A Parallel Programming Environment for a V-Bus based PC-cluster

Sang Seok Lim, Yunheung Paek and Kyu Ho Park

EECS Department

Korea Advanced Institute of Science and Technology

Jay Hoeflinger
Kuck and Associates at Intel
jay.p.hoeflinger @intel.com

{sslim@core, ypack @ee and kpark @ee} kaist.ac.kr

Abstract

Nowadays PC-cluster architectures are widely accepted
for parallel computing. In a PC-cluster system, memo-
ries are physically distributed. To harness the computa-
tional power of a distributed-memory PC-cluster, a user
must write efficient software for the machine by hand. The
absence of global address space makes the process labori-
ous because the user must manually assign computations
to processors, distribute data across processors and explic-
itly manage communication among processors. This pa-
per introduces our recent three related studies on parallel
computing. Thefirst is a V-Bus based PC-cluster in which
all PCs are interconnected through V-Bus network cards.
The second is the implementation of an one-sided com-
munication library on our PC-cluster system, which pro-
vides the user with a view of global address space on top
of the distributed-memory PC-cluster. This encapsulation
of global address allows the user to write shared memory
code on our cluster system, which simplifies programming
our cluster becausethe user does not need to explicitly cope
with distributed memories. Thethird isa parallelizing com-
piler that automatically translates a sequential code to a
shared-memory code for the PC-cluster. This compiler not
only enableslegacy code to be compiled for our cluster, but
also further simplifies programming our cluster by allow-
ing the user to continue using conventional sequential lan-
guages such as Fortran 77. In this work, the compiler was
optimized particularly for our V-Bus based PC-cluster. The
paper also reports our experimental results with the com-
piler on our PC-cluster system.

1 Introduction

For several decades, multiprocessor systems that are able
to utilize parallelism embedded in programs have been the
most powerful machines for high-performance computing.
Traditionally, supercomputers have been successfully used
for parallel computing. But the costs of these supercomput-

ers were generally too high. So, to achieve not only low cost
but also high performance by parallel processing, a clus-
ter computer with commodity hardwares has been widely
adopted. The NOW and Beowulf are good example systems
of cluster computers. Among the driving forces that have
enabled this transition from a supercomputer to a cluster
computer has been the rapid improvement in the availabil-
ity of commodity high performance components for PCs,
workstations and networks. This technology trend is mak-
ing a network of computers(PCs or workstations) an appeal-
ing vehicle for parallel processing, and consequently lead-
ing to low-cost commodity super-computing.

For low cost and high performance computing, we have
developed a V-Bus based PC-cluster. In the cluster, each
300MHz Pentium II PC is attached to a V-Bus network
cards[11, 12, 13], and the V-Bus cards are connected to each
other to form a mesh interconnection network. The V-Bus
network cards are currently implemented on FPGA technol-
ogy.

This paper reports our recent work on the development
of a programming environment for our V-Bus based PC-
cluster. The objective of our work is to provide the users
with convenient and efficient software tools for program-
ming the cluster system. To achieve this objective, we have
implemented the MPI-2 library[7] and a parallelizing com-
piler on top of the cluster hardware.

MPI-2 is more difficult to implement than the original
MPI, here we call MPI-1, but provides a more versatile pro-
gramming environment by supporting not only traditional
message passing programming but also shared memory pro-
gramming. This is made possible by implementing both
two-sided communications (SEND/RECEIVE) and one-
sided communications (PUT/GET). MPI-2 is optimized to
fully capitalize on the hardware features of the V-Bus net-
work card, which will be detailed in Section 2.

Even with such strong support for parallel programming,
writing parallel code for the cluster is still complex and
error-prone because it requires in-depth knowledge on the
underlying parallel computer system and parallelism in ap-
plications. To reduce this programming complexity, we

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

have implemented a parallelizing compiler, based on the
Polaris infrastructure [1], originally developed by the au-
thors and other colleagues at Illinois. Polaris automatically
translates conventional Fortran 77 code to parallel code for
a variety of shared memory multiprocessors. In this work,
we have developed a MPI-2 postpass for Polaris, to retarget
the compiler at MPI-2 running on our PC cluster. That is,
Polaris takes sequential code as input and produces SPMD-
style shared memory code with one-sided communication
primitives, MPI_PUT/MPI_GET, provided by our MPI-2 li-
brary.

Although a V-Bus network card offers four times higher
bandwidth and much lower latency than a fast Ethernet
card, it still has high latency and low bandwidth as com-
pared to high-end supercomputers such as CRAY T3E/T3D,
SGI Origin[15, 16] and Myrinet[17]. Therefore, the success
of Polaris targeting our PC-cluster heavily hinges on com-
munication generation techniques that minimize the overall
costs of communication to access arrays residing in memory
of a remote PC in the cluster. In this work, we developed
a new algorithm for communication generation specifically
optimized for our V-Bus based PC-cluster. This algorithm
is based on our novel array access analysis [4] which accu-
rately identifies remote array accesses in a program.

This paper is organized as follows. Section 2 discusses
several important features of the V-Bus network card and
the implementation of MPI-2 on the V-Bus based PC-
cluster. Sections 3 and 4 describe major components of Po-
laris. Section 5 shows how we have extended the compiler
to target our V-bus based PC-cluster with our communica-
tion generation algorithm. Section 6 presents our experi-
mental results, and Section 7 conclude our paper.

2 A V-BusBased PC Cluster

This section presents a general overview of the hardware
and software organization of our PC-cluster system. Our
compiler which will be discussed in the subsequent sections
translates a sequential code to a parallel code for this sys-
tem.

2.1 Thelnterconnection Network Architecture

We have recently developed a high-speed and
bandwidth-efficient network card based on two com-
munication techniques, called skew-tolerant wave-
pipelining(SKWP) and Virtual-Bus (V-Bus). SKWP [13] is
an enhanced version of conventional wave pipelining that
significantly increases the throughput of our network card.
Wave pipelining considerably increases the throughput of
the network card. However, it requires tremendous efforts
to tune the skew between all signal lines. Furthermore,
the end-to-end skew between signal lines can be magnified

while passing through several wave-pipelined network
cards, which can be neither predicted nor handled. So we
integrated an automatic skew sampling circuit that eases
the implementation of a wave-pipelined network cards
on FPGA. The skew sampling circuit detects the delay
differences between all signal lines, samples each signal,
and merges the signals to have the same phase. With this
technique, we achieve high bandwidth in point-to-point
data transmission. Our experiment revealed that SKWP
increases the bandwidth up to four times higher than
conventional pipelining.

V-Bus [11, 12] is a new bus architecture that we have de-
signed particularly to support efficient and low-cost broad-
cast communication in a parallel computer with a switched
network (e.g., mesh, torus and hypercube) interconnect-
ing its processing elements. Although parallel computers
with switched networks are scalable as compared to those
with shared networks (e.g, buses), they are less efficient
for broadcasting operations. To support fast broadcasting,
some of the computers have extra physical buses in addi-
tion to switched networks. But they are more expensive
and suffer from low utilization of network bandwidth over-
all. In contrast, our V-Bus based PC-cluster is built on a
mesh network that is specially designed to support efficient
broadcast communications without extra physical buses. It
dynamically constructs virtual bus for broadcasting on top
of our mesh network when a broadcasting request is issued;
that is, the network virtually establishes a bus only when
a bus is required. If an urgent message occurs, it can in-
tervene on-going point-to-point communication for faster
broadcasting. The source and destination are connected di-
rectly through the virtual bus connection without interven-
ing buffers and other on-going point-to-point messages are
frozen in buffers.

As aresult, a V-Bus network card integrated with SKWP
supports faster routing in broadcasting and achieves more
efficient bandwidth utilization. We showed through our re-
cent studies [11, 12, 13] that a V-Bus network card provides
about four times lower latency than the Fast Ethernet card.

2.2 Implementation of MPI-2 on the PC Cluster

In addition to a V-Bus network card, we also imple-
mented Message Passing Interface (MPI-2) optimized for
a V-Bus network card to make parallel programming sim-
ple on our PC-cluster. Our MPI-2 library reduces the com-
munication overheads by sharing a message queue between
device driver for a V-Bus network card and a MPI-2 dae-
mon process, and by transferring data directly from a user
buffer to a device drive buffer. Also, we optimize the col-
lective communication of a MPI-2 library by making use of
the collective facilities of a V-Bus network card.

The MPI-2 standard includes all the original func-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

tions specified in MPI-1. In addition, it proposes new
one-sided communication primitives, MPI_PUT/MPI_GET.
With these new primitives, the MPI user is able to write
shared memory code as well as conventional message pass-
ing code. The reason is that one-sided communication en-
ables an MPI process to access, without the assistance of
the remote process, the logical global memory space on
top of physically distributed memories. This may signif-
icantly simplify the complexity of programming on our
cluster. It may also help the compiler to simplify code
generation for certain classes of computations, such as ir-
regular computations and pointer chasing. This is be-
cause MPI_PUT/MPI_GET take place under the control of
only a single processor, whereas two processors are needed
for MPI_.SEND/MPI_RECEIVE. In the implementation of
MPI_PUT/MPI_GET, we optimized them specifically for a
V-Bus network card.

According to the MPI-2 standard, one-sided communi-
cations are divided into two types: one for transferring con-
tiguous memory regions, contiguous MPI_PUT/MPI_GET,
and the other for transferring constant strided mem-
ory regions, stride MPI_PUT/MPI.GET. Contiguous
MPI_PUT/MPI_GET use DMA so that data from the user
buffer can be copied into the device driver buffer without
interrupting the processor. But stride MPI_PUT/MPI_GET
use programmed 1/O where data in the user buffer is copied
into the device driver buffer one-element by one-element.
So, stride MPI_PUT/MPI_GET are generally less efficient
than contiguous MPI_PUT/MPI_GET because they increase
communication setup time significantly.

3 Overview of Polaris

Polaris is divided largely into two parts, the front-
end(FE)[8] and back-end(BE), as shown in Figure 1. In the
FE, parallelismdetection is applied to a sequential program
to identify parallel loops. The techniques implemented in
Polaris to detect parallelism include: dependence analysis,
inlining, induction variable substitution, reduction recogni-
tion and privatization[8]. The loops that are identified as
parallel by these techniques are marked with parallel direc-
tive in the loops. Polaris will work only upon loops marked
with parallel directive only. The original structure of the
Polaris compiler is detailed in our earlier papers [2, 3].

The linear memory access descriptor (LMAD)[2, 3, 4]
describes memory access pattern of the symbols of a pro-
gram such as variables, arrays, functions and subroutines.
The LMAD is used to detect parallelism in the FE and later
to generate communication in the BE, where the program
with a set of LMAD:s is transformed to a parallel program
with MPI communication primitives. More details about
the LMAD will be discussed in Section 4.

The target code generated by the BE is a shared mem-

arallelism MPI-2 D
t

SP p | Parsin 9

SP : Sequential Program(Fortran77)
PP : Parallel Program(Fortran77 with MPI-2)
IR :Internal Representation of SP

LMAD : Set of Linear Memory Access Descriptor

FE : Front-End
BE :Back End

Figure 1. A system architecture for an parallel
code generation

ory program with one-sided communication primitives,
MPI_PUT/MPI_GET, that are used to asynchronously trans-
fer data between processing elements. It contains all the in-
formation on parallelism and communication generated by
the transformation techniques implemented in Polaris. It is
a machine independent intermediate representation with the
following features:

e explicit synchronization through barriers, fences and
locks,

o all data declared are intrinsically private, and

e explicit communication via MPI_PUT/MPI-GET
primitives to keep data coherency between processors.

The target code is of a single program multiple data (SPMD)
form using the master/dave model of execution, where one
of the parallel processes (the master) executes all sequen-
tial sections and the other processes (the slaves) participate
only in the computations of parallel sections. Barriers are
used to explicitly control the flow of execution of masters
and slaves. Slaves wait at barriers while the master is in
a sequential section. When the master hits a barrier pre-
ceding a parallel section, the slaves are released to join the
computation of the section. The master and slaves wait at a
barrier after they complete the parallel section. Fences guar-
antee that all outstanding writes to remote memory have
been completed. They are essential operations to maintain
data consistency between distributed memories. Locks are
useful for establishing critical sections where global opera-
tions using shared variables, such as reduction operations,
are performed.

In the target program, the master initially holds all pro-
gram data objects when the program begins. At the entrance
of a parallel region, the master identifies the objects that
each slave may access within the region and copies them

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

to the memory of each slave. We call this operation, data
scattering. While executing the parallel region, slaves may
modify some data objects duplicated to them, which makes
the original master copies stale. Since all data in the pro-
gram are intrinsically private, the master explicitly man-
ages data consistency by collecting any modified data from
slaves at the end of the parallel region and updating the
copies in its memory with these up-to-date data. We call
this operation, data collecting. We will explain these oper-
ations in Section 5.

4 LMADsand Summary Sets

Many compiler techniques depend heavily on the accu-
racy of array access analysis[4], which identifies the array
elements accessed within the certain section of a code by a
particular reference. For instance, to detect a parallel loop,
the compiler first needs to identify memory access patterns
of all variables used in the loop. Also, when the compiler
generates communications, it needs the precise information
about remote array accesses occurring in each local proces-
sor to optimize the overall communication cost. Compiler
modules implementing such techniques must represent the
array accesses in some standard representation. The LMAD
is the array access representation that we used for this pur-
pose. It was used to detect dependences on arrays in the
Access Region Test [2], a dependence testing technique im-
plemented in the Polaris FE. It was also used to generate
MPI_PUT/MPI_GET communications in the Polaris BE, as
will be discussed later in Section 4

41 TheLMAD

The LMAD describes access movement through mem-
ory in terms of a series of dimensions. the dimension of an
access is characterized as movement through memory with
a consistent stride. For example, the stride is 2 for the ac-
cesses to memory locations shown in the Figure 2.

DO i=1,11,2
. A() ...

ENDDO

<===. Aaccess movement

10 [11| quemm

data element in memory

Figure 2. Example of Access movement

By a consistent stride, we mean that the expression rep-
resenting the stride does not change. For instance, the fol-
lowing memory access in Figure 3 shows a stride which,
although changing value, is consistent because it is repre-
sented by the expression 2I, where I represents the ordi-
nal of the access in the sequence. An access dimension is

characterized by three expressions. The data element access
movement starts from base offset. The stride is the distance
in the number of array elements between accesses gener-
ated by consecutive values of index. The span is the total
element length that the access traverses when the index iter-
ates its entire ranges. The span is defined as the difference
between the offset of the last element in the access and the
offset the first element in the access. The span is useful for
doing certain operations and simplifications on the LMAD,
however it is only accurate when the subscript expressions
for the array access are monotonic [4].

DO i=1,4
. A(i*2-1) ...
ENDDO

LN N T

1

A 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3. Example of Access movement with
a variant stride

A nested loop enclosing an array reference causes as
many access dimensions in the array reference as there are
enclosing loops whose loop indices participate in the array
subscripting expressions. The LMAD for the array access
in Figure 4 is written as with a series of d comma-separated
strides as superscripts to the variable name and a series of
comma-separated spans as subscripts to the variable name,
with a base offset written to the right of the descriptor, sep-
arated from the rest of the descriptor by a plus-sign. The
dimension index is only included in the written form of the
LMAD if it is needed for clarity. In that case, it is written
as a subscript to the appropriate stride.

REAL A(14,%*)

a 3,14,26+0 DO I=1,2
9,14,26 Do J=1,2
DO K=1,10,3
A

A‘A

NN N N N NN N NN
HN 5N NN EEEN ES BN BN BN BN EE BS EEEE BN BN BN B
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Figure 4. A memory access diagram for the
array A in a nested loop and LMAD which rep-
resents it

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

4.2 Summary Sets

As can be seen from Figure 4, one common base offset
exists for all dimensions of the LMAD. The LMAD gives
us a perfectly accurate means for representing the memory
access of a section of code, in the sense that precisely the
memory locations referenced in that code section may be
reproduced from the descriptor(s) alone. The LMAD is di-
vided into three types from the standpoint of memory access
operations:

1. ReadOnly : Regions are accessed by only read opera-
tions.

2. WriteFirst : Regions are accessed by a write operation
first and then accessed by read or write operations.

3. ReadWrite : Regions are accessed by a read operation
first and then accessed by read or write operations.

A summary set [2] is a symbolic description of a set of
memory locations that are accessed in a certain program
section (i.e., an individual statement, a loop or a subrou-
tine). When memory locations are accessed in a program
section, we group them according to their access types, clas-
sified above, and add each group to the appropriate sum-
mary set for the section When a summary set is associ-
ated with a statement, all variables accessed in the statement
have their sets of LMADs which are stored in the summary
set for the statement. To illustrate this, consider the state-
ment (1) of Figure 5 where the memory location of the array
A is accessed by a write operation. So the summary set for
the statement (1) has a WriteFirst LMAD.

Summary Sets of Loop I(Serial loop)

Summary Sets of Loop J(Parallel loop)

WriteFirst : A -100+200#3+10000k

1,100,10000
A

WriteFirst : +
99,9900,990000

Readonly : B

1
-101004100%7+10000%K
99

Readonly : 1,200,1000 -

WriteFirst : -100+100%3

‘ ‘‘‘‘ v 99,19800,990000 .
-‘ 11111111
R
DO J=1 , 100
DO K=1, 100%+s.,,,
,,,,,, DO I=1 , 100 e .
(1)... A(I,J,K)= ... Summary Sets of Loop K(Sequential loop)
(2)... $B(L,2%3,K+1) ... 1.10000

99,990000
1,10000

+9900+200%7
99,990000

Readonly :

Summary Sets of Statement 1

[ertQFixs[+ A -100%1+4200%3+10000%k } [Readonly : B -10100%I+100#J+10000+K }

Figure 5. Example of the summary set of mul-
tiply nested loop

Summary Sets of Statement 2

A summary set associated with a loop is a union of all
summary sets for the statements nested inside the loop. For
instance, the summary set for loop I of Figure 5 is obtained

by first expanding [2] the summary sets for statements (1)
and (2) with regard to the loop index I, and then by inte-
grating them in a single set. To integrate summary sets, one
LMAD is selected from the summary set for statement (1)
or (2), and then the LMAD is added to the summary set
for loop I. The procedure for generating a summary set
for program statements is fully explained in our previous
literature[2].

5 TheMPI-2 Postpassfor Polaris

The MPI-2 postpass is a Polaris backend (see Figure 1)
that we have recently added to retarget Polaris at our V-Bus
based PC-cluster. Figure 6 shows the overall structure of
the MPI-2 postpass of Polaris. This section explains each
compiler module of the postpass.

IR(Internal Representation of Fortran77)

A set LMADs
_ Array-Value
MPI Environment Ly Propagation Graph —»{ Work Partitioning
Generation Generation
Communication & Data Scattering &
Synchronization aaml SPMDization 1 Data Collecting
optimization

Parallel Fortran77 Code

Figure 6. Compiler Modules of the MPI-2 Post-
Pass

51 MPI Environment Generation

To run a MPI program, the program should interact with
MPI processes which provide a parallel programming en-
vironment on top of the target machine. In the MPI-2 post-
pass, thus, we need to create a new MPI environment for the
program. For this, all necessary symbols for functions and
variables are first initialized and registered into a symbol
table of the program.

For inter-processor communication, we create a memory
window(using a MPI_WIN DOW call) which is a portion of
the private memory of a local process that can be accessed
by remote processes without intervention of the local pro-
cess. So, the MPI-2 postpass must scan all the loops anno-
tated with parallel directives to find scalar or array variables
that need to be accessed by remote processes.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

5.2 AVPG Generation

One problem with our data scattering and collecting
scheme, mentioned in Section 3, is that it may create ex-
cessive communications to maintain data consistency be-
tween the master and the slaves. To alleviate this problem,
we construct the array-value-propagation graph (AVPG),
which captures the access patterns of arrays referenced in a
sequence of consecutive loops. The AVPG is in fact a col-
lection of directed, connected subgraphs, each of which rep-
resents the access patterns of an individual array, as shown
in Figure 7. In the figure, the AVPG contains three sub-
graphs, respectively, for arrays A,B and C.

Array A(%) Array B(*) Array C(*)

loop i+0 ‘
loop i+1 w

loop i+2 O Q
o O . O

Figure 7. Example of the AVPG

Node Attribues

O Valid
@ i
@ Propagate

Each node in a subgraph corresponds to the outermost
loop in a loop nest. The nodes are connected according to
the program control flow. We assign an attribute to each
node according the types of array accesses in the loop. The
attributes of a node are divided into three types.

e Valid : An array is used in the loop.

e Propagate : An array is not used in the loop. But some-
where in a subsequent loop in the control flow, the ar-
ray will be used.

e Invalid : An array is not used in the loop and the array
will not be used any more in a subsequent loop in the
control flow.

In our data scattering and collecting scheme,
MPI_PUT/MPI_.GET communication and fence opera-
tions occur at every boundary of parallel regions, which
corresponds to each edge between neighboring nodes in
the AVPG. However, we have found that some of these
communications can be eliminated because they are redun-
dant. The boundary where such redundant communications
occur is denoted by the edge from a valid node followed by
an invalid node, like the one between the loop;¢ node and
the loop; 1 for array B in Figure 7. Another case where we
can reduce communication overhead is communications
occuring at an edge between a valid node and its subse-
quent propagating nodes. In this case, communications are
delayed until the next valid node, which reduces the overall

communication overhead by eliminating all communication
and fence operations among propagating nodes in-between.
The example of such a case can been seen in the subgraph
for array A in Figure 7. In the example, communications
are required only at the edge preceding the loop; 3

5.3 Work Partitioning

Internally, Polaris annotates loops with parallel di-
rectives. Work partitioning is a procedure that transforms
the original program annotated with parallel directives
into a statically scheduled SPMD form by assigning compu-
tations in each program section to processors according to
the master/slave paradigm discussed earlier. In the current
implementation, the iteration spaces of parallel loops are as-
signed using the conventional strategies: cyclic assignment
for triangular loops, and block assignment for square loops.
In practice, these static loop scheduling strategies lead to
relatively good load balancing at low or modest costs [3].

5.4 Data Scattering and Collecting

The general description of the data scattering and col-
lecting scheme is as follows. First, the summary sets for
each node in the AVPG are computed, as described above.
Then, depending on the type ! of a set of LMADSs in the
summary set, data-scattering and data-collecting operations
are applied to a node in the AVPG as follows;

e The ReadOnly LMAD: data-scattering
o The WriteFirst LMAD: data-collecting

e The ReadWrite LMAD: data-scattering and data-
collecting

Since the access regions summarized by the ReadOnly
LMAD are not written but only read during a parallel loop
execution, they are simply copied to slaves at the beginning
of the parallel loop and dropped at the end of the paral-
lel loop without being copied back the master. Therefore,
only data-scattering is necessary for the ReadOnly LMAD.
In the case of the WriteFirst[9] LMAD, all access regions
are first written before any following reads, which means
that no values stored in the access regions summarized by
WriteFirst LMAD are used in the parallel loop. So, data-
scattering is not necessary for the regions. Instead, data-
collecting must be performed to copy all values newly gen-
erated for the regions to the master. In the case of the Read-
Write LMAD, the access regions are both read and written.
So, both data-scattering and data-collecting are required to
maintain data consistency.

IRecall that there are three different types of LMAD sets in a summary
set; that is, ReadOnly, ReadWrite, WriteFirst.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

To explain the data-scattering algorithm, here, we define
a couple of fundamental notations.

Definition 1 Let I; be the index of a j-th nested loop, and
d; and a; respectively be the span and stride[4] of the
dimension of a j-th nested loop. Then, we define the ar-
ray accessin a dimension(AAD) of the LMAD as follows:
AAD(I;) = (65, o).

Definition 2 Assume that a given d-dimension LMAD A is

0102029 and all the stride and span pairs are ar-
ranged in the order of loop nest. Suppose that I, is the
parallel loop index of which loop will be parallelized, and
that ., and §,, are the stride and span of the dimension of a

parallel loop index respectively. Let A’292:0d-1.0 gng

QA2,3,...,d—1,Qp

A% be two sub-LMADs splitted from the original LMAD
A wherethe former isfor memory offset calculation and the
latter isfor mapping data accessinto communication primi-
tives. We call these two sub-LMADsthe splitted L M ADs of
A which arerespectively denoted by A, ¢ £se: and Apapping -

Aoy rset can be obtained by eliminating the lowest di-
mension of A and A,;,qpping 1 Obtained by extracting only
the lowest dimension from A. A, 5. is used to calculate
a set of data offsets from a base address in a sequence of
communication primitive generation and A, qpping 1S used
to map data access into communication primitives provided
by the MPI-2 library.

Memory access patterns described by A, qpping appear
repeatedly with different offsets from a base address. The
set of the offsets that are calculated from A, fses is

{1 X a2 + 2 X a3 + ... + Tg—1 X Qg1 + Tp X qp
| 0 < z; < 6;/ay, where z; is non-negative integer}.

REAL A(14,%)

. A(K,J426%(I-1))...

ENDDO

ENDDO

ENDDO

(a) m(I::Ip}/—\ TT1

TTTTT T T T T T T T I T I TTTTT [TTTTTTTTTTTTTT T T T~
o 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

(b) aAD(3) m\\\

[TTTTTTTTTTT [TTITT I T T T I T T TTTTITTIIT I T ge----
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

(c) AAD(K) %HHHHHHHHHHHHHHHHHH\HH* ——————
o 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

LN
i NN SN NEEN S5 SN S5 5N
[3 6 9 12 15 18 21 24

VWV VARV
(@ HE EE EN EEEE EN BN BB B
27 30 33 36 39 42 45 48

Figure 8. Association between a loop dimen-
sion and each dimension of the LMAD

For instance, let’s see the LMAD in Figure 8. The
(a), (b) and (c) show the diagrams of memory access pat-

tern of each dimension respectively and (d) is the diagram
of all dimensions together. The portion of black-colored
memory regions of (d) need to be copied to the master
or slaves, according to work partitioning schemes. Mem-
ory access pattern of (c) appears repeatedly in (d) with
different offsets from O(base address). In this example,
memory offsets are 0%14+0%24, 1*14+0%24, 0*14+1%24
and 1*14+1*%25. With memory offsets calculated with
Aotisets Amapping, AAD(K) in Figure8 is mapped to
communication primitives. In our compiler, Ay, apping
is mapped to MPI_PUT/MPI_GET as follows; If a; of
A napping 18 constant, A, qpping can be mapped into a sin-
gle MPI_PUT/MPI_GETd. But if «; is not a constant, it
must be mapped into MPI_PUT/MPI_GET one memory el-
ement by one memory element. When «; is a constant,
A napping 1s divided into two cases:

1. If ay is 1, contiguous MPI_PUT/MPI_GET will be
used.

2. If oy is greater than 1, stridle MPI_PUT/MPI_GET will
be used.

Based on the splitted-LMAD described above, data-
scattering and data-collecting are implemented. The de-
tailed procedure of data-scattering is described in [21]. The
data-collecting operation is virtual identical to the data-
scattering operation except the direction of data transfer is
the opposite; that is, slaves put their up-to-date copies to the
master.

55 SPMDization

To generate a SPMD code, barriers and locks are inserted
to the source code to explicitly control and synchronize the
execution flow of the master and slaves. For this, we must
first identify synchronization points in the code. Synchro-
nization points are any node in a control flow graph that
multiple out-going edges such as IF, FOR and GOTO state-
ments. Then before every synchronization point, the MPI-
2 primitive, MPI_BARRIER, is inserted. Another MPI-2
primitive, MPI_FENCE, is also inserted at the same place to
guarantee that all out-standing writes to variables are com-
plete to maintain data consistency among distributed mem-
ories.

5.6 Communication Optimization

Earlier in this section, we showed how we reduced over-
all communication costs in the data scattering and collection
scheme by eliminating redundant copy operations with the
AVPG. The communication costs were further optimized by
reducing the number of data packets that are transfered to

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

carry data objects between the master and slaves. This op-
timization was based on our observation that in a typical
PC-cluster system whose network latency is much higher
than conventional high-performance parallel computers, it
is often more efficient to aggregate small exact regions into
a large approximate regions for communication in order to
reduce the total communication time. Although approxi-
mate regions may contain redundant data objects, the over-
all communication costs to transfer them are usually lower
than those to transfer a large number of small fragments
of exact access regions. The reason is that communication
setup costs to transfer a data packet in such a high-latency
PC-cluster network are relatively very high.

As mentioned earlier, the MPI-2 library supports
two types of MPI_PUT/MPI_.GET operations: stride
MPI_PUT/MPI_GET and contiguous MPI_PUT/MPI_GET.
In this work, we have found that it is better to trans-
fer a approximate regions with a single contiguous
MPI_PUT/MPI_GET than transfer small exact regions with
multiples stride MPI_PUT/MPI_GETs.

Considering the fact explained above, our compiler opti-
mized communication at three different granularities: fine,
middle and coarse. At the fine grain, exact regions are
always transfered. In our compiler, exact regions are de-
scribed by Ay, apping. Therefore, to transfer exact regions,
we use

1. contiguous MPI_PUT/MPI.GET if the stride of
A napping 1s equal to 1, and;

2. stride MPI_PUT/MPI_GET are used if o of A, 4pping
is greater than 1.

We can see in Figure 9 (b) that the stride of A, qpping 1S
3. Thus, black-colored elements in dashed boxes are trans-
fered to the master or slaves by stride MPI_PUT/MPI_GET.

Processor N-1 Processor N

/\/\

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

(a)

Memory Gap

[EEEE]
9 12: 15

offset 1 offset 2 offset 1 offset 2

Figure 9. Example of communication opti-
mization in V-Bus based PC-cluster

We introduce the notion of middle granularity in our
compiler to avoid using stride MPI_ PUT/MPI_GET in our

communication generation. At the middle grain, exact re-
gions are converted into approximate regions by setting the
stride of Apapping 1. Since the stride of Aj,apping 18 1,
the approximate regions will be transfered by contiguous
MPI_PUT/MPI_GET. In Figure 9 (c), black-colored mem-
ory regions, approximate regions, in dashed boxes are trans-
fered to the master and slaves. The number of communi-
cations at both the fine and middle grains is calculated as
follows:
(62/0(2) X (63/&3) X ... X (54_1/ad_1) X (6p/0ép) + 1.

We introduce the notion of coarse granularity to reduce
the total number of communications. At the coarse grain,
exactregions are codnvé_ertecgj into approximate regi%ns by set-
ting A apping 10 A2 %=1 and A » oo to A%P . So the
nuﬁlber opfpcoinmurfitzggisﬁ’saiclsirleduced t{)fép /oy ;—Ypl. Since
approximate regions are enlarged, the amount of redundant
data will increase. Figure 9 (d) shows one big approximate
regions in dashed boxes are transfered to each remote pro-
CEessor.

Communication optimization explained above always
can be applied to data-scattering. But before applying to
data-collecting, we need to check whether there exist over-
lapped data objects in approximate regions that cause pro-
gram to execute abnormally by a race condition. To solve
this problem, we implemented a routine to check the up-
per and lower bound of approximate regions. If overlapped
data objects exist, we must generate data-collecting at the
fine grain to prevent the master and slaves from overwrit-
ing remote data objects. For now, it is up to the user that
selects the optimal granularity to minimize the communi-
cation time. The profiling tools [20] recently provided in
Polaris would be useful to guide the user when such deci-
sion should be made.

6 Experiment

Our implementation of the MPI-2 postpass and the V-
bus network system has not been completed. However, we
needed to evaluate our system for future enhancement of
our hardware and software designs for the PC-cluster. Thus,
we experimented our system with a configuration of 4-node
PCs, where the PCs are linked with wave-pipelined worm-
hole network cards implemented on FPGA[13, 11]. Each
PC is equipped with a 300MHz CPU, a 64MB memory
and runs Linux. The benchmark codes used in this experi-
ment are MM for a matrix multiplication, a SWIM from the
SPEC97 benchmark suite and CFFTZINIT, a major subrou-
tine of TFFT for the NASA codes. These codes were trans-
lated to MPI-2 code by Polaris and tested on our PC-cluster.

We measured and analyzed the total execution and com-
munication time of the benchmarks at several different lev-
els of granularity. Table 1 shows the speedups(Execution
timesequentml programlExeCUtion tiIneparallel program) of

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

the code of a matrix multiplication. The sizes of a matrix
are 256 x 256, 512 x 512 and 1024 x 1024. The speedup
of parallel execution time ranges from 1.6 for 2 processors
to 3.0 for 4 processors for a matrix of 1024 x 1024.

Table 1. Total execution time of the MM code

Speedups Array Size
256%256 | 512*512 | 1024*1024
1 0.96 0.96 0.96
of Nodes | 2 1.086 1.53 1.60
4 1.75 2.74 3.033

Table 2 shows the communication time of the bench-
marks at the three different levels of granularity classified
in Section 5 (that is, coarse, middle and fine). In MM
at the Coarse grain, we reduced communication time by
roughly 30%. However, at the middle grain, communica-
tion cost increases about 17%. This is because the over-
head caused by redundant communication outweighed the
communication time saved by using efficient contiguous
MPI_PUT/MPI_GET instead of stride MPI_PUT/MPI_GET.
Likewise, the table shows that, in SWIM, we obtained poor
results at the Middle grain. However, we achieved speedup
in the communication time by a factor of 1.3 at the coarse
grain. In CFFZINIT, we achieved relatively good perfor-
mance in communication time at both the Middle and coarse
grains. An the Middle grain, there exist several LMADs
with the stride of 2 in the subroutine. Although 50% of
communication was used to transfer redundant data, we
were still able to reduce the overall communication time by
28%.

Table 2. Communication time for matrix mul-
tiplication, swim and CFFZINIT of TFFT

Total Communication Granularity
Time (sec) fine middle coarse
MM(1024*1024) 0.72 0.89 0.01128
Swim(ITMAX=1) 0.20590 * 0.072166
CFFZINIT(M=11) 0.3584 | 0.0768 | 0.0068

The experimental results tell us the fact that commu-
nication optimization techniques are closely related to the
communication patterns of application programs, as was al-
ready observed in our other experiments on parallel comput-
ers [3]. In other words, we learned from this work that any
single technique does not work for all types of communica-
tion patterns in a program, and therefore, that an appropriate
optimization technique must be selected only after precise
analysis of data access pattern in the program.

7 Conclusion

In this paper, we presented our on-going work on the
hardware and software development for a PC-cluster sys-
tem based on V-Bus networking technology. We first dis-
cussed the architecture of the PC-cluster. Two major com-
ponents of the architecture are V-Bus network cards inte-
grated with the SKWP technique and the MPI-2 library im-
plemented on the hardware. By supporting a shared mem-
ory programming paradigm through MPI_PUT/MPI_GET,
our cluster system is easier to program than other cluster
systems that support only message passing programming
environments. The MPI-2 communication primitives were
highly optimized for our V-Bus based PC-cluster. They
perform user-level communication rather than system-level
communication which incurs additional overhead for con-
text switching between the user mode and the kernel mode
to handle the communication request.

To make the programming even further easy, we are cur-
rently developing a parallelizing compiler specifically tar-
geting our cluster. The compiler extended from Polaris by
implementing the MPI-2 postpass automatically translates
conventional FORTRAN 77 code to MPI-2 code ready to
run on the cluster. To reduce the overall communication
costs in our parallel code, the postpass has been imple-
mented with the data scattering and compacting algorithm
based on the AVPG.

The experimental work showed how by controlling a
granularity level of communication, we were able to re-
duce the number of remote memory accesses, and conse-
quently to minimize the overall communication costs. In
particular, we found that our efficient implementation of
MPI_PUT/MPI_GET based on DMA helped to achieve rea-
sonable performance on the relatively slow V-Bus network
line. However, the experiment results are still premature
and need much more improvement. We currently plan to
extend our experiment with a more variety of benchmarks
after enhancing our MPI-2 postpass with additional opti-
mization techniques based on the lessons from the experi-
mental results reported in this paper.

References

[1] D.A.Padua et al , Polaris : A new-generation paral-
lelizing compiler for MPPs”, Technical Report CSRD-
1306, Center for Supercomputing Research and Devel-
opment, Univ of Illinois at Urbana-Champaign, June,
1993

[2] J.Hoeflinger , “Interprocedural Parallelization Using
Memory Classification Analysis”, PhD thesis, Univ. of
linois at Urbana-Champaign, Dept. of Computer Sci-
ence, August, 1998.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

[3] Y.Pack , ”Automatic Parallelization for Distirbuted
Memory Machines Based on Access Regions Anal-
ysis”, PhD thesis, Univ. of Illinois at Urbana-
Champaign, Dept. of Computer Science, August, 1997.

Y. Paek, J.Hoeflinger, and D.Padua , “Simplication
of Array Access Patterns for Compiler Optimizations”,
Proceedings of he SGPLAN Conference on Program-
ming Language Design and Implementation, June 1998

Keith A. Faigin, Jay P. Hoeflinger, David A. Padua,
Paul M. Petersen, and Stephen A. Weatherford , "The
Polaris Internal Representation”, International Jour-
nal of Parallel Programming, 22(5):553-586, October
1994.

Message Passing Interface Forum. MPI , A
message-passing interface standard”, http:www.mpi-
forum.org,January 12,1996

[71 Message Passing Interface Forum. MPI-2 , ”Extensions
to the Message-Passing Interface”, ,January 12,1996

ACM S GPLAN 93 Conference on Programming Lan-
guage Design and Implementation, Albuquerque, New
Mexico, June 1993

[15] R. Arpaci, D.Culler, A. Krishnamurthy, S. Steinberg,
and K. Yelick , ”Empirical Evaluation of the CRAY-
T3D : A Compiler Perspective”, International Sympo-
sium on Computer Architecture, pages 320-331, June
1995.

[16] M. Kandemir, P. Banerjee, A.Choudhary, J. Ramanu-
jam, and N. Shenoy , ”A Comparison of Architectural
Support for Messaging in the TMC CM-5 and the Cray
T3D”, International Symposium on Computer Archi-
tecture, June 1995.

[17] Myrinet Performance Measurements s
http://www.myri.com/myrinet/performance/index.html

[18] T. von Eicken, A. Basu, V Buch, and W. Vogels, ”U-
Net:A User-Level Network Interface for Parallel and
Distributed Computing”, In the Proceeding Of the
15th ACM Symposium on Operating Systems Principle,

[8] WBIume, R. Doallo, R Eigenmann, J.Grout,
J.Hoeflinger, T.Lawrence, J. Lee,D.Padua, Dec., 1995
Y.Paek,W.Pottenger,L.Rauchwerger, and P.tu , “Par-

allel Programming with Polaris”,
19(12):78-82, December 1996.

IEEE Computer,

Pegh Tu and David Padua , ”Automatic Array Priva-
tization”, Sxth Workshop on Languages and Compil-
ersfor Parallel Computing. Protland, Lecture Notes in
Computer Science, volume 768, pages 500-521, August
12-14, 1993

[10] Gagan Agrawal , “Interprocedural Communication
Optimizations for Message Passing Architectures”, The
Seventh Symposium on Frontiers of Massively Parallel
Computation 1999 , Page(s): 174 -181

[11] J.H.Choi, B.W.Kim, K.H.Park and K.I. Park , A
bandwidth-efficient implementation of mesh with mul-
tiple broadcasting”, In Proceedings of International
Conference on Parallel Processing, 1999

[12] B.W.Kim, J.H Choi, K.H.Park and K.I. Park , A
Wormhole Router with Embeded Broadcasting Vritual
Bus for Mesh Computers”, Parallel Processing Letter,
2000

[13] Bong Wan Kim, Hyun Jin Choi, Kwang Il Park, Jong
Hyuk Choi and Kyu Ho Park , ”A Skew-Tolerant Wave-
Pipelined Router on FPGA”, Hot Interconnects 7, Au-
gust 18-20, 1999

[14] Saman P.Amarasinghe and Monica S.Lam , “Com-
minication Optimization and Code Generation for Dis-
tributed Memory Machines”, In the Proceedings of The

10

[19] A.G Navarro, R. Asenjo, E.LL Zapata, D. Padua, ”Ac-
cess descriptor based locality analysis for Distributed
Shared Memory multprocessors”, International Con-
ference on Parallel Processing. pages 86-94 1999

[20] Gheoghe Calin Cascaval, “Compile-time Based Per-
formance Prediction”, Ph.D Thesis Univ. of Illinois at
Urbana-Chanpaign, August 2000

[21] Sang Seok Lim, ”Communication Generation for a V-
Bus based PC-Cluster using LMADs”, KAIST CORE
Technical Report 2000

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER’01)
0-7695-1116-3/02 $17.00 © 2002 € IEEE

