neural network
structure we used basically has 4 inputs (Refer to
Section 6.2.2.). The inputs have several types, i.c.
lowpass and highpass filtered data by FFT and DWT
(DAUB4) including original time series data as shown

in Fig. 6A, 6B, and 6C.

- 11 -
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Lowpass filters pass all frequencies below the
specified frequency, and they are usually employed for
smoothing. Highpass filters pass all frequencies above
the specified frequency. They are usually used to
extract information on local variation while

suppressing overall signal levels.

Value ZY
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To7t s o211 T 281 T 351 0 421 491 561 631
3 106 176 246 316 386 456 526 59 666

Case Number

[Figure 6A] Original Time Series - Daily Korean Won
/ U.S. Dollar Returns (InX, - InX_;)
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[Figure 6B] Fourier Transformed Time Series
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[Figure 6C] Wavelet Transformed Time Series

6.2. Nonlinear Dynamic Analysis

6.2.1. Rescaled Range Analysis

Hurst exponent (Hurst ez al., 1965) is a measure of
predictability of time series that has interesting
characteristics. The exponent is derived using so
called R/S analysis. Given a time series X containing a
number of points, n, and choosing an integer divisor p
where for convenience: 10 <= p < n/2, the data can be
divided into n/p blocks. For each block the average
value is calculated, then the maximum range of each
block and the standard deviation of each block. The
value (range)/(standard deviation) is calculated for
each block and then averaged over the blocks.

The average value R/S is related to the Hurst
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exponent by the following formula:

H
R/sz(ﬁj ®)
2

where H is the Hurst exponent. In order to gain a
more reliable estimate the value of R/S is calculated
for all the possible values of p, and the resulting tuples
are logged and a linear regression is performed on
them.

Fig. 9 shows the results of applying rescaled range
analysis to Korean won/ U.S. dollar returns. The Hurst
coefficient for the FX is 0.6199 greater than 0.5. It is
calculated as a global least-mean-squares estimate for
the slope of the curve of the logarithm of the
correlation integral in the linear region as a function of
n (the number of observations) during the given period
(1992.1. - 1996. 6.). It means that the coefficient
indicates a bias or memory effect that is biased toward
reinforcement of the trend, which is called persistence.
It also helps analyzing a predictability of our time

series in advance.

o | H=0.6199

Log(R/S)

Log(# of observations)

[Figure 9] R/S (Rescaled Range) Analysis

6.2.2. Embedding dimension

Neural networks for univariate time series foreca-

sting are a kind of nonlinear AR model and so the
choice of order for the models is based on the
embedding dimension of the series in our study
because the chaos analysis is a good method to

analyze nonlinear dynamics in the series.

/ —+—correlation Dim.

/
—

1 2 3 4 5 6 7 8 9 10
embedding dimension

o =~ M w & o o N

[Figure 10] Correlation Dimension vs. Embedding Dimension

That is, neural networks provide a reliable basis for
nonlinear and dynamic market modeling. Nonlinear
dynamics and chaos theory can also provide an
information about important input sizes (i.e. time lags)
for the design of forecasting systems using neural
networks (Embrechts et al., 1994).

The results of the chaos analysis in Fig. 10 indicate
a saturating tendency for the correlation dimension,
leading to a fractal dimension of about 6. The
embedding dimension (i.e. the dimension of the phase
space for which saturation in the correlation
dimension occurs) is 5.

The embedding dimension of 5 indicates that 4
time-lag data must be shown to a neural network to
predict the 5th data point of the time series. But, while
the short-term predictions are in principle possible for
a chaotic time series, they might prove difficult in
practice because of the high value of the correlation

dimension.
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6.3. Selecting the Order of the ARMA
Model

In this section, we show the model building process
of conventional ARMA models and ARMA filters.
There are several heuristics to find the right order such
as the Akaike Information Criterion (AIC), Schwartz's
Bayesian Criterion (SBC) and so on. First, based on
the standard tools, we select ARMA(0,1) or MA(1)
Model as the optimal ARMA model as shown in Table
1.

<Table 1> Estimates of ARMA Parameter Identification

ARMA(p,q) |Standard ~ Log AIC? SBC*
error’  likelihood

ARMA(1,0) | 10 10 0 0 0 O
ARMA( ,0) [ 10 1010 0 1 10
ARMA(0,1) | 1.0767 10 1.0 2086.07 20 .16
ARMA(0,2) | 1.077 100.1 20 7. 2101. 7
ARMA(1,1) | 1.077 100.2 20 7. 2101.
ARMA(2,1) | 1.07 0 10 0. 20 .7 2107.7
ARMA(1,2) | 1.077 100.7 20 .1 2107
ARMA(2,2) | 1.07 10 . 20 6.7 210 .

a. Residual Standard Deviation,
b. AIC = -2In(maximum likelihood) +2k,
¢. SBC = -2In(maximum likelihood) + kin(n),
(k= the number of total parameters, n = sample size).

Second, we also evaluate ARMA models as optimal
time domain filters in terms of their neural network
performance. To this purpose, we use alternative time
domain filters such as AR(p) and ARMA(p,q) model
(p,q # 0). Based on AIC and SBC statistics, we select
AR(1), MA(1), and ARMA(1,1) as a alternative time
domain filter. Table 3 shows AR(1) filter has a little
better performance than any other time domain filter in

test samples.

6.4. Determining Thresholding

Criteria of Time-Frequency Filter

Whether Fourier transformation is lowpass,
highpass, or bandpass is characterized by two
parameters, i.e. frequency and width. For lowpass
filters, the frequency is the cutoff below which
periodic components are passed and above which
periodic components are obstructed. The width is the
transition range over which the response of the filter
goes from one extreme (unimpeded passage) to the
other extreme (total cutoff).

It is difficult to specify the width parameter. No
simple calculation provides the correct width
parameter. It is arbitrary choice. Unfortunately, a real
tradeoff is involved.

A specific DWT, based on the Daubechies wavelet,
produces a set of wavelet coefficients (or decomposed
series) from coarse to fine scale levels.

The simplest wavelet shrinkage technique is so-
called hard thresholding. Wavelet coefficients are
replaced by 0 if they are smaller in absolute value than
a fixed threshold as a filtering criteria. The threshold
is a tuning parameter of wavelet shrinkage. Donoho
and Johnstone (1994, 1995a) propose several
thresholds (i.e. universal, SURE), as well as several
thresholding policies. Nason (1994) suggests the well-
known cross-validation method to find a proper
threshold, which minimizes the mean integrated error
for use with wavelets. A few other references in
threshold selection and wavelet shrinkage applications
are Gao (1993) and Vidakovic (1994, 1995).

The ability of the network to capture dynamic
behavior over higher resolution levels deteriorates

quite fast. The higher the order of the resolution scale,

- 14 -



St A e A RA| 288 8] =4 Al 5 A A1 ZE (1999.6)

the smoother the curve, and thus the less information
the network can retrieve.

These issues of the optimal filters deviate from our
main topics in this study (Refer to Shin and Han
(1999a, 1999b)). In this study, we select 25% and 50%
as a threshold value (i.e. band levels of threshold
filtered coefficients divided by total bands of threshold
coefficients) of Daubechies wavelet transform and
FFT based on root mean square errors (RMSE) of our
models changing the threshold value from 10 % to
90%.

6.5. Comparative Analysis

We make the following comparative analyses in this
section. They consist of (1) the comparative effects of
non-filters and filters on the model performances, (2)
the comparative effects of different filter types
(ARMA filters as a time domain filter and, Fourier
filters and wavelet filters as a time- frequency domain

filter) on the model performances.

<Table 2> Performance Comparison of Non-Filtered
Forecasting Models as Benchmark Models Using Root
Mean Square Error (RMSE) Measure

Model (I-C-H-O)* Train Set  Test Set
BPN (4-0-4-1)  0.835638 0.877505

RNN(1)* (4-4-4-1)  0.854616 0.894718
RNNQ)" | (4-4-4-1) 0.835809 0.871192
RNN(3)® (4-1-4-1)  0.846807 0.885184
ARMA(0,1) - 0.854402  0.882932
Random Walks - 1.070294  1.062600

Mean Reverting - 0.946250  0.945900

a. Stornetta et al. Model (1988),

b. Modified Elman Model (1988, 1990),

c. Jordan Model (1986, 1989),

d. Model Structure (I: Input Units, C: Context Units,
H: Hidden Units, O: Output Units).

Table 2 summarizes the RMSE (root mean square
error) on the two distinct subsets of the time series in
each model.

First of all, we use random walks, mean reverting,
ARMA(p,q), back-propagation neural networks (BPN),
and RNNs without filtering as a benchmarking model
and compare each other in the predictability of the
models. That result shows RNN(2), i.e. a modified
Elman model had a little better performance than any
other model in test samples. So we use this model as
our main model to use filtered data in the following

experiments.

<Table 3> The Integration Performance of ARMA
Filters and Modified Elman RNN Models (Unit:
RMSE)

Filter Type | (I-C-H-O)*  Train Set Test Set
AR(1) (4-4-4-1) 0.886288 0.947860
MA(l) | (4-4-4-1)  0.886420  0.948424

ARMA(1,1)| (4-4-4-1) 0.886114 0.949303

a. Model Structure (I: Input Units, C: Context Units,
H: Hidden Units, O: Output Units).

In Table 3, by trial and error methods we found the
optimal pth or qth order of AR(p), MA(q), or
ARMA(p,q) filter combined to a modified Elman
model.  Based on its experimental results, we
evaluated the final model performances shown in
Table 1. That is, a AR(1) or ARMA(1,0) filter
among ARMA(p,q) filters had the best model
performance. But the result of the AR(1) didn't show a
significant difference as compared with that of the
other ARMA(p,q) filters.

Table 4 compares the performances of different
joint time-frequency filters integrated with RNNs and
shows the following results. First, as compared with

Table 3, the RNNs combined with joint time-
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frequency filters outperformed both RNNs without
filtering and RNNs with time domain filters. Namely
all the integration of joint time- frequency filtering
methods and neural networks were significantly
superior to the other models such as the statistical
models (ARMA, random walk, or mean reverting) and
the integration of time domain filters and neural
network models. Second, The performance of each
time-frequency filter type presented different
validation results in integration with the RNNs. Before
explaining the results, we assumed that each filter type,
i.e. highpass type (short-term part) or lowpass type
(long-term part) of joint time-frequency domain filters
has its own information on the RNN forecasting

models.

<Table 4> The Integration Performance of Joint Time-
Frequency Filters and Modified Elman Models (Unit:
RMSE)

Model (I-C-H-0)' Train Set _ Test Set

LFT RNN(2)* | (4-4-4-1) 0.889336 0.939239
HFT RNN(2)® | (4-4-4-1) 0.889659 0.948427
LWT RNNQ)° | (4-4-4-1) 0.842508 0.939097
HWT RNNQ2)! | (4-4-4-1) 0.889990 0.948492
FT RNN(Q2)° | (8-4-4-1) 0.263899  0.26952
FT_MRNNQ)" | (4-4-4-1Y  0.251940 0.253377
WT _RNN(Q2)® | (8-4-4-1) 0.735958  0.80823
WT MRNNQ)"| (4-4-4-1Y 0.718174 0.792379

a. Lowpass Fourier Filter + Single Modified RNN(2),
b. Highpass Fourier Filter + Single Modified RNN(2),
c. Lowpass Wavelet Filter + Single Modified RNN(2),
d. Highpass Wavelet Filter + Single Modified RNN(2),
e. Both Fourier Filters + Single Modified RNN(2),

f. Both Fourier Filters + Multiple Modified RNN(2),

g. Both Wavelet Filters + Single Modified RNN(2),

h. Both Wavelet Filters + Multiple Modified RNN(2),
i. Model Structure (I: Input Units, C: Context Units, H:
Hidden Units, O: Output Units),

j- Subordinate Model Structure of MRNN(2).

Our experimental results show that the RNN

considering both highpass and lowpass filer types
significantly outperformed the RNNs considering
partially highpass or lowpass types. Finally in
predictability between FT_MRNN and WT MRNN,
FT_MRNN outperformed WT MRNN.

Table 5 and Fig. 11 show the following summarized
results of Table 2, 3, and 4. They consist of five types
of models, i.e. ARMA(0,1) and a modified RNN(2)
without any filters, a modified RNN(2) with a time
domain filter, a multiple modified RNN(2) model with
FFT filters, and a multiple modified RNN(2) model
with DAUB4 filters. That is, first, the modified
RNN(2) models basically outperformed the statistical
ARMA model and second, the modified RNN(2) with
time-frequency domain filters out- performed the
modified RNN(2) models without any filters. Third,
the time-frequency domain filtered modified RNN(2)
models outperformed the time domain filtered
modified RNN(2) models. Finally, the modified
RNN(2) model with the FFT filters outperformed the
modified RNN(2) model with the DAUB4 filters.

Based on the above results, we propose a new
integration model framework of joint time-frequency
analysis and neural networks for the future study (Fig.
12). That is, our proposed model, first of all, considers
chaos analysis for the dimensionality of NN models.
After the chaos analysis, our frame- work shows that
according to filtering criteria, two types of control
parameters, i.e. 1) thresholding criteria for time-
frequency filters and 2) learning parameters for the
neural networks are simultaneously optimized by one

evaluation function (e.g. RMSE) within our model.
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7. Conclusions

Our study utilized several filtering methods in the
context of NN forecasting using daily Korean won /
U.S. dollar series. That is, from our experimental study,
we obtained the following results. First, we found that
using the approximation part (or lowpass filtered data)
and the detail part (or highpass filtered data) in
forecasting got better results than applying the original
series directly to the models. Second, in integration
with neural network models we detected that the joint
time-frequency filtering (Fourier or wavelet transform)
outperformed the time domain filtering. In summary,
the neural network models combined with joint time-
frequency analysis consistently outperformed the other
benchmark models.

Third, even though wavelet transform methods

theoretically have an advantage over Fourier transform

the following.

First, a wavelet transform has a feature detecting
sharply defined structures (such as abrupt change,
singularities, discontinuities, edges and bumps) better
than a Fourier transform. Its performance is different
according to unique time series distribution or its
features.

Second, we used a Daubechies wavelet as a popular
wavelet transform method. However, there are a lot of
wavelet transform methods in wavelet analysis. That is,
we didn't fully consider that each wavelet method has
its own features in our study.

Third, the wavelet filter frequencies and widths
in this study were chosen arbitrarily.

Therefore considering the above issues, in future
research, we will analyze the differences of various
wavelet transform types and then try to detect the

optimal features (e.g. filtering criteria) using artificial

methods, the performances of the Fourier transform intelligent techniques for financial time series
method got much better results than that of the wavelet forecasting.
transform method. Some of the reasons are related to
<Table 5> Comparative Analysis of Different Forecasting Models
(a) The Average Performances (RMSE) of Different Forecasting Models
Model Filter type Train Set Test Set
ARMA(0,1) - 0.854402 0.882932
Modified RNN(2) - 0.835809 0.871192
Modified RNN(2) AR(1) 0.886288 0.947859
Multiple Modified RNN(2) Fast Fourier Transform 0.251940 0.253377
Multiple Modified RNN(2) | Daubechies Wavelet Transform (DAUB4) 0.718174 0.792379
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(b) Paired Samples t -Test for the Differences in RMSE Using Test Samples

Model RNN(2) AR(1) RNN(2)  FT MRNN(2)  WT MRNN(2)
ARMA(0,1) 121 22.89 6.98 2.03
(:228) (.004)*** (.000)*** (.043 )%
RNN(2) 2.29 7.27 1.83
(.004 )% (.000)** (.069)*
AR(1) RNN(2)* 6.78 3.61
(.000)** (.000)***
FT_MRNN(2) -5.87
(.000)***

*. significant at 10% level , **. significant at 5% level, ***. significant at 1% level,
a. AR(1) Filter + Modified RNN(2).

[Figure 11] Actual and Predicted Value Distributions of Differently Analyzed Forecasting Models
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[Figure 12] A Proposed Integration Model Framework of Joint Time-Frequency Analysis and Neural Networks
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