Intelligent Query Processing Using a Meta-Database KaDB

Soon-Young Huh®, Kae-Hyun Moon*

Graduate School of Management
Korea Advanced Institute of Science and Technology
207-32 Cheongryangri-dong, Dongdaemun-gu, Seoul, Korea
syhuh@green.kaist.ac.kr, khmoon@green.kaist.ac.kr
Tel: 82-2-958-3626
Fax: 82-2-958-3604

Abstract

Query language has been widely used as a convenient tool to obtain information from a database. However, users
demand more intelligent query processing systems that can understand the intent of an imprecise query and provide
additional useful information as well as exact answers. This paper introduces a meta-database and presents a query
processing mechanism that supports a variety of intelligent queries in a consistent and integrated way. The meta-database
extracts data abstraction knowledge from an underlying database on the basis of a multilevel knowledge representation
framework KAH. In cooperation with the underlying database, the meta-database supports four types of intelligent queries
that provide approximately or conceptually equal answers as well as exact ones.
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1. Introduction

Conventional database systems do not admit
inaccurate or vague queries and provide null information
when there exist no exact answers. Thus, database users
are required to precisely understand both the database
schema and the problem domain knowledge. Several
approaches [7, 9, 10, 16, 18, 20, 26] have been proposed
to remedy such shortcomings and to enhance the
effectiveness of information retrieval. They support fault-
tolerant and intelligent query processing that can analyze
the intentions of a vague query and provide neighborhood
information relevant to the query as well as exact answers.
Such intelligent query processing requires a knowledge
representation  framework capturing the knowledge on
semantic relationships between raw data values and useful
abstract concepts.

Although a variety of knowledge representation
frameworks have been studied based on the approaches
including semantic distance [14, 15, 17}, fuzzy set [], 21,
27], rule [4, 10, 12], and conceptual classification [2, 3, 7,
9, 23, 26], those studies have disadvantages because they
have mostly focused on the query answering process but
insufficiently addressed the issue of the semantic
knowledge maintenance. To remedy such a problem, we
have proposed the Knowledge Abstraction Hierarchy
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(KAH) [13] that extends the conceptual classification
approaches by capturing not only data values but also
domain-related abstract information. Also, we have
constructed a meta-database, named Knowledge
Abstraction Database (KaDB), incorporating the semantics
involved in the KAH and discussed the advantages of the
KaDB in respect to knowledge maintenance.

Furthermore, the semantics of the KAH is richer than
that of other approaches in facilitating more effective
query processing as well as more dynamic knowledge
maintenance. For the base work on intelligent query
processing, we have developed basic query relaxation
methods using the KaDB such as value generalization and
specialization. In this paper, we will define KaDB
operations for intelligent query processing and formally
develop query processing mechanisms supporting various
types of intelligent queries in a consistent and integrated
manner. Due to the rich semantics of the KAH, the KaDB
increases the diversity of intelligent queries accepted as
well as accommodates dynamic knowledge maintenance,

This paper is organized as follows: Section 2
introduces the KAH and KaDB to review our previous
work for intelligent query processing. In section 3, we
define KaDB operations fundamental to the query
processing. Section 4 classifies intelligent queries and
explains the query processing mechanisms for each type of
queries. Section 5 exemplifies the intelligent query
processing. Section 6 provides the comparison with other
approaches and the conclusion of the paper.
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Figure 1. Example of KAH Instances.

2. Knowledge Abstraction Database

2.1 Knowledge Representation
Framework KAH

The KAH was developed as a knowledge
representation  framework that facilitates multilevel
representation of data and meta-data for an underlying
databasc by using data abstraction. To illustrate the KAH,
Figure 1 shows KAH instances derived from a same
underlying database.

The KAH is composed of two types of abstraction
hierarchies: value abstraction hierarchy and domain
abstraction hierarchy. First, in the value abstraction
hicrarchy, a specific value is generalized into an abstract
value and the abstract value can be generalized further into
a more abstract value. Conversely, a specific value is
considered as a specialized value of the abstract value.
Thus, a value abstraction hierarchy is constructed on the.
basis of generalization/specialization  relationships
between abstract values and specific values in various
abstraction levels, which is obtained by using value
abstraction. The value abstraction relationship can be
interpreted as IS-A relationship. For instance, Finance is a
(major name of) Management while Management is a
(major area of) Business. As such, higher levels provide a
more generalized data representation than lower levels.

While the cardinal relationship between an abstract
value and its specific values is assumed to be one-to-many,
a specitic value can also have multiple abstract values that
are located in different abstraction levels along a path from
the specific value to its most abstract value at the highest
abstraction level. In such capacity, an abstract value is

called n-level abstract value of the specific value
according to the abstraction level difference .

Second, the domain abstraction hierarchy consists of
domains that encompass all individual values in the value
abstraction hierarchy and there exist INSTANCE-OF
relationships between the domains and values. Much as
generalization/specialization rclationships exist between
the data values in two different abstraction levels of the
value abstraction hierarchy, a super-domain/sub-domain
relationship exists between two different domains, which
is obtained by domain abstraction. For instance,
MAIJOR_AREA is the super-domain of MAJOR NAME.
All the abstract values of instance values in a sub-domain
correspond to the instance values of the super-domain.
Thus, the super-domain MAJOR_AREA is more
generalized than sub-domain MAJOR NAME, since
MAJOR_AREA contains more generalized values than
MAJOR_NAME. The cardinal relationship between two
adjacent domains is assumed to be one-to-one and a super-
domain is called n-level super-domain of the sub-domain
according to the abstraction level difference ».

The abstraction relationships between values and
domains can be formally represented as shown in Table 1.
In the table, D; denotes a domain at the abstraction level
and v/ is a specific value of the domain D, The
relationships (1) and (2) respectively represent 1-level
value and domain abstraction relationships. On the basis
of the l-level abstraction relationships, (3) and (4)
represent general n-level abstraction relationships.

Multiple KAH instances, as shown in Figure I, can
exist for a single underlying database when multiple
perspectives are required for the database. Though a same
value can be located in multiple hierarchies and thus, in
multiple domains, a domain should be unique and be
located only in one hierarchy.

Table 1. Formal Representation of Value and Domain Abstraction Relationships.

Relationship Formal notation

(1) 1-level domain abstraction

Ji fivt
vi ! e * vl""l’

(2) 1-level value abstraction

Son ,
vl exvfen iff v

(3) n-level value abstraction
i i+n is) 2
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(4) n-level domain abstraction

where vV} is a specific value and v
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1 g its abstract value.
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In this sense, a value can exist in multiple hierarchijes,
its abstract values and specific values arc not uniquely
determined by the value itself. Domain information is
additionally needed to identify the abstract and specific
values for a given specific value. We call this property the
domain-dependency of abstract values and specific values.

2.2 KaDB Accommodating the KAH

To use the semantics of the KAH for intelligent query
processing, it was incorporated into a meta-database
KaDB [13]. A sample KaDB accommodating the KAH
instances in Figure 1 is provided in Figure 2, which
comprises three relations; DOMAIN_ABSTRACTION,
VALUE_ABSTRACTION, ATTRIBUTE_MAPPING.

DOMAIN_ABSTRACTION

Domain Super_Domain Hierarchy Abm]_:::lo“
'MAJOR_NAME, || MAJOR_AREA | College Major | 1
MAJOR_AREA |MAJOR_GROUP | College Major |2
MAJOR_GROUP College Major |3

VALUE_ABSTRACTION

Value Domain Abstract_Value
Finance MAJOR_NAME Management
‘Accounting MAJOR_NAME Management
Marketing MAJOR_NAME Management
Macro Economics MAJOR_NAME Economics
Micro Economics MAJOR NAME Econamics
Econometrics MATOR_NAME Economics
Management MATOR_AREA Business
Economics MAJOR_AREA Business
Business MAJOR_GROUP

ATTRIBUTE_MAPPING

Relation Aftribute Domain
EMP AJOR | MAJOR MAJOR_NAME
CAREER_PATH Task COURSE_NAME
CAREER_PATH Prerequisite_Task COURSE_NAME
TASK_MAJOR Task COURSE_NAME
[ TASK_MAJOR Required_Major_Area | MAJOR_AREA
TASK_HISTORY | Task_Performed COURSE_NAME

Figure 2. The KaDB Accommodating the Example KAH
Instances.

The DOMAIN_ABSTRACTION maintains the
semantics of the domain abstraction hierarchy. Since a
domain is unique in the KAH instances and has one-to-one

Table 2. Basic Functional Dependencies.

mapping correspondence with its super-domain, ‘Domain’
attribute  becomes  the  key  attribute.  The
VALUE_ABSTRACTION maintains the semantics of the
value abstraction hierarchy. Since a same valie name can
exist in multiple hierarchies and is differentiated by its
domain, both the ‘Value’ and ‘Domain’ attributes become
the composite key of the relation, which is related with
domain-dependency. In terms of abstraction relationships,
cach tuple of the relations represents only the 1-level
abstraction relationship. On the basis of such a 1-fevel
abstraction relationship, an abstract value in any arbitrary
level can be transitively retrieved. The
ATTRIBUTE_MAPPING  maintains the domain
information of the underlying database and helps to
analysis of the query intent in query processing. Since one
attribute name in the underlying database can be used in
multiple relation, the ‘Relation’ and ‘Attribute’ become
the composite key in the ATTRIBUTE_MAPPING
relation.

3. KaDB Operations for Intelligent
Query Processing

In this section, fundamental KaDB operations to facilitate
intelligent query processing ‘are discussed. Query
transformation to relax the search condition constitutes a
core part of the intelligent query processing, which
requires gencralization and specialization operations for
values and domain by using the KaDB. In the KAH, n-
level the value generalization (specialization) operation is
equal to moving up (down) the KAH by n-level from a
given value and returns an n-level abstract value (a set of
n-level specific values). Such an abstract value conversely
corresponds to multiple specific values at lower levels in
the hierarchy. The operations can be developed on the
basis of the functional dependencies among the KAH
constructs, i.e., values, abstract values, domains, and
super-domains. In the previous section, we defined the
cardinal relationships among KAH constructs and
explained the domain-dependency in the presence of
multiple KAH instances. From the features, we come up
with a set of functional dependencies summarized in Table
2.

In the table, functional dependencies are expressed
by the notation -» and -><» where “A->B” implies that A
determines only one B, while “A->->B” implies that A
determines muitiple Bs.

Functional dependency

Relation representing the
functional dependency

(1) Domain/Super-Domain

(2) Domain/Sub-Domain

(3) Valuc/Abstract Value
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(4) Value/Specific Value

(5) Relation/Attribute

D; > D,,, for D, D,,, where D, = D,

D, D, for D, D;where D, = D,

(v}, D) vjer for v} v where vl e v/

(v}, D)>>v for v, v/ where v}!

(Relation, Attribute) - Domain

DOMAIN_ABSTRACTION
DOMAIN_ABSTRACTION

VALUE_ABSTRACTION

i ew v VALUE_ABSTRACTION

ATTRIBUTE_MAPPING




Table 3. Basic KaDB Operations (1-level Generalization and Specialization).

Operations Operators Dependency
1-level domain generalization Get_Super_Domain(D)=D,,, whete D, = D,,, )
1-fevel domain specialization Get_Sub_Domain(D)) = D,.; where D, = D, @)
1-level value generalization Get_Abstract_Value( v, D) =v,,, wherev,e*v,, 3)
1-level value specialization Get_Specific_Values(v, D)) = {v.,, ...} where v, ey, (2), (4
The dependencics (1) and (2) mean that, if a domain Vij:

name is known, its super-domain and sub-domain can be
identified. On the other hand, the dependencies (3) and (4)
mean that, to identify abstract value or specific values of a
value, we must know its domain first, which is related
with the domain-dependency. Finally, the dependeny (5)
helps us to identify the domain of an attribute in the
relation specified in a query as a result of the query
analysis. On the basis of these functional dependencies,
we can definc l-level generalization and specialization
operations for values and domains as shown in Table
3.The 1-level domain gcneralization and specialization
operations respectively provide 1-level super-domain and
sub-domain for a given domain. Similarly, the l-level
value generalization and specialization operations provide
1-level abstract value and the set of 1-level specific values
for a given value. Internally, thesec operations use
DOMATIN_ABSTRACTION and
VALUE_ABSTRACTION relations, and we express the
operations with the SQL statements as follows:

(1) Ges_Super_ Domain(D)=D,,,

SELECT Abstract_Domain
FROM DOMAIN_ABSTRACTION
WHERE Domain = D,

(2) Get_Sub_Domain(D;)=D,,,

SELECT Domain
FROM DOMAIN_ABSTRACTION
WHERE Super_Domain = D;

(3) Get_Abstract_Value( v} , D,) =

SELECT Abstract Value
FROM VALUE_ABSTRACTION

WHERE Value = v and Domain=d

(8) Get_Specific_Values(V} , D)= { v}, .}

SELECT V.value
FROM VALUE_ABSTRACTION V,
DOMAIN_ABSTRACTION D
WHERE D.Super_Domain= Di And
D.Domain=V.Domain And
Ji
V.Abstract_Value = vi!
(5) Get_Attribute_Domain(R A)=D
SELECT Domain
FROM ATTRIBUTE
WHERE Relation=R AND Attribute=

To control the extent of the query relaxation flexibly,
we must increase or decreasc the abstraction level of the
abstract value by using n-level generalization and
specialization operations. The operations are implemented
on the basis of the 1-level generalization and
specialization operations as shown in Table 4.

Table 4. n-Level Value and Domain Generalization and Specialization Operations.

Operations Operators and algorithins

Dependency

n-level domain

generalization domain, until D,,, is obtained.

From given D, cxecute Gel_Super_Domain( ) n times by replacing the domain with its super- (1)

n-level domain

specialization until D, is obtained.

From given D, exccute Ger_Sub_Domain{ ) n times by replacing the domain with its sub-domain,  (2)

n-level value From given v, and D, execute Gel_Abstract_Value( ) and Gel_Super_Domain(') n times by (1), (3)
generalization replacing the value and domain with its abstract value and super-domain, until v,., is obtained.
n-level value From given v, and D, get D, and the set of specific values of v, by executing Ge?_Sub_Domain() ~ (2), (4)

specialization

and Get_Specific_Values( ), and repeat exccuting these two operations for individual specific

values n times by replacing the domain and value with its sub-domain and specific valuc, until the

set of the n-level specific values are all obtained.

4. Intelligent Query Processing
Mechanism Using the KaDB

4.1 Classification of Intelligent Queries

The KaDB supports two methods of relaxing the search
conditions — approximately equal search and conceptually
equal search — by representing the conditions in the form
of “WHERE A =? B”, where =? is a relaxation operator
and A is an attribute and B is either an attribute (i.c., join
condition) or a specific valuc (i.e., selection condition). In
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such capacity, A is referred as a target attribute, while B
is referred as a target attribute or a target value.

The approximately equal search is used to relax a
search condition in which the terms A and B exist in the
same abstraction level, and interpreted to check if the
value of A attribute is equal to B or approximately equal.
We regard different specific values such as Finance,
Accounting, and Marketing in Figure 3 as “approximately
equal” becausc they are located in the same abstraction
level and have the same l-level abstract value, ic.,
Management.

In conceptually equal search, the terms A and B in
the search condition exist in different abstraction levels,
and the condition is interpreted to check if the values of A



and B are conceptually equal. In other words, the abstract
value of the value in the lower abstraction level is
compared with the value in the higher level.

College Major
Conceptuall
i
Management Economics

| MI_ | 1
Finance [Aocounﬁngl Marketing |- mjlg'{wm "Economem’ul

T

Approximately equal

Figure 3. Two Kinds of Equality for Relaxing Search
Conditions.

The two query relaxation methods can be extended
in the join operation where the target attribute is joined
with a range of neighboring values of another join
attribute. Accordingly, depending on the kinds of
operations and relaxation methods, four types of
intelligent queries can be implemented: approximate
selection, approximate join, conceptual selection, and
conceptual join as seen in Table 5.

Since the detail procedures of the intelligent query
processing are differentiated according to the types of
queries, we must identify the type of a given query by
analyzing the query condition. Specifically, the two
operations, Analyze_Selection and Analyze_Join, are used
to conduct the search condition analysis in a given query.
They identify the domains of A and B and classifics the
condition as one of the four types. These operations are
defined as follows:

Notation
R = a source relation specified in a query
A = atarget attribute

V/is = a target value at the (i + d) abstraction level

D, = the domain of the target attribute
D,,, = the domain of the target value

Output: (D,, Dyyy, d)
Analyze Selection(R, A, V,Ii:,' )

Get_Attribute_Domain(R, A)=D,
If{ v/** D, ) Then Retum D,

YHi=1,2,...,d=0,1,2,...

Outp“t: (Dl 5 Dml » d)
Analyze_Join(R, Ax R, 4)
{

Get_Attribute_Domain(R,, A,)=D; (i.e., the domain of A)
Get_Auribute_Domain(R, A}=D,,, (i.c., the domain of B)
Compute the difference (d) of the abstraction levels between
D; and, Dyy

YWi=12,..,d=012, .

4.2 ABSTRACTION relation

We note that the query relaxation methods are all
concemed with the target attribute values and their
abstract values. In this sense, building abstraction
relationships between the target attribute values and their
abstract values in a given abstraction level will facilitate
the relaxation of a search condition. To this end,
ABSTRACTION is additionally provided with the
following definition.

ABSTRACTION {abstraction(Value, Abstract_Value)}

While ABSTRACTION concerns the target attribute
for relaxing the search condition, dealing with
ABTRACTION specifically uses the domain of the target
attribute — we call the domain base domain — since the
domain name can identify the values which happen to
exist in a KAH instance and are capable of abstraction.
Thus, the ABSTRACTION can be interpreted as a relation
containing abstract valuc of every value which is capable
of abstraction among the target attribute values.

Figure 4 shows the two instances of
ABSTRACTION for the MAJOR_NAME domain which
are derived from the KAH in Figure 1. The I-level
ABSTRACTION captures the 1-level abstraction
relationship between MAJOR_NAME and
MAJOR_AREA while the 2-level ABSTRACTION
between MAJOR_NAME and MAJOR_GROUP.

Constructing n-level ABSTRACTION consists of
two steps: creation of the 1-level ABSTRACTION and
update of the 1-level ABSTRACTION to produce the n-
level ABSTRACTION. The first step inserts tuplcs
representing the 1-level abstraction relationship into an
empty ABSTRACTION. This is accomplished by
Insert_Abstraction operation that selects the tuples having
the specified base domain (i.c., the domain of the target
attribute).

Ji
ity )

INSERT INTO ABSTRACTION (Vaiue,
Abstract_Value)

Ji
Insert_Abstraction{ D,;) = (D, {( v’ .

' SELECT Value, Abstract_Value
Else Get D,,,; i.c., the domain of the value /"4 FROM VALUE_ABSTRACTION
End If WHERE Domain = D;
Compute the difference () of the abstraction levels between
D,and, D,,,
Table 5. Classification of Intelligent Queries.

Operations X .

Relaxation methods Selection Join
Approximately Equal Search Approximate Selection Scarch Approximate Join Search
Conceptually Equal Search Conceptual Selection Search Conceptual Join Search
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1-level ABSTRACTION
Domain;MAJOR_NAME

Domain:MAJOR_AREA

2-level ABSTRACTION
Domain; MAJOR_NAME Domain;MAJOR_GROUP

Abstract_Val

1st Step :
Insert_Abstraction(MAJOR_NAME)

2nd Step :

Update_Abstraction(MAJOR_AREA)

Abstract_Value

Value

2nd Step :
Update_Abstraction(MAJOR_GROUP)

VALUE_ ABSTRACTION

Value

\/

n = Level of abstraction
ABSTRACTION(Level n)

Economics

MAJIOR_GROUP

Business

Figure 4. The Procedure of Constructing ABSTRACTION Relation.

The second step updates those tuples in the 1-level
ABSTRACTION by executing the n-level generalization
operation recursively until the n-level abstraction
relationship is produced. For this, Update_Abstraction
operation is provided. Note that the i-level
ABSTRACTION in general represents the i-level abstract
values for every specific value in the base domain.

i

Update_Abstraction(Ds)=({ ' 2,..})
UPDATE ABSTRACTION
SET Abstract_Value = V.Abstract_Value
FROM VALUE_ABSTRACTIONV
WHERE V.Domain = D,,;, AND

ABSTRACTION Abstract_Value =
V.Value

On the basis of thc two operations, a generic
operation, Construct_Abstraction is  defined for
constructing  an  arbitrary-level ~ABSTRACTION
regardless of the abstraction level difference. Thus, when
the abstraction level difference determining the relaxation
extent is greater than 1, it produces an ABSTRACTION
intance by executing Update_Abstraction repeatedly.

Construct_Abstraction(Di, d) {
Hinput: the output of Analyze operation, i.e., (Di, dj

fd==0){ /Approximate Equal

Insert_Abstraction(Di ) /Construct I-level
//ABSTRACTION relation.

J

else{ //Conceptually Equal

Insert_Abstraction(Di } /Construct 1-level
//ABSTRACTION relation.
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Get_Super_Domain(Di ) /Get super-domain o expand
Mo 2-level abstraction
Jor(k=1; k<d; k++){ //Repeat the Update procedure
Update_Abstraction(Di+k )
Get_Super_Domain(Di+k )
}
Y
}

4.3 Relaxing the Search Condition with
ABSTRACTION

Joining a target attribute with ABSTRACTION enables us
to replace the specific values in the target attribute with
their abstract values and thus relaxes a scarch condition.
Based on the join opcration, the ABSTRACTION
makes it possible to support the four types of intelligent
queries in a consistent and integrated manner through the
following steps:
1. Analyze the query condition using the
Analyze_Selection or Analyze_Join operation.
Construct an ABSTRACTION instance using
Construct_Abstraction operation and reduce the
scope of the abstraction relationship according to
whether the query condition is sclection or join
condition.
Perform query relaxation on the target attribute by
joining 1t with ABSTRACTTON,

2

In the step 1, analyze operations return domain and
abstraction level of the target attribute and values in the
query. Using the domain and abstraction level, Step 2
constructs an ABSTRACTION instance representing the



abstraction information for the target attribute. Step 3
relaxes the query condition and retums neighborhood
answers by simply joining the target attribute in the
queried relation with ABSTRACTION. In step 3,
depending on the query condition, we need to vary the
range of abstraction relationship in ABSTRACTION that
initially covers all the abstraction relationship producible
from the KAH. Specifically, when the query condition is a
join condition, every combination of the join attribute
values, their abstract values in more precise terms, are to
be compared and thus the every abstraction relationship in
ABSTRACTION is used for obtaining the abstract values
of join attribute values.

However, when the query condition is a selection
condition, the subset of ABSTRACTION should be used
for join since only the abstraction relationship containing
the abstract value of the target value are useful in joining
ABSTRACTION with the target attribute. To reduce the
range of abstraction relationship in ABSTRACTION to
the neighborhood values of the target value, we use
Reduce_Abstraction operation defined as follows:

Notation
v,-j d N ;
= the target value in a given query
d = the abstraction level difference, which determines the ypes
of a query condition

Ji
Reduce_Abstraction( Vit &
{
ifd==0){

vl
Get Abstract Value(™' )=

//Approximate Selection

- Ji
Vi //Get abstract value of the
// target value.

Select tuples from ABSTRACTION where Abstract Value
s

//Select the neighborhood values which share the same abstract
/value with the target value.

}

elsef //Conceptual Selection

i
Select tuples from ABSTRACTION where bstract_Value="i
/Select a set of neighborhood values which are contained by
//the target abstract value itself.

S S

Even in a selection condition, reducing Abstraction
varies according as the search condition is an approximate
selection or a conceptual selection, which is determined by
the abstraction level difference between the target attribute
and target value. The query condition in Figure 8,
‘employee_major.major =? Finance’, is a typical example
of the approximate selection. In such an approximate
selection condition, Reduce Abstraction selects the
ncighborhood values that share the same abstract value
(e.g., Management) with the target value, Finance. A
conceptual selection condition can be rewritten in the
query condition in Figure 8 by replacing Finance with its
abstract valuc, Management, as ‘employec_major.major
=? Management’. In case of a conceptual selection,
Reduce_Abstraction selects the neighborhood values
directly using the target abstract value itself, Management.

5., Illustration of Intelligent Query
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Processing

In this section, we exemplify and explain how the four
types of intelligent queries are answered on the basis of a
simplified personne] database shown below.

EMPLOYEE {(id, emp_name, dept, title)}
TASK_HISTORY{(id, beginning date,
task_performed)}
EMPLOYEE_MAJOR((id,
graduation_date)}
CAREER_PATH({(task, prerequisite_task)}
TASK_MAIJOR{(task, required_major_area)}

ending_date,

major, entrance_data,

EMPLOYEE describes the current job position of an
employee, while TASK_HISTORY summarizes the task
history by specifying the beginning date and ending date
of individual tasks performed by the employee.
EMPLOYEE MAJOR contains the college education
records and CAREER PATH shows the career
development path defining prerequisite relationships
among tasks. Finally, TASK MAJOR defines the
relationships between individual tasks and the required
college major area. A meta-database in Figure 2 is built on
these relations.

5.1 Approximately Selection Search

This search provides approximate neighborhood
information besides the exact answers that can be obtained
by the conventional query processing. In the personnel
database example, suppose that a personnel manager
wants to find out employees majoring in finance or related
majors as shown in the top of Figure 6. In the query, the
relaxation operator, =?, is used to specify the relaxation
requirement of the search condition. The selection
condition, m.major =? “Finance”, is to find the
employee_major records whose major attribute value is
¢ither “Finance” or an approximate neighborhood value.
As such, the approximate selection search is to find a set
of approximate values nearby a specified target value in
the selection condition. In terms of KAH, the approximate
selection refers to the selection operation in which the
target attribute (i.e., major) and value (i.c., Finance) exist
in same abstraction level. The detailed process of the
approximate selection search is illustrated in the figure.

Step 1 analyzes the search condition by using
Analyze Selection operations. It identifies the domains of
‘major’ attribute and ‘Finance’ and classifies the search
condition as an approximate selection since the difference
between their abstraction level is 0. In step 2, as the search
condition is selection condition, ABSTRACTION is
reduced by Reduce Abstraction operation after
constructing ABSTRACTION instance by using
Construct_Abstraction. To reduce ABSTRACTION, we
select tuples whose attribute value of ‘Abstract_Value’ are
the abstract value of ‘Finance’, i.e., ‘Management’. In step
3, joining target attributc with ABSTRACTION returns
three tuples as approximate neighborhood answers whose
major attribute value is Finance, Accounting or Marketing.
The detailed intelligent query processing is summarized in
the following steps:



[Query] SELECT
FROM
WHERE

e.emp_name, e.dept

1. Analyze_Sclection
2.1 Construct_Ahstraction

ABSTRACTION ,*

Mansgement I
Target Value

employee e, employee_major m
m.major=?"Finance" and e.id=m.id
/

Value Abstract_Value
Finance Management
Acvounting Management
Marketing Management \ -
Macro Economics Lconomics
Micro Economics Economics
Ece o E i

Selecti
Employee_Major election

2.2 Reduce_Abstraction

Conventional Approximate

selection

v FMAJOR ABSTRACTION

El

E::::: Law : 3 Join N Abstract_Value
ics Management

E85149 | English litcrature Approximate Selection Accounting Management

E85207 | Finance Result : EB5207, E88119, E88223 Marketing Management

C8B119 | Accounting

E88223 | Fimance Conventional Selection

550305 | Law Result : E85207, EB8223

Figure 6. The Process of Approximate Selection.

Search Condition: c.major =? “Finance” and ¢.id = ¢.id
Step 1. Analyze a query using the Analyze_Selection().
Analyze_Selection(employce_major, major, Finance){
Get_Attribute_Domain{employee_major,
major)=MAJOR_NAME
Return MAJOR_NAME
Compute the difference of the abstraction levels between
MAJOR_NAME and MAJOR_NAME // d=0
}=(MAJOR_NAME, MAJOR_ NAME, 0)

Step 2. Construct and reduce ABSTRACTION relation.

Construct_Abstraction MAJOR_NAME, 0) = {
Insert_Abstraction(MAJOR_NAME )

'

Reduce Abstraction(Finance, 0){
Get_Abstract_Value(Finance)=Management
Select tuples from ABSTRACTION where Value =
‘Management’ or Abstract_Value = ‘Management’

H
Step 3. Join employee_major with reduced ABSTRACTION.

5.2 Conceptually Join Search

Conceptually equal search is divided into conceptual
selection search and conceptual join search as seen in
Table 5. In conventional query processing, these queries
are rejected because the domains of the target attributes
and target value are not identical.

As an extension of the conceptual selection search,
the two attributes in the join condition can have different
domains and thus be in different abstraction levels. In the
personnel database example, the task_major relation
prescribes the required major arca for each task. In such
capacity, a user may want to find people whose college
major belongs to the major area required for performing a
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certain task, c¢.g., Cost Accounting tasks. A conceptual
join search is composed to answer such a need and can be
written as shown in the top of Figure 9. In conventional
query processing, the join operation
‘t.required_major_areca =? c.major’ returns no answer
because the domains of their join attributes are not
identical. In terms of KAH, the conceptual join refers to
the join operation in which the two target attributes are
associated with different domains and thus exist in
different abstraction levels. The detailed process of the
conceptual join search is illustrated in the figure.

The whole procedure is similar with that of
approximate join search except that the level difference is
1. In step 3, employec_major is joined with
ABSTRACTION to get the abstract value of the join
attributc values, and finally is joined with the other
quericd relation on the basis of the abstract values. The
detailed intelligent query processing is summarized in the
following steps:

Search Condition: t.required_major_arca =? c.major
Step 1. Analyze a query using the Analyze Join().
Analyze_Join(task_major, required_major_area, employee_major,
major){
Get_Attribute_Domain(task_major, required_major_area)=
MAJOR_AREA
Get_Attribute_Domain{employee_major, major)=
MAJOR_NAME
Compute the difference of the abstraction levels between
MAJOR_AREA and MAJOR_NAME // d=1
t=(MAJOR_AREA, MAJOR_NAME, 1)

Step 2. Construct and reduce ABSTRACTION relation.
Construct_Abstraction(MAJOR_NAME, 1) ={
Insert_Abstraction(MAJOR_NAME )

}
Step 3. Join employee_major and ABSTRACTION.



[Query] SELECT e.emp_name, e.dept

employee e, task_major t, employee_major m
t.task="Cost Accounting” and t.required major_area=m.major and e.id=m.id

Business

FROM
WHERE
L. Analyze_Joi
ABSTRACTION . Construct_Abstraction
i Join is not possible.
Finance Mlnlg:mml Conceptual join is possible
Accounting Management
Marketing Mansgement
Macro Economics Economics
Mico Economics Economics

3. Join for conceptual join

Employce_Major \/

] Abstract Value
E83203 | Law
E87088 | E ics E
EB5149 | English literature
E85207 | Finance Management
E28119 | Acoounting Management
EBR223 | Finance Management
E90305 | Law

Domain: Domain:

MAJOR_NAME MAJOR_AREA

Task_Major
Task
Payrolt
Demand Forecasting
t Receivable Management
Account Payable
| Management Mazagemeat
Cm A g A,
Avsel M. Manag
Domain:
MAJOR_AREA

Figure 9. The Process of Conceptual Join.

6. Comparison and Conclusions

The proposed KaDB and intelligent query processing
mechanism have an advantage over other approaches,
including the conceptual clustering approach [2, 3, 7, 9, 23,
26), the object-oriented database approach, and the rule-
based approach [4, 10, 12). First, existing approaches do
not support the relaxation of join condition (ie.,
approximately join search and conceptually join search)
which could facilitate multiple relations to be
approximately or conceptually joined at once, and thus
require several intermediate selection queries to perform
the same join search. This is because the abstract values of
every attribute value related with join operation can not be
obtained straightforwardly in existing approaches.
However, because of the additional domain information
involved in the KAH used as a knowledge representation
framework, KaDB can support the relaxation of join
condition. The domains information of target aftributes
makes it possible to obtain the abstraction relationships of
the every join attribute values straightforwardly. By virtue
of these features, the KaDB can support more diverse
types of query processing than existing approaches.
Second, the proposed query processing mechanism is
more intuitive enough for users to carry out interactive
control than other approaches. The KaDB can guide more
interactive and flexible query transformation processes.
Through the generalization and specialization processes,
the value abstraction hicrarchy is used as base query
relaxation knowledge, and the domain abstraction
hierarchy  supplements more  dynamic  query
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transformation by using information about domain and
abstraction level. Specifically, information about the
abstraction level enables the comparison of abstraction
levels in multiple domains, supports the query relaxation
process both incrementally and directly from a certain
preferred level, and provides users with flexible relaxation
control.

In this paper, we introduced a meta-database KaDB
to support intelligent query processing which relaxes the
search condition and provides approximate neighborhood
information when exact answers are unavailable. The
KaDB was constructed on the basis of a knowledge
representation framework, namely KAH, that extracts
abstract values and their domains from an underlying
corporate database into several hierarchies using value
abstraction and domain abstraction. We also presented a
query processing mechanism handling a variety of
intelligent queries in a consistent and integrated way. Thus,
the proposed KaDB and query processing improve the
effectiveness of information retrieval and decision making.

The relaxation of the search condition plays a key
role in intelligent query processing. To this end, several
KaDB operations are defined — the elementary operations
such as value generalization and specialization and the
other supplementary operations providing necessary
information for the query processing procedure. Also, the
notions of “approximatcly equal” and “conceptually
equal” are presented to define the equality between data
values. Based on the two equality, we classified intelligent
queries into four types — approximately selection search,
approximate join search, conceptual selection search,
conceptual join search. Based on the KaDB operations and
the types of intelligent queries, whole query processing



mechanism was developed.

To support all types of queries in a consistent and
integrated way by using the KaDB operations, the
proposed query answering mechanism uses the
ABSTRACTION relation which represents the abstraction
information for the given target attribute values. We can
rclax the search condition and obtain approximate
neighborhood answers by joining target attribute in the
queried relation with ABSTRACTION. In the whole query
processing, the information about domain and abstraction
level of the target attribute and values specified in the
scarch condition plays a key role for relaxing the search
condition,

Currently, we are working on testing a prototype
with a personnel database system to demonstrate the
effectiveness and practicality of the KaDB in ordinary
database application systems. Looking into the future, we
plan to extend the KAH to retrieve and manage data in the
federated database systems where component databases
have the autonomy of data and storc similar data. Such an
extended KAH will facilitate the query relaxation
processes across the multiple component databases and
draw a wider range of approximate answers which would
not bc oblainable from existing federated database
approaches. Fuzzy set theory is also being studied, since
both approximate and conceptual conditions have some
commonality with fuzzy conditions. Fuzzy systems are
believed to enrich the semantics of the KAH and increase
the intelligent characteristics of the KaDB.
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