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Abstract—Ghose and Desai [1] introduced a new interconnection for
large-scale distributed memory multiprocessors called the Hierarchical
Cubic Network (HCN). The HCN is topologically superior to a
comparable hypercube. They also proposed optimal routing algorithms
for the HCN and obtained its diameter, which is about three-fourths the
diameter of a comparable hypercube. However, their routing algorithm
is not distance-optimal. In this paper, we propose an optimal routing
algorithm for the HCN and show that HCN has about two-thirds the
diameter of a comparable hypercube.

Index Terms—Interconnection networks, hypercubes, hierarchical
cubic network(HCN), routing algorithm.

————————   ✦   ————————

1 INTRODUCTION

THE hypercube networks have been used as the interconnection
network in a number of commercial and experimental parallel
computers. A variety of interconnection networks based on the
hypercube have also been proposed [2], [3], [4], [5], [6], [7], [8], [9].
For large-scale systems, the number of links for the hypercube may
become prohibitively large. Ghose and Desai presented a new
interconnection network called the Hierarchical Cubic Network
(HCN) [1], [10], [11]. The HCN uses almost half as many links as a
comparable hypercube and yet has a smaller diameter than a com-
parable hypercube and emulates desirable properties of a hyper-
cube very efficiently.

They presented the optimal routing (OPT) algorithms in the
HCN and showed that the HCN has three-fourths the diameter of
a comparable hypercube [1], [11]. However, we found that their
OPT algorithm is not distance-optimal. Thus, the diameter of the
HCN obtained under the OPT algorithm is not correct. In this pa-
per, we propose the distance-optimal routing algorithm in the
HCN and show that the diameter of the HCN is about two-thirds
the diameter of a comparable hypercube.

An HCN(n, n) is a hierarchical network consisting of 2n

clusters, each of which is an n-dimensional hypercube. Each
node of the HCN(n, n) is addressed by a pair of numbers (I, J),
where I is an n-bit cluster number and J is an n-bit address of
the node within a cluster. Each node in the HCN(n, n) has (n + 1)
links connected to it. The links within a hypercube cluster are
referred to as local links and the links between two clusters are
referred to as external links. Clusters are interconnected by us-
ing external links to construct the HCN(n, n) using the follow-
ing rule:

• If I π J, a node (I, J) is connected to the node (J, I) using its
external link, which is called nondiameter link.

• A node (I, I) is connected to the node (I¢, I¢), where I¢ is the
bitwise complement of I, using its external link, which is
called diameter link.

An HCN(3, 3) network is shown in Fig. 1.

2 AN OPTIMAL ROUTING ALGORITHM

2.1 Routing Algorithms for the HCN
Let us consider routing algorithms from a source node (I, J) to a des-
tination node (K, L) in the HCN(n, n). When two nodes are in the
same cluster, i.e., I = K, the shortest routing path is determined by
conventional algorithms in hypercube and denoted by (I, J) ⇒ (I, L).

For two nodes (I, J) and (K, L), such that I π K, Ghose and Desai
proposed three routing algorithms as follows:

1) Routing Algorithm A :

(I, J) ⇒ (I, K) → (K, I) ⇒ (K, L)

2) Routing Algorithm B :

(I, J) ⇒ (I, I) → (I¢, I¢) ⇒ (I¢, K) → (K, I¢) ⇒ (K, L)

3) Routing Algorithm C : for I π L and K π L

(I, J) ⇒ (I, L) → (L, I) ⇒ (L, K) → (K, L)

Let H(A, B) be the number of bits in which two binary numbers
A and B differ. For two n-bit numbers A = An-1 L A0 and Bn-1 L B0,
we have

H A B A Bi i
i

n

( , ) ,= ≈
=

-

Â
0

1

where ≈ is an exclusive-or operator. The distances RA, RB, and RC
following these three routing algorithms are thus

RA = H(J, K) + H(I, L) + 1 (1)

RB = H(I, J) + H(I’, K) + H(I’,L) + 2 (2)

RC = H(J, L) + H(I, K) + 2 (3)

Routing algorithms A and C provide the paths which do not
traverse any diameter link. Of these two paths, the shorter one is
the shortest among paths not traversing any diameter link, which
will be shown in Section 2.3. Routing algorithm B provides the
path traversing a diameter link. However, the path following
routing algorithm B is not always the shortest among paths trav-
ersing a diameter link. Their OPT routing algorithm, which uses
the one that provides the shortest routing distances among three
algorithms, is not distance-optimal.

2.2 Routing Algorithm B*
In this subsection, we describe the routing algorithm B* which
provides the shortest path among paths traversing a diameter link.
Consider the routing algorithm B*(M), which provides the path
traversing the diameter link of a cluster M as follows:

Routing Algorithm B*(M) :

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ).

I J I M M I M M

M M M K K M K L

fi Æ fi Æ

¢ ¢ fi ¢ Æ ¢ fi
part

part

1

2

1 244444 344444

1 2444444 3444444

In the path of the routing algorithm B*(M), when M = I, part 1
degenerates to the node (I, I) and, when M = K¢, part 2 degenerates to
the node (K, K). The routing algorithm B is the routing algorithm
B*(I). The routing distance RB*(M) following this algorithm is thus
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RB*(M) = H(M, I) + H(M, J) + H(M’, K) + H(M’, L)+ d,             (4)

where d is 1 if M = I = K¢, 2 if M = I or M = K¢ (I π K¢), and 3, otherwise.
Such a cluster M that RB*(M) is minimized is called a minimizing

cluster. We can find a minimizing cluster M as follows. Let Q =
H(M, I) + H(M, J) + H(M¢, K) + H(M¢, L) and find the cluster M such
that Q is minimized, which is called the Q-minimizing cluster. For
any n-bit number P, let Pi denote the ith bit of P. Since H(M¢, K) =
H(M, K¢), H(M¢, L) = H(M, L¢), we have

Q H M I H M J H M K H M L

M I M J M K M Li i i i i i i i
i

n

= + + ¢ + ¢
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The set of Q-minimizing clusters can be obtained by finding in
bitwise Mi such that each summation term (Mi ≈ Ii) + (Mi ≈ Ji) +
(Mi ≈ ¢Ki ) + (Mi ≈ ¢Li ) is minimized as follows:

• If I J K Li i i i¢ ¢  Œ {0111, 1011, 1101, 1110, 1111}, then Mi = 1.

• If I J K Li i i i¢ ¢  Œ {0000, 0001, 0010, 0100, 1000}, then Mi = 0.

• If I J K Li i i i¢ ¢  Œ {0011, 0101, 0110, 1001, 1010, 1100}, then Mi = X,

where X means don’t care (0 or 1).

For example, for two nodes (I, J) = (001, 010) and (K, L) = (101, 111)
in HCN(3, 3), three four-bit values I J K Li i i i¢ ¢ s are 0000, 0110, and

1000 and, so, we obtain M = 0X0 and the set of Q-minimizing
clusters is {000, 010}.

THEOREM 1. For two nodes (I, J) and (K, L), let Qmin be the set of Q-
minimizing clusters. If I (or K¢) belongs to Qmin, only I (or K¢) is a
minimizing cluster and, otherwise, all the clusters in Qmin are
minimizing clusters.

PROOF. The distance of the path following the routing algorithm B*(M)
is RB*(M) = Q + d. At first, let us consider the case that I π K¢. If I
(or K¢) belongs to Qmin, when M = I (or K¢), RB*(M) is minimized,
since both Q and d are minimized. Therefore, I (or K¢) is a mini-
mizing cluster. Otherwise, when d = 2, Q is not minimized and,
therefore, RB*(M) may not be minimized, but for any cluster M in
Qmin, RB*(M) is minimized although d = 3. Therefore, all the clus-
ters in Qmin are minimizing clusters.

When I = K¢, we obtain Mi = Ii or Mi = X for each i and,
thus, I always belongs to Qmin. If M = I, then d is 1. Therefore, I
is a minimizing cluster. Thus, the theorem is proven. o

In the above example, since K¢ = 010 belongs to Qmin, the mini-
mizing cluster M is K¢. Note that both I and K¢ may be not minimizing
clusters if I π K¢. Thus, the path following routing algorithm B
(routing algorithm B*(I)) may not be the shortest among paths
traversing a diameter link. For a minimizing cluster M, the routing
algorithm B*(M) is called the routing algorithm B*.

EXAMPLE 1. Find the minimizing cluster M for two nodes (I, J) =
(000000, 000110) and (K, L) = (011001, 101101) in HCN(6, 6).
Six four-bit values I J K Li i i i¢ ¢ s are 0010, 0001, 0000, 0110, 0111,
0000 and we obtain M = 000X10 and Qmin = {000010, 000110}.
Since I( = 000000) and K¢( = 100110) do not belong to Qmin, I
and K¢ are not minimizing cluster and all the clusters in Qmin

are minimizing clusters.

2.3 An Optimal Routing Algorithm
In this section, we establish the optimal routing algorithm for
HCN(n, n) and prove its optimality.

THEOREM 2. Suppose P is an arbitrary path from a source node (I, J) to a
destination node (K, L) in the HCN(n, n), where I π K. The following is
satisfied.

1) If path P contains three or more nondiameter links, then P is
not the shortest.

2) If path P contains two or more diameter links, then P is not the
shortest.

3) Routing algorithm A provides the shortest path that contains
one nondiameter link.

4) Routing algorithm C provides the shortest path that contains
two nondiameter links.

5) Routing algorithm B* provides the shortest path that contains
one diameter link.

PROOF. The proof is given in the Appendix.

With Theorem 2, we can design the optimal routing algorithm from
a source node (I, J) to a destination node (K, L) in the HCN(n, n), where
I π K. The optimal routing algorithm is the algorithm which provides
the shortest path among routing algorithms A, B*, and C. The distance
d between two nodes (I, J) and (K, L) is the minimum value among
three distances. In other words,

d = min(RA, RB*, RC)         (6)

EXAMPLE 2. We find the shortest routing path between two nodes
(000000, 000110) and (011001, 101101). From Example 1, we
select minimizing cluster address M = 000010. Three dis-
tances are as follows: RA = 5 + 4 + 1 = 10, RC = 4 + 3 + 2 = 9,

(a)

(b)

Fig. 1: HCN(3, 3) network. (a) A cluster, (b) HCN (3, 3).
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and RB* = 1 + 1 + 2 + 1 + 3 = 8. RB* is the smallest. Thus, the
path following routing algorithm B* is the shortest path.

When there are any faulty components in an HCN(n, n), if the
path following the optimal routing algorithm goes through a
faulty component, the message routing may not be done along the
path. Routing algorithm A has no alternate path with the same
distance. Routing algorithm B* can have an alternate path trav-
ersing another minimizing cluster. Routing algorithm C can also
have an alternate path, which will be noted in the Appendix. Thus,
if the optimal routing path is determined by routing algorithm B*
or C, it can have an alternate optimal routing path. If there is no
alternate optimal path, the message must be routed through any
nonoptimal path.

3 THE DIAMETER OF THE HCN(n, n)
In this section, we derive the exact expression for the diameter of
a HCN(n, n). Ghose and Desai showed that the diameter of the
HCN(n, n) under their optimal routing algorithm is n + În/2˚ + 1
[1]. However, since their routing algorithm is not optimal, the
diameter obtained by them is incorrect. We can use the optimal
routing algorithm developed in the previous section to derive
the diameter of the HCN(n, n) and the next theorem gives its
diameter.
THEOREM 3. The diameter of the HCN(n, n) is n + Î(n + 1)/3˚ + 1.

PROOF. Let us consider the distance between a source node (I, J)
and a destination node (K, L). If I = K, the maximum distance
is n since two nodes are in the same hypercube. If I π K, the
distance of two nodes is the minimum value among three
distances RA, RB*, and RC. The three distances can be repre-
sented as follows:

R H J K H I L RA Ai
i

n

= + + = +
=
Â( , ) ( , ) 1 1

1

               (7)
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where M is a minimizing cluster, d £ 2 if M = I or M = K¢;
otherwise, d = 3, and RAi, RCi, RB*i are as follows: RAi = (Ji ≈ Ki)
+ (Ii ≈ Li), RCi= (Ji ≈ Li) + (Ii ≈ Ki), RB*i= (Mi ≈ Ii) + (Mi ≈ Ji) +
(Mi ≈ ¢Ki ) + (Mi ≈ ¢Li ).

The diameter of the HCN(n, n) is

D d R R R
I J K L I J K L A B C= = *max { } max min , , .

( , ),( , ) ( , ),( , )
c ho t                 (10)

It is difficult to manipulate the equations for RA, RC, RB* ex-
pressed in exclusive-or operator (≈). We can express the
equations for RA, RC, RB* in plus operator (+) as follows:

For each four-bit value IiJiKiLi (0 £ i £ n - 1), the values

of RAi, RCi, RB*i, and Mi are listed in Table 1. n four-bit val-

ues IiJiKiLi s are divided into seven groups according to

their values of RAi, RCi, RB*i and Mi. Let ak be the number of
four-bit values in group k. For example, for two nodes (I, J)
= (01001, 10110) and (K, L) = (00001, 11100), five four-bit

values IiJiKiLi s are 0101, 1001, 0101, 0100, 1010 and we have

a2 = 1, a3 = 3, a7 = 1, and, for other k, ak = 0. The sum of all

aks is a1 + a2 + L + a7 = n, where all aks are nonnegative

integers. If a6 = 0, then M = K¢, since M Ki i= ¢  or Mi = X for

all i and if a7 = 0, then M = I, since Mi = Ii or Mi = X for all i.

Thus, if a6 = 0 or a7 = 0, we have d £ 2.
Three distances can be expressed in terms of aks as follows:

RA = 2a3 + 2a4 + A + 1 (11)

RC = 2a2 + 2a4 + A + 2 (12)

RB* = 2a1 + 2a2 + 2a3 + A + d, (13)

where A = a5 + a6 + a7 and, if a6 = 0 or a7 = 0, d £ 2; otherwise,
d = 3. Since the sum of all aks is n, we have

a1 + a2 + a3 + a4 + A = n.            (14)

In order to find the diameter, we consider the upper bounds
of distances for the four cases.

1) If a3 £ a2 and a4 £ a1 + a2, the routing algorithm A is an
optimal algorithm and the distance is

min(RA, RC, RB*) = RA = 2a3 + 2a4 + A + 1 £ 2a1 + 4a2 + A + 1,

where equality holds when a3 = a2 and a4 = a1 + a2.
When equality holds, we have n = a1 + a2 + a3 + a4 + A =
2a1 + 3a2 + A and, so, a2 = (n - 2a1 - A)/3 £ În/3˚. Thus,
we have

RA £ 2a1 + 4a2 + A + 1 = n + a2 + 1 £ n + În/3˚ + 1.         (15)

2) If a3 £ a2 and a4 ≥ a1 + a2 + 1, the routing algorithm B* is
an optimal algorithm and the distance is

min(RA, RC, RB*) = RB* = 2a1 + 2a2 + 2a3 + A + d £ 2a1 + 4a2 + A + d,

where equality holds when a3 = a2 and a4 = a1 + a2 + 1.
When equality holds, we have n = a1 + a2 + a3 + a4 + A = 2a1
+ 3a2 + A + 1 and a2 = (n - 1 - 2a1 - A)/3. If a6 = 0 or a7 = 0,
then d £ 2, A ≥ 0 and, so, a2 £ Î(n - 1)/3˚; otherwise, d = 3,
A ≥ 2 and, so, a2 £ Î(n - 3)/3˚ = În/3˚ - 1. Thus, we have

  RB*  £  2a1 + 4a2 + A + d = n + a2 + (d - 1)

    £   max(n + Î(n - 1)/3˚ + 1, n + În/3˚ + 1) = n + În/3˚ + 1.  (16)

TABLE 1
VALUES OF RAi, RCi, RB*i, AND Mi

group IiJiKiLi RAi RCi RB*i Mi

1 0000, 1111 0 0 2 Mi = X

2 0110, 1001 0 2 2 Mi = X

3 0101, 1010 2 0 2 Mi = X

4 0011, 1100 2 2 0 M I Ki i i= = ¢

5 0010, 1101, 1000, 0111 1 1 1 M I Ki i i= = ¢

6 0001, 1110 1 1 1 M I Ki i i= π ¢

7 0100, 1011 1 1 1 M K Ii i i= π
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3) If a3 ≥ a2 + 1 and a4 £ a1 + a3, the routing algorithm C is an
optimal algorithm and the distance is

min(RA, RC, RB*) = RC = 2a2 + 2a4 + A + 2 £ 2a1 + 4a3 + A,

where equality holds when a3 = a2 + 1 and a4 = a1 + a3.
When equality holds, we have n = a1 + a2 + a3 + a4 + A =
2a1 + 3a3 + A - 1 and a3 £ Î(n + 1)/3˚. Thus, we have

RC £ 2a1 + 4a3 + A = n + a3 + 1 £ n + Î(n + 1)/3˚ + 1.        (17)

4) If a3 ≥ a2 + 1 and a4 ≥ a1 + a3 + 1, the routing algorithm B*
is an optimal algorithm and the distance is

min(RA, RC, RB*) = RB* = 2a1 + 2a2 + 2a3 + A + d £ 2a1 + 4a3 + A + d - 2,

where equality holds when a3 = a2 + 1 and a4 = a1 + a3 + 1.
When equality holds, n = a1 + a2 + a3 + a4 + A = 2a1 + 3a3 + A
and a3 = (n - 2a1 - A)/3. If a6 = 0 or a7 = 0, d £ 2, A ≥ 0 and, so,
a3 £ În/3˚; otherwise, d = 3, A ≥ 2 and, so, a3 £ Î(n - 2)/3˚ =
Î(n + 1)/3˚ -1. Thus, we have

       RB*  £  2a1 + 4a3 + A + d - 2 = n + a3 + d - 2

  £  max(n + În/3˚, n + Î(n + 1)/3˚) = n + Î(n + 1)/3˚.        (18)

From (15)-(18), the maximum of distances is n + Î(n + 1)/3˚
+ 1, which is the upper bound in (17). Therefore, the diameter
of HCN(n, n) is n + Î(n + 1)/3˚ + 1. o

Thus, the HCN(n, n) has about two thirds the diameter of a
comparable hypercube, 2n-cube.

4 CONCLUSION

In this paper, we have presented an optimal routing algorithm for
the HCN(n, n). Based on this optimal algorithm, we have derived
an exact expression for the diameter of the HCN(n, n). It has been
shown that the diameter derived in this paper is smaller than the
previously known bound.

APPENDIX

PROOF OF THEOREM 2.

1) Suppose (I, J) and (K, L) are the source node and the desti-

nation node. Path P containing k nondiameter links (k ≥ 3)

is constructed as follows: (M0, M-1) ⇒ (M0, M1) → (M1, M0) ⇒

(M1, M2) → (M2, M1) ⇒ L → (Mk, Mk-1) ⇒ (Mk, Mk+1),

where M0 = I, M-1 = J, Mk = K, Mk+1 = L. The routing dis-

tance of P is R H M M kP i ii

k
= +-=

+Â 21

1
,c h . Let us consider

the two cases.

• When k is odd: We now construct another path Q as fol-

lows: (M0, M-1) ⇒ (M0, M1) ⇒ (M0, M3) ⇒ L ⇒ (M0, Mk)

→ (Mk, M0) ⇒ (Mk, M2) ⇒ (Mk, M4) ⇒ L ⇒ (Mk, Mk+1).
Path Q contains one nondiameter link. The routing dis-

tance of Q is R H M MQ i ii

k
= +-=

+Â 21

1
1,c h . Thus, we have

RQ < RP and path Q is shorter than path P.
• When k is even: We now construct another path Q as fol-

lows: (M0, M-1) ⇒ (M0, M1) ⇒ (M0, M3) ⇒ L ⇒ (M0, Mk+1)

→ (Mk+1, M0) ⇒ (Mk+1, M2) ⇒ (Mk+1, M4) L ⇒ (Mk+1, Mk)

→ (Mk, Mk+1). Path Q contains two nondiameter link. The

routing distance of Q is R H M MQ i ii

k
= +-=

+Â 21

1
2,c h .

Thus, we have RQ < RP and path Q is shorter than path P.

Therefore, if path P contains three or more nondiameter
links, then P is not the shortest.

2) Suppose (I, J) and (K, L) are the source node and the destina-

tion node. For any two nodes u and v, the path u vfi*
 represents

the routing path within the hypercube if two nodes are in the
same cluster and the path following the routing algorithm A,

otherwise. Path P containing k diameter links (k ≥ 2) between
two nodes is constructed as follows:

I J M M M M M M M M

M M M M K Lk k k k

, , , , ,

, , , .

b g c h c h c h c h

c h c h b g

fi Æ ¢ ¢ fi Æ ¢ ¢ fi

Æ fi Æ ¢ ¢ fi

* * *

* *

1 1 1 1 2 2 2 2

L L

The routing distance of P is
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2c h c h c h

c h c h d

where d ≥ k, since at least k diameter links are contained. Let
us consider the two cases.
• When k is even: We now construct another path Q as

follows: (I, J) ⇒ (I, M1) ⇒ L ⇒ (I, M2j-1) ⇒ (I, ¢M j2 ) ⇒ L

⇒ (I, ¢Mk ) ⇒ (I, K) → (K, I) ⇒ (K, M1) ⇒ L ⇒ (K, M2j-1) ⇒
(K, ¢M j2 ) ⇒ L ⇒ (K, ¢Mk ) ⇒ (K, L). Path Q does not con-

tain any diameter link. The routing distance of Q is

R H J M H I M H M M

H M K H M L

Q i i
i

k

k k

= + + ¢ +

¢ + ¢ +

+
=

-

Â, , ,
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1 1 1
1

1

2

1

c h c h c h

c h c h

Obviously, we have RQ < RP. Thus, path Q is the shorter
than path P.

• When k is odd: We now construct another path Q as fol-

lows: (I, J) fi
*

 (M1, M1) → ( ¢M1 , ¢M1 ) ⇒ ( ¢M1 , M2) L ⇒

( ¢M1 , M2j) ⇒ ( ¢M1 , ¢ +M j2 1) ⇒ L ⇒ ( ¢M1 , ¢Mk ) ⇒ ( ¢M1 , K)

→ (K, ¢M1 ) ⇒ (K, M2) ⇒ L ⇒ (K, M2j) ⇒ (K, M2j+1) L
⇒ (K, ¢Mk ) ⇒ (K, L). Path Q contains exactly one diame-

ter link. The routing distance of Q is

R H J M H I M H M M

H M K H M L

Q i i
i

k

k k

= + + ¢ +

¢ + ¢ +

+
=

-

*

Â, , ,

, , ,

1 1 1
1

1

2c h c h c h

c h c h d

where d* is 1 if M1 = I and 2, otherwise. Since k ≥ 3, we

have RQ < RP. Thus, path Q is shorter than path P.

Therefore, if path P contains two or more diameter links,
then P is not the shortest.

3) Since the nondiameter link that connects between (I, K) and
(K, I) is a unique link that connects two clusters I and K, the
path that contains one nondiameter link must go through
this link. Thus, the path following routing algorithm A is a
unique path containing one nondiameter link. Therefore,
routing algorithm A provides the shortest path that contains
one nondiameter link.
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4) Path P containing two nondiameter links is constructed as
follows: (I, J) ⇒ (I, M) → (M, I) ⇒ (M, K) → (K, M) ⇒ (K, L),
where M π I and M π K. The routing distance of P is RP =
H(J, M) + H(I, K) + H(M, L) + 2. From (3), RC = H(J, L) +
H(I, K) + 2. Since H(J, M) + H(M, L) ≥ H(J, L), we have RP ≥ RC.
Therefore, routing algorithm C provides the shortest path
that contains two nondiameter links. Note that if M satisfies
H(J, M) + H(M, L) = H(J, L), path P has the same distance
as the path by routing algorithm C and can be used as its
alternate path.

5) It is obvious from the definition of routing algorithm B*. o
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