Ontology Design for Solver Reuse
in Web Services Based Model Management Systems

Keun-Woo Lee* and Soon-Young Huh®

? Graduate School of Management, Korea Advanced Institute of Science and Technology
207-43 Chongyang-ni, Dongdaemoon-gu, Seoul 130-722, South Korea
Tel: +82-2-958-3650, Fax: +82-2-938-3604, E-mail: kwlee@kgsm.kaist.ac.kr

® Graduate School of Management, Korea Advanced Institute of Science and Technology
207-43 Chongyang-ni, Dongdaemoon-gu, Seoul 130-722, South Korea
Tel: +82-2-958-3626, Fax: +82-2-958-3604, E-mail: syhuh@hkgsm.kaist.ac.kr

Abstract

As complex mathematical models are increasingly adopted
for business decision-making, difficulties arise in reusing
solvers (i.e.,, model solving algorithms) against diverse
models and data sets and thus the collaboration among
users (model/solver builders and decision makers) in
multiple departments becomes very difficult. To facilitate
the solver reuse, this paper adopts the Web services
technologies as the base technologies for linking the solvers
to the models, both of which are created on different
modeling paradigms and different system platforms, in
unified system architecture. Specifically, this paper focuses
on designing an ontology that represents the interfacing
semantics of the model-solver interactions in a general and
standardized form. By referring to the ontology, a model
management system (MMS) can autonomously suggest a set
of compatible solvers and apply them to individual models
even though the decision makers are not knowledgeable
enough about all the details of the models and the solvers.
Thus, this Web services based MMS would improve the
reusability of the solvers by relieving the decision makers
from the risk of erroneous application of a solver to
syntactically and semantically incompatible models and the
burden of considerable understanding of model and solver
semantics.

Keywords:

Model Management Systemn, Solver Reuse, Ontology
Design

Introduction

As business environments become more competitive and
rapidly change, decision support systems (DSS) for precise
and agile decisions have been increasingly adopted in many
organizations. In a DSS, for user-friendliness and intuitive
solution, a decision problem is formulated as a model, and
for solving the models, diverse sets of solvers, ie.,

‘65_

model-solving algorithms, are also provided. Specifically,
model management system (MMS) is dedicated to manage
the entire life cycle of models as a part of the three
component modules of a DSS together with a database
management system (DBMS) and dialogue management
system [12].

In the model management research area, there have been a
wide spectrum of studies ranging from the modeling
languages for effective modeling of management
science/operations research (MS/OR) problems [4,7,8], the
model representation scheme for easier creation, retrieval,
and execution of models [8,10], to the DSS component
integration framework for the reuse of models with
different data sets for different problems [3,5,11]. However,
there exist little effort focusing on the precise and flexible
decision making support by the reuse of solvers [10] against
diverse models and data sets. The solver reuse means that a
single solver can be applied to multiple models having
similar problem structures and a model can be solved using
multiple solvers depending on the problem-solving
purposes. Such flexible solver reuse can make the decision
support process to be more user-friendly, streamlined, and
result in a more simplified system architecture that leads
easier implementation and maintenance of DSS.

To attain these benefits from the solver reuse sufficiently, a
user of the DSS should be knowledgeable about which
solvers can be applied to the model. Also, once an
applicable solver is chosen, the user should understand how
to match the individual model parameters to the solver
parameters to execute the solver adequately [10]. In reality,
however, since the semantic understanding of a model or a
solver is not a trivial task, ordinary users, even sometimes
professional users, often have difficulty in picking out the
applicable solvers from the organizational solver library
and executing them by matching the model parameters to
the solver parameters [1,6]. Moreover, as more
organizations have constructed the DSS distributed across
their internal/external networks [9], models and solvers of

an organization have been created based on different
modeling paradigms and different system platforms. Thus,
the MMS, as a dedicated tool for managing the models, is
required to support the following two capabilities to make
the solver reuse easy and productive. First, for a specific
model under consideration, the MMS should be able to
suggest autonomously a set of solvers that are both
syntactically and semantically compatible with the model.
Second, when a particular solver is chosen for the model,
the MMS should be able to match the model parameters to
the adequate solver parameters intelligently and produce the
model solving results even though the user cannot perform
exact matching between the two.

Recognizing such requirements of the MMS, this paper
focuses on the development of an interfacing ontology
managing the interacting semantics between individual
models and their compatible solvers for facilitating the
autonomous solver suggestion and intelligent model
solution capabilities. The interacting semantics include the
compatibility of a solver with a model and their parameter
matching patterns. Based on the interfacing ontology, two
software agents, model and solver agents, are defined to
assist a user’s model-solving activities. Without direct
users’ intervention, the agents suggest the compatible
solvers for a given model and match the model parameters
with the solver parameters [2] by referring to the interfacing
ontology. Specifically, in developing the ontology and the
agents, we adopt the Web services technologies [13] as a
vehicle for integrating the models and solvers distributed
across networks and created based on different modeling
paradigms and system platforms. The Web services
technologies have been highlighted as a way of integrating
distributed and heterogeneous applications, which was

previously impractical because of non-interoperable
proprietary approaches. In this paper, individual solvers are
encapsulated as Web services (called solving services) that
provide the model-solving functions.

Conceptual Architecture of Web Services
Based MMS

Figure 1 shows the conceptual architecture of the Web
Services based MMS proposed in this paper. The
architecture has two primary tasks: management of the
interfacing ontology and execution of the solver suggestion
and model solution. To support these two tasks, a
two-layered approach is provided. On the lower layer, the
interfacing ontology exists to manage the interfacing
semantics between the models and solvers. On the upper
layer, the model and solver agents are placed to perform the
autonomous solver suggestion and intelligent model
solution. In conducting the tasks, the agents specifically
look up the interfacing ontology and resolve any possible
conflicts among the models and solvers caused by their
different modeling paradigms and system platforms, The
interfacing ontology and the two agents are to be explained
in the following sections.

Interfacing Ontology

As mentioned earlier, for the flexible solver reuse including
the autonomous solver suggestion and intelligent model
solution, the interfacing ontology manages the interacting
semantics between individual models and their compatible
solving services. The interacting semantics specifically

Compatible solving services

Model solving results

User View
Corr?patible Model solving
solving results
services

< Solving service description (WSDL)

»
-

Model Builder/
Decision Maker

Input parameters & Reguest for calculation (SOAP
Model solving results (SOAP)

Solver
Agent

A

Interfacing
semantics

Interfacing
semantics

MODEL 2

Interfacing
Ontology

SOLVING
SERVICE 2

SOVING

MODEL !

Models

SERVICE 1

Solving Services

Figure I - Conceptual Architecture of the Web Services Based MMS.

represent the following two types of information: the
compatibility of a solving service for individual models and
their parameter matching patterns.

First, for representation of the model-solver compatibility,
models are classified into groups (i.e., 2 model taxonomy)
in such a way that every model in a group can share solvers
with one another. By assigning solving services to the
individual model groups, the interfacing ontology can
represent which models a solving service can be applied to.
Figure 2 shows an example taxonomy of optimization
models and assignment of compatible solvers. In model
management literature, such model taxonomies have been
proposed implicitly or explicitly to organize similar models
into groups. However, since those taxonomies are usually
concerned only with structural assumptions within the
models such as whether a parameter of a model is
continuous or discrete, we use more detailed taxonomies
classifying models one step further in terms of the
shareability of solvers.

Second, for representation of the parameter matching
patterns between individual models and their compatible
solving services, a parameter mapping dictionary (PMD) is
constructed. The PMD manages all the possible types of
mapping relationships between model parameters and
solver parameters in a tabular form where each row
represents an individual parameter mapping (Table 1).
Typically, every row of the dictionary has the six attributes
(i.e., columns): model, solver, model parameter(s), solver
parameter(s), mapping type, and transformation function.
The attributes model and solver indicate the model and

solving service names that the parameter mapping is
applied to; the attributes model parameter(s) and solver
parameter(s) indicate the corresponding parameter names
of the model and solving service to be linked; the attribute
mapping type determines whether it is for an input
parameter or an output parameter; finally, the attribute
transformation function is for an algebraic formula to be
applied to the parameter value of the sending parameter to
produce the data value required in the receiving parameter.

Specifically, transformation function is built on two kinds
of operands, parameter references and environmental
variables. A parameter reference means a parameter value
and is denoted by a parameter name enclosed by
ampersands (&) at both ends (e.g., &PARAM 1&); an
environmental variable refers to a pre-defined system
variable and is denoted by a capital string (e.g., TODAY for
the current date). These operands can be recursively
composed by a set of operators. The operators include
domain casting operators for converting the data domain of
a parameter (e.g., TO_NUM for conversion to integer and
TO_STR for conversion to string), aggregation operators
for converting the data cardinality of a parameter (e.g,,
SUM for summation of a parameter list and AVG for
average of a parameter list), and other mathematical
operators for various numerical calculations (e.g., LOG for
logarithm and SQRT for square root).

Meanwhile, in specifying the port mappings in the PMD,
we can distinguish them according to the cardinalities, i.e.,
1:1, I:n, n:1, or m:m. An 1:1 or n:1 mapping is specified in a
single row of the dictionary; an 1:n mapping is converted to

Models) Solvers

Linear
Programming =~ =========---=~-=~ ==+ -+ Simplex
Models

Transportation _ _ _ _| _| __ o

Models * Simplex, VAM+MODI

Assignment _ _ _ _ _ | — 4= o Stmplex, VAM+MOD],

Models Hungarian

Optimization Network Shocrj‘telst-Route S N I Sif.r\plex, Back Tracking,
Models Models Models Dijkstra

Minimum Spanning _| _ | _ .

Tree Models * Prim, Kruskal

Maximal Flow L .

-———-f -

Models Max Flow Min Cut

Integer . Branch and Bound,
. Set Coverning .
Programming — Models "~ == =» Complete Enumeration,
Models Cutting Planes
Er?a:]r:min _______________ L _ | _, Forward Calculation,
£t g Backward Calculation

Models

Figure 2 - An Example Taxonomy of Optimization Models and Compatible Solver Assignment

67

n 1:1 mappings and thus specified in »n rows; an n:m
mapping is converted to m n:1 mappings and thus specified
in m rows. For example, in Table 1, the first row indicates
the 1:1 mapping between PARAM 1 and PARAM 6, and
the second row describes the n:1 mapping between the three
parameters (PARAM 2, PARAM 3, and PARAM 4) and
PARAM 7 by averaging the three parameters. The l:n
mapping between PARAM 5 and the two parameters
(PARAM 8 and PARAM 9), shown in the third and fourth
rows, is converted to two 1:1 mappings.

Model and Solver Agents

On the basis of the interfacing ontology, two software
agents, model agent and solver agent, are defined at a
higher level to perform the autonomous solver suggestion
and intelligent model solution. Referring to the ontology,
these two agents cooperate with each other for exchanging
parameter values between models and solving services.

The model agent acts as an intermediary between a user
view and the solver agent to support a user in solving a
model. Specifically, the model agent brings two types of
information to the user view: compatible solving services
with the model and the model solving results. First, when a
user view references a model, the model agent consults the
interfacing ontology and identifies the compatible solving
services. Then, via the user view, the model agent suggests
them for the user to select one. Second, when the user
selects a solving service to be used, the model agent
requests for description of the selected solving service from
the solver agent. According to the description, the model
agent sends a Simple Object Access Protocol (SOAP) [13]
message containing the input parameters required in the
solving service and the request for execution of
model-solving calculation. In creating the message, the
model agent refers to the interfacing ontology again to
understand the parameter matching patterns between the
model and the solving service. Afterwards, the model agent
delivers the solution returned by the solver agent to the user
view.

In this context, the solver agent has the following two
responsibilities in response to the model agent’s request:
sending the service description of a solving service and
executing the model-solving calculation. First, the service
description defines the solving service’s interface such as
the message formats, data types, and transport protocols

that should be used in the service. Such service description
Is written in a standardized description language such as
Web Service Description Language (WSDL) [13]. Second,
when the solver agent receives the request for
model-solving calculation from the mode! agent, it executes
the solving service and returns the results to the model
agent in a SOAP message format.

Conclusions

A MMS can achieve high productivity and effectiveness in
supporting a user's model-solving activities by facilitating
the solver reuse satisfying the following two functional
requirements: autonomous solver suggestion and
intelligent model solution. Having recognized these
requirements, this paper proposes an ontology design
managing the compatibility and the parameter matching
patterns between individual models and their solvers. In
designing the ontology, we use the Web services
technologies to integrate the models and the solvers in
unified system architecture. Also, we define the model and
solver agents, which perform the solver suggestion and
model solution processes by cooperating with each other
based on the model-solver compatibility and the parameter
matching patterns provided by the interfacing ontology.

In future research, the intent is to focus on elaborating the
interfacing ontology to provide more concrete and formal
specifications. A simple ontology that has a form of
mapping table has been constructed but it is being extended
based on the Resource Description Framework (RDF) [13].
Also, a prototype MMS incorporating the interfacing
ontology design is being developed with JAVA
programming language.

References

(1] Beynon, M., Rasmequan, S., and Russ, S. (2002). “A
New Paradigm for Computer-Based Decision
Support,” Decision Support System, Vol. 33, pp.
127-142.

[2] Bhargava, H., Krishnan, R., Roehrig, S., Casey, M.,
Kaplan, D., and Miiller, R. (1997). “Model
Management in Electronic Markets for Decision
Technologies: A Software Agent Approach,”
Proceedings of the 30" Hawaii International

Table I - A Conceputal Structure of the Parameter Mapping Dictionary

Solving Model Solver Mapping
Model . Transformation Function
Service Parameter(s) | Parameter(s) Type
MODEL 1 | SERVICE 1 | PARAM | PARAM 6 Input
MODEL ! | SERVICE | | PARAM 2, PARAM 7 Input &PARAM 7& = AVG(&PARAM 2&,
PARAM 3, &PARAM 3&, PARAM 4&)
PARAM 4
MODEL 1 | SERVICE 1 | PARAM § PARAM 8 [nput &PARAM 8& = &PARAM 5& /10
MODEL 1 | SERVICE | | PARAM 5 PARAM 9 [nput &PARAM 9& = &PARAM 5& / 100

68

(3]

Conference on System Sciences, pp. 405-415.

Bolloju, N., Khalifa, M., and Turban, E. (2002).
“Integrating Knowledge Management into Enterprise
Environments for the Next Generation Decision
Support,” Decision Support Systems, Vol. 33, pp.
163-176.

Brooke, A., Kendrick, D., Meeraus, A., and Raman, R.
(1998). “GAMS: A User's Gude,” GAMS
Development Corporation,
http://www.gams.com/docs/gams/GAMSUsersGuide.
pdf.

Dolk, R.D. (2000). “Integrated Model Management in
the Data Warehouse Era,” European Journal of
Operational Research, Vol. 122, pp. 199-218.

Dutta, A. (1996). “Integrating AI and Optimization for
Decision Support: A Survey,” Decision Support
Systems, Vol. 18, pp. 217-226.

Fourer, F., Gay, DM., and Kernighan, B.W.
(1990). "A Modeling Language for Mathematical
Programming,” Management Science, Vol. 36, pp.
519-554.

~69_‘

Geoffrion, A.M. (1989). “The Formal Aspects of
Structured Modeling,” Operations Research, Vol. 37.
pp. 30-51.

Gregg, D., Goul, M., and Philippakis, A. (2002).
“Distributing Decision Support Systems on the
WWW: the Verification of a DSS Metadata Model,”
Decision Support Systems, Vol. 32, pp. 233-245.

{10] Huh, S. (1993). “Modelbase Construction with
Object-Oriented Constructs,” Decision Science, Vol.
24, pp. 409-434.

[11] Rizzoli, A.E., Davis, JR., and Abel, D.J. (1998).
“Model and Data Integration and Re-use in
Environmental Decision Support Systems,” Decision
Support Systems, Vol. 24, pp. 127-144.

[12] Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J.,
Sharda, R., and Carlsson, C. (2002). “Past, Present,
and Future of Decision Support Technology,”
Decision Support Systems, Vol. 33, pp. 111-126.

[13] World Wide Web (2003).
http://www.w3.org/.

Consortium.

