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Effect of External and Internal Learning Rate Differences on
Manufacturing Improvement

[n this paper, we explore the effect of learning rate difference between external and
internal development on manufacturing improvement. We consider a certain type of
production technology that must grow, externally or internally, to maturity to be fully
etfective in existing production systems. For optimal operations, manufacturing firms
must determine when and how much external technology in different *maturity’ stages
needs to be brought into the internal production system. Employing an optimal control
model, we derive two nontrivial implications. First, the optimal dynamics to bring
external technology inside is sensitive to the learning rate difference between
autonomous (or, external) development and induced (or, internal) development: the
higher the internal learning rate, the more ‘external technology’ the firm should
acquire. It, however, depends on the boundary condition whether the optimal path
increases over time or across technology age: a significant redirection of the optimal
dynamics occurs when crossing the boundary in the ‘time-technology age’ space,
since the technology must mature to be fully effective within a limited time.

1. Introduction

Production technology development is critical in determining firms’ overall
performance, in particular, in terms of operations improvement (Hayes, et al. 1996). In
this paper, we focus on manufacturing firms’ operations strategy when the rate of
internal learning is different from that of external learning. We premise that the
internal learning is ‘induced’ by managers in the firms, whereas the external one is
‘autonomous,’ i.e., determined by exogenous technological factors (Adler and Clark
1991).

In the literature, an important decision making issue associated with manufacturing
improvement is how to reach an optimal balancing between in-house technology
development and outsourcing of the development efforts (Kim 1996). In a similar
vein, Jaikumar and Bohn (1992) raised a fundamental question regarding “where” to
create new technological knowledge: they suggested three such ways, (i) purchasing
outside knowledge, (ii) intensive R&D outside manufacturing, and (iii) learning
within existing manufacturing. This kind of decision making has been studied under
several different situations. Kennedy (1993) modeled in-house versus contract
maintenance, taking into account fixed costs and learning effects. Gaimon (1985 and
1989) approached a problem of automation acquisition from a binary decision making
perspective.

The model we develop in this paper is an extension of the previous models in the
related literature. Since the kind of decision making problem mentioned above
requires dynamic approaches, most of the analytical models used optimal control
models. Those models usually dealt with one dimensional space, e.g., time-related
dimension. In this paper, we are concerned about two dimensions simultaneously, i.e.,
time-related dimension and growth-related dimension. To handle the issue
appropriately, we employ a control model characterized by partial differential
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equations (Butkovskiy 1969). In the next section, we elaborate on formulating the
control model, and describe the solution procedure. Following the model formulation.
we take on comparative analyses to examine changes in the control variable dynamics
as time and growth variables vary. Based on the comparative analyses, we derive
some economic and managerial implications. Finally, we discuss possible
improvements for further research.

2. Model Formulation

In this paper, we adopt the definition of technology as “a set of pieces of knowledge,
both directly practical and theoretical, know-how, methods, procedures, experience of
successes and failures, and physical devices and equipment (Dosi 1982).” By focusing
on the importance of knowledge as key to the technology development, we emphasize
the *dynamic’ nature of production technology in that it evolves over time. Consistent
with the definition, we consider such technology that in order to be fully applicable in
the manufacturing process, it needs to be adapted to the manufacturing system, i.e., it
has to become ‘system-specific’ to the manufacturing process. We view this as a
process for production technology to grow or mature to become fully effective in the
existing manufacturing system.

Let’s take an example. Suppose a shipbuilding firm wants to develop a particular
welding technology to use in its cutting stage, and its level is represented with x. In
order for the welding skill to be fully effective in shipbuilding, it needs to reach a
certain level of advancement or sophistication, say, y. Then, the firm must nurture the
welding technology until it reaches a point where x = y. We concentrate on two ways
to accomplish it, developing it in-house and bringing in the technology that has
externally matured to a certain degree.

For the modeling in this paper, let’s suppose the ‘conceptual’ age of technology is
represented by ‘w.” We assume that it takes ‘=W’ time for the technology to grow
fully effective in the system, where we can also consider ‘o’ measures the degree of
technology’s being endogenous to the system. For instance, technology with @=0 is
assumed completely ‘exogenous’ to the system, and need age until @=W to be
proficiently capable. A firm can bring external technology with w=k (k £ W) from
outside into the internal system, and nurture it to grow for “W-k’ time in order to
become fully effective within the system.

The primary decision is to determine u(t,®), the amount of technology w aged which
is purchased from outside at time t. The decision time horizon is T. Thus, in the
optimal control model we develop, the control variable is u(t,0),0 S w <Wand 0 <t
< T. On the other hand, the state variable, x(t,), represents the ‘density (population)’
measure of technology w aged at . For clarity of analysis, we assume, without loss of
generality, that x(0,#) = x (@) =0, and x(r,.0)=x_(7r) =0.

Now we need to model the cost structure. Let C(w) be the total cost to manage (e.g.,
control and develop/grow) a unit of technology which is ® aged at t inside the firm: in
fact, we are assuming that C is independent of t for the present decision time horizon.
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Let P(t,w) be the total cost to purchase a unit of external technology ® aged at time t:
it can be regarded as a current market value of the technology. We will show that w
relates to induced learning, and t to autonomous learning.

The profit side of the equation is as follows. The firm can get certain “value’ from the
technology which has aged to W, i.e., at the maturity of the technology, which is
P(t,W)=l(r) at t. At t=T, the technology ‘w’ aged has a salvage value of
P(T,0)=S(w). For simplicity without losing generality, we further assume V(7) =V,

and S(@) = S,@ , where ¥}, and S are constant.

The primary question is how much “technology’ the firm must acquire from the
outside each time over the decision span, and how that decision is affected by the
forces of induced and autonomous learning: as alluded before, induced leamning is
managerially nurtured inside the manufacturing system, whereas autonomous learning
is largely effected by exogenous forces in the industry. We elaborate on the two
learning patterns.

External Innovation (Exogenous Learning). A certain type of learning could occur
without individual firms’ conscious efforts channeled to the learning activities. For
instance, a technological breakthrough at an industry level can be regarded
“exogenous” to an individual firm, not directly involved in the internal innovation
process. Researchers have identified this type of learning as “autonomous” primarily
correlated with a time-related variable (Arrow 1962, Alchian 1963, Adler and Clark
1991). Consistent with this generic perspective, we assume that the purchasing price,

AP(r, @)

P, is affected by the exogenous learning. More formally, <0, te., the

purchasing price decreases over time due to the autonomous learning outside the firm.

. oP(7, @)
In addition, we assume that -—%—

> 0. That is, the more “aged” the technology,
the more expensive its purchasing price. Considering that more aged technology is
closer to full effectiveness, the assumption seems reasonable.

In order to concentrate on the critical factors, we use a simplified cost structure
representing the external purchasing price: P(7,w) = K ,@°7", where K is constant,

l
O0Lasl, n= % ,and ¢, external learning rate, indicating that the smaller
faster the learning. The formulation follows a well-known learning function (Yelle
1982) and a production function, e.g., Cobb-Douglas production function (de

Neufville 1990).

the

"

Internal Innovation (Induced Learning). In contrast with the exogenous learning,
endogenous learning requires “intentional efforts” on the managers’ part. [n effect, it
ts the “induced learning” planned and managed inside the firm. [n the model
developed in this paper, we associate the endogenous learning with C(w), the internal

(m

cost to foster the technology, so that < 0. Like in modeling the exogenous



learning, we construct the internal development cost, C(a) = K.z", where K,

constant, m = ——— and ¢, internal learning rate.

ln2

The objective is to maximize the total value, Z, contributed from the technology
development:

j (r(u(z, @)~ @) + Pz, m)u(r, @) + C(@)x(r,@))dadr  + [V(z)x(z,W)dz
Q 0

¥ Ol—..\i

+ jS(w)x(T, w)dw, where u is a ‘target’ level of technology purchase and 7 is a
0

positive cost attached to the squared deviation of actual purchase of technology, «,
from its target, . The second term on the right is the total value derived from fully
matured technology, and the third is the total salvage value of the technology not
matured yet at T. Using the decision variables and cost parameters developed in this
section, we can rewrite the optimization problem as follows:

Trw r
Z= ” (r(u(r, @) -)? + K, o t"u(r, @)+ K .o"x(r,@))dadr +V, fx(r,W)dz’
0 0

0
+S, [ax(T, @)dw . (1)

ﬁx(r,w‘)_ o&(t,@)
T o

Subject to a state constraint, +u(r, @) (2)

The state constraint can be obtained as follows. Since x(r, @) represents the amount
of technology @ aged at 7, x(r+ Ar,@)consists of two parts, x(7,@ — A7), iLe.,
one part due to the natural growth of technology @ - Ar old at 7, and u(r,m)AT,

i.e,, the other due to the sum of newly purchased technology for the instantaneous
moment. Thus, we have

x(t+A7, @) =x(r,@ - A7) + u(r, @)AT. (3)
By dividing both sides of (3) with Az, we obtain (2).

The Hamiltonian of the problem, (1) and (2), is:

-~

3 ox
H:- —‘-- [»4 n K ”l’ A—— i 4
{r(u @) + Ko7 t"u+ K,a"x} + A( —+u) (4)

cH
By obtaining —— = 0, we can show that the optimal value of u:
ou

W=+ i(,z K,z°t"). (3
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[n order to have a maximum solution, we need to have — =-2r <0, which is
PE

always true as long as r >0 as we assumed.

[n order to obtain optimal values of x* and u* we need to apply the maximum
principle of “distributed parameter system,” which we refer to a reference
(Butkovskiy 1969) for elaborate derivation. In Appendix 1, instead, we suggest
intuitive ways to describe the derivation procedure. The ensuing analysis is based on
the derivation in Appendix 1.

Since we deal with a control model involving two dimensions at the same time, we
must resolve one more complication qualitatively different from those associated with
simple control models. We are now dealing with a 2-dimensional space. ie., (1, 0)-
space, rather than a one-dimensional, e.g., t-space. For example, since each
technology is assumed to grow for W period to be fully effective, those purchased
after T-W, where T is the terminal time, can not have a chance to grow completely.

Figure 1. Division of (t, o)-space
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W
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To resolve the complication, we divide (t, w)-space into three regions, e.g., O,, O,,
and O;, as in Figure 1. In O, x(t,0) depends on the initial condition of x(0,w), while it
depends on the initial condition of x(t,0) in O, and O,. Since A(t,®) is the shadow
value of technology, it is affected by the boundary of ([0, T]x{W}) U({T}x[0,W]). In
O, and O,, A(t,0) depends on P(z,W) =V(7), while on P(T,w) = S(w) in O;. This
is because technology purchased in O, can not fully mature by T, the end of the
current decision horizon: in other words, the final value of the technology purchased
while in O, is only the salvage value at T. In order to be consistent in the boundaries

between regions, e.g., R, and R,, we need to impose a constraint that on R.,,
V,=S,W.

As alluded before, in Appendix 1, we show intuitive processes to derive the optimal
solutions of state and control variables, deferring a detailed mathematical derivation
procedure to the references.



J.u(q,w—f+q)dq (r,@) €O,
x(r,@) = Z (6)
J.u(f-ww,q)dq (r,@) 0, VO,
0
w
Vo = J‘chmdp (r,@) e O, v 0,
Ar, @) = i ew (7)
(T-t+@)S,~ |K.p"dp (r,@) €O,

With (6) and (7), we can obtain u* according to where the particular (t,w) belongs to
in (t,w)-space. In the next section, we take on the comparative analysis with such
derived u*, deferring x* to future study, since we are more concerned about the
control variable, i.e., the primary decision variable, than the state variable in the
current research.

3. Comparative Analysis

In this section, we examine changes in the control variable dynamics as other
variables like time and technology age vary. First, we need to investigate two different
situations separately according to the division of (t,®)-space.

3.1. Comparative Analysis in O, v O,

By putting (7) into (3), we can obtain

EN

% — + 1 V KC Wm-o-l + KC m+1 K a_n (8)
=Uu —_— - - - .
2r 0 m+1 mel” S

5.1.1. Changes of u* due to @
To probe changes in u* as @ varies, we need to take a differentiation,

O’Ju*
ow

]‘ m a=1 __n
=E-;{ch -aK, @'t } (%
. J , .
[n order for (9) to be positive, K.@" 2 ——(K,@*r"), which can be rearranged as

C(w)zg’w—P(r,w) (10)

Equation (10) shows the condition under which the firm, operating optimally,
purchases one more unit of technology as the age of technology increases by one unit.
The result is that if and only if the increment of unit purchase cost, P, as the
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technology age increases by one unit, is less than the current unit cost to internally
nurture the technology, C, it is profitable for the firm to acquire one more unit of
technology from outside.

3.1.2. Changes of u*due to 7

We have

cu* nK B . \
— = -—2 %" 20 since n<0. (1n
ot 2r

From (11), we can infer that it is always better to increase the purchase of outside
technology, as the time passes while in O, U O, since any technology purchased in

the region will fully mature by T, i.e., generate full value of the investment before the
end of the decision horizon.

3.2. Comparative Analysis in O,

From (5) and (7), we can get

1 K, K.
W=+ (T-t+@)S, ———(T-r+o)"" + ——a"' - K _z%¢"
2r m+1 m+1 ?

) (12)
3.2.1. Changes of u*due to @

ou*

{SO _KC(T_T+w)f:I +chm _apra-lrn} (13)

-~

L
om 2r
In order for (13) to be positive, S, —apr“"'r” > KC{(T—‘L'+ @)" - w"’}, which

74 74
can be rearranged as — S(@) - — P(r,0) 2 C(T -t + @) - C(@) .
ow ow

I'-r+a@

Since (T-r+w)-C(w) = J ;’;C(p)dp,wecanrealrangeso that

a

T-r+m

;%S(w)- J g/;C(p)de-O:i—P(r,w). (14)
The left-hand side of (14) is the net benefit increment resulting from purchasing one
unit of outside technology as its age increases by one unit, while the right-hand side is
the net cost increment due to purchasing the technology. The left-hand side consists of
two parts: the first is the increment of salvage value because of purchasing one unit of
technology aged by one more unit than the currently available technology; the second
part is the total cost increment to internally nurture the technology because of its being
I'-rra

) <0 is assumed, - j- —C(p)dp is positive,
s P

more aged by one unit. Since

implying there is cost saving. Therefore, adding up the salvage value increment and



cost saving, we have the net benetit increment. What (14) implies is that if and only if
the cost increment due to one unit increase of @ is less than the net benefit increment,
it is better for the firm to purchase one more unit of outside technology as @ increases
while in O;. We want to highlight that since the technology purchased in O; will not
fully mature by T, we need to take into account the salvage value. S, when
determining the economics of technology purchase. Note that S did not enter the
equation while in O, U O, .

5.2.2. Changes of u*due to r
5’[(* 1 m a n—-l‘) =
= —E;{—SO+KC(T—T+ZU) -nK,@%r / (13)

In order for (15) to be positive, K.(T -7+ @)" =S, +npr“ "' which can be
rearranged as

C(T—r+w)—gP(r,w)2£S(w) (16)

As before, the right-hand side of (16) represents the opportunity cost increment due to
purchase delay: by delaying the purchase by a unit time, the firm will lose the salvage

o J
value at T by %S (@) . However, exactly because of delaying the purchase by a unit

time, the firm also gains other benefits: due to the autonomous learning happening
outside the firm, the purchasing price at ¢+ Jr is less expensive than that at r by

74
- P(r,w),; by delaying the purchase by a unit time, the firm will also save
or

C(T-r+o) atT, ie., the period during which the technology needs to be nurtured
is reduced by Jr.

74
Therefore, C(T - 7 + @) 5 P(r,w) represents the total saving of opportunity cost

due to delaying the technology purchase by a unit time. We can conclude that if and
only if the opportunity cost increment is less than the opportunity cost saving, the firm
needs to increase the purchase of outside technology as time passes while in O;.

4. Economic and Managerial Implications

We derive some economic and managerial implications from the comparative analysis
in the previous section. In order to understand the implications more concretely, we
use simulation runs with example values. Table 1 shows the actual parameter values
for the ensuing sample runs.

Table 1. Parameter Values for Example Runs

T W V, S, K K, a ®, r

[

(|

31 10 10 1 l 1.5 0.8 0.95 1

U




Since our primary focus is on changes in the dynamics of u* as the learning rates
vary, we present four examples: (1) changes in u* as internal learning rate changes
and @ is fixed at 2 (Figure 2) representing relatively young technology, (2) changes
in «* as internal learning rate changes and @ is fixed at 8 (Figure 3) representing
more mature technology, (3) changes in «* as internal learning rate changes and ¢ is
fixed at 15 (Figure 4), and (4) changes in «* as internal learning rate changes and ¢ is
fixed at 25 (Figure 35).

Based on the example dynamics in Figure 2 and 3, we can infer that the faster the
internal learning occurs, an optimal strategy calls for purchasing more ‘external
technology’ and the purchase amount increases over time until (t,0) reaches R,, i.e.,
the boundary after which any new technology purchased will not fully mature by the
end of the current decision time horizon. Once R, is reached, the purchase amount of
external technology drops significantly, and the higher the internal learning rate, the
more significant the decrease. At T, the purchase amounts converge to a same
magnitude independent of learning rate differences.

Although it seems counter-intuitive at first that more ‘external technology’ is
purchased when ‘internal’ learning rate is relatively higher, the logic behind the
peculiar dynamics can be reasonably explained: (1) if the internal learning occurs
relatively faster, it benefits the firm to bring more “external technology’ inside the
system early on, since the firm can improve the introduced external technology faster
within the manufacturing system than outside, however, (2) once (t,») reaches the
boundary point, R,, the optimal solution requires the tirm to decrease the purchase of
external technology over time until it eventually converges to a single quantity
independent of the internal learning rate, since after R, it makes less than full benefit
to bring new ‘external technology’ into the system due to its inability to fully mature
within the present decision horizon.

One intriguing point can be noted when no learning effect is assumed internally, i.e.,
¢,=1. When the internal learning is nil, u* starts as a smaller amount, but increases
gradually without being suddenly forced to decline. In other words, the purchasing
dynamics shows a well-planned gradual pattern when no internal learning is present.
The logic behind that the lower the internal learning, the firm purchases less external
technology at any given time is understandable: since the external ‘autonomous’
learning occurs faster than the internal one, it makes the firm better off to let the
outside mechanism do more in nurturing the technology.

Comparing Figure 2 and Figure 3, we can also conclude that for relatively young
technology, i.e., technology with smaller ®, the rate of purchase decrease is much
more dramatic and the decreasing point comes much earlier: these phenomena can be
easily confirmed analytically. [t seems reasonable since we can expect ‘matured
technology’ to be relatively unaffected by the time progression and thus, whether
(t,w) reaches R, or not. A managerial implication is that the optimal strategy can be of
more dramatic shift for *younger’ technology than the older one. With the analytical
forms in the previous section, we can determine the actual magnitudes of the changes

in u* as parameter values vary, provided that other parameter values are well
estimated.



Figure 4 and 5 show similar, but qualitatively different dynamics of «* When it deals
with (t,0) in O, 0,, the firm does not have to worry about whether the new
technology will eventually mature or not: thus, we can expect there would be no
sudden shift in the dynamics of u*. Figure 4 shows the situation. When the internal
learning rate is reasonably close to the external one, e.g., $,=0.85, Figure 4 indicates
that u* is almost constant across the technology age, ®, implying that the purchase
dynamics is not affected by the technology age. However, when the internal leaming
rate is higher, e.g., $,=0.70, the optimal dynamics indicates that the firm has to
purchase more ‘younger technology’ than the older one since it can grow the
“younger’ technology faster inside than outside the production system. Employing the
same logic in an opposite direction, we can easily see that when the internal leaming
lags behind the external learning, the firm had better acquire more ‘mature
technology.” Figure 5 presents the situation when (t,0) is in O;. Although the overall
dynamics resembles that in Figure 4, the most distinct difference is that now we
observe a sharp redirection in the dynamics due to the presence of boundary R,.

Based on the examples from the comparative analysis, we can draw the first
managerial implication that the differences between external and internal learning can
be significant in determining the technology development dynamics. We now also
know why there would be a sharp redirection in the optimal dynamics of u* when
(T,w) crosses the boundary of R,: it depends on whether the technology purchased at a
specific (t,w)'will fully mature in the end. It asks the firm to be extra careful about the
shift when designing the purchasing decision. The examples help us see the particular
patterns of dynamics of u* as the internal leamning rate changes in relation to the
external one, and also as t varies given o fixed, or w varies given t fixed. The actual
patterns as the internal learning rate changes indicate that the optimal path does not
always coincide with the intuitive reasoning, underlining the value of optimal control
analysis.

5. Conclusion and Discussion

We have developed a learning-induced control model based on the distributed
parameter systems approach, to solve a dynamic decision problem for optimal
technology development. With the control model, we have first showed the critical
factors which determine the structure of comparative analysis: for instance, we have
investigated the conditions under which u* increases or decreases as other variables
vary. Rooted on the comparative analysis, we have designed simulation runs to focus
on the impact of learning rate differences on the optimal dynamics of u.

Two nontrivial implications can be observed from the research. First, the optimal
dynamics of u is sensitive to the learning rate difference between autonomous
innovation and induced innovation. From the simulation runs, we can infer that the
higher the internal leamning rate, the more ‘external technology’ the firm needs to
purchase. It is, however, dependent on the boundary, R,, whether the optimal path
increases or decreases over time, T, or across technology-age, w. Therefore, the second
implication relates to the critical influence the boundary, R,, has on the optimal
dynamics. [t seems reasonable to expect a “sharp redirection’ in the optimal dynamics



when (t,0) crosses R, at some point, since we deal with such technology that must
mature to a certain age to be fully effective within a limited time.

The control model we present in this paper is different from others in the related
literature. First, although the learning effect has been often taken into account in the
literature, the model in this paper incorporate two different learning effects
simultaneously, autonomous and induced. into the analysis so that we can investigate
the interaction between the two. Second, unlike others in the literature, our model
deals with two specific dimensions related with the technology, i.e., time dimension
and growth (technology-age) dimension. Thus, we have been able to study the
dynamics of such technology that grows over time. We believe that by encompassing
the internal evolution into the analysis, the model captures the reality better than other
one-dimensional models. To properly deal with the two dimensions, we have
employed a control model characterized by partial differential equations: this control
model, often called “distributed parameter systems approach,” is most capable of

examining such dynamic relations in which we are interested in the current research
(Derzko, et al. 1980).

Further improvement is, we believe, still possible from the present analysis. One can
test if the economic and managerial implications can be more generalized by
experimenting different cost structures. We would expect that the importance of
learning rate difference remains unchanged while the shape of the optimal dynamic
path might alter as different parameter and variable values are used. Although we

have assumed zero values for x(z @)’s initial condition without loss of generality, it
might be an intriguing question how the overall dynamics would be affected as the
initial condition takes a non-zero value with complicated functional forms.

Although our primary focus has been on the production technology development, the
model developed in the paper can be applicable to other settings of strategic decision
making as well. For instance, the type of technology we studied shares much
commonality with ‘human resources’: firms might have to decide whether they
choose to educate their own workforce early on by bring into the system more new
hires in the early period, or let the market train the workers until their skill level is
enhanced enough to be reasonably effective in the firms. This kind of decision making
obviously depends on the difference between external and internal learning efficiency.
An important question might be “How much external workforce should the firm bring
into the system, and how much educated should the workforce be at the time it is
employed?” We can also apply the model to other technology-related decision making
situations as long as the technology has the characteristics we have dealt with in this
paper: for instance, it needs to mature for a certain period of time to be fully effective
in the system, and it can be nurtured either autonomously outside the system or in an
induced manner inside the system. We believe most of the technology associated with
business activities shares the similar characteristics, although there could be
differences in terms of degree. Our research in this paper can serve as a reference
point for the future research in the directions touched upon above.



Appendix 1. Intuitive Derivation of State and Control Variables

Utilizing the maximum principle developed by Pontriyagin, et al. (1962) and
Butkovskiy (1969), the optimal dynamics of x and A can be mathematically derived.
Deferring the detailed mathematical derivation procedure to the references, here we
provide more intuitive interpretations on the optimal dynamics.

Al.l. Intuttive Interpretation of x*

We can confirm that the optimal dynamics of x is derived as follows.

fu(q,w—ﬁq)dq (r.@) €0,

x(r,@) = (Al)

-4

Jur-a+q9ds  (r.@) 0,00

0

x(7,@) with (r,@) € O, is affected by the boundary of {0} x [0,/#], whereas when
(r,@) € O, L O, 1t is influenced by the boundary of [0,7]x {0}. Therefore, with
(r,@) €0O,, x(r,@) is simply the sum of the entire technology purchase,
u(q, @ -t +¢), for the period of g </0,7/. The reason we take an integration with
regard to T is that x(7,@) is affected by the boundary of {0} x[0,#], which is
essentially the w-axis. Likewise, we can make a similar interpretation for x(r, )
with (7,@) € O, U O,. The only difference is that now we take an integration with
respect to ® since the initial condition boundary coincides with the t-axis. Since we
assume x(0,@) = x_(@) =0 and x(7,0) = x_(7) =0, we obtain x* as in (Al).

Al.2. Intuitive Interpretation of A*

From (5), we know that it is necessary to calculate A* in order to obtain u*. [t is easy
ary )

to see that A* is the shadow value of the technology, that is, the net value to the
objective function contributed by the newly acquired technology over its life span.

w
Vo - J.ch"'dp (r,@)eO, V0,
Mz, @) = ’ e (A2)
(T-7+@)S, - JKCp"'dp (r,@) €O,

As alluded before, A* with (7,@) € O, U O, relies on the boundary of [0,7T]x {W},
while it depends on the boundary of {T} x [0,#] when (7r,@) € O,.

We understand that the technology purchased while (r,@) €O, U0, will fully
mature by T, and thus generate the value of ¥ in the end. In order to get the net value
contributed by the technology acquired while (r,@) € O, UO,, we must subtract



from the final contribution of ¥, the total cost to internally nurture the technology

W
unti] it fully matures, which is JKL,p"'dp.

The technology acquired while (7,@) € O, will not fully mature by T, and therefore
generate a salvage value of (T -r+ @) S, at T, where (T - 7 + @) is the final age at
T of the technology w-aged acquired at t. The total cost to nurture the technology is

T-r+a

-

JKCp”’dp. The net contribution provided by the technology acquired while

o

(r,@) € O; can be obtained by subtracting the total cost from the salvage value.
Therefore, we can derive A* as in (A2).
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Figure 2. Changes in u* as ¢,, changes with @ =2
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Figure 3. Changes in «u* as ¢,, changes with @ =8
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Figure 4. Changes in u* as ¢, changes witht=15

16



Figure 5. Changes in u* as ¢, changes with t =25
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