A Design and Implementation of Group Decision Support System

using Object-Oriented Modeling Technique *

Soung Hie Kim, Sung Sik Cho
Dept. of Management Engineering, Graduate School of Management, KAIST, Seoul, Korea
Sun Uk Kim
Dept. of Industrial Engineering, DanKuk University, CheonAn, Korea
Hung Kook Park
Dept. of Telecommunication Systems Management, SangMyung University, Seoul, Korea

Abstract

Object-Oriented Modeling Technique (OMT)
[1] promotes better understanding of requirements,
cleaner designs, and more maintainable systems. A
development of Group Decision Support System
(GDSS) needs this advantage of OMT. GDSS
designed through OMT can be more maintainable
and evolve easily, which satisfies both developers
and users. OMT proposes 3 modelings, object
modeling, dynamic modeling, and functional
modeling. This paper illustrates a design of GDSS
using these 3 modelings. By exploiting the object-
oriented paradigm, this design results in a highly
system-independent design. And this paper shows
some implementation issues including a tip of C++
code.

1.Introduction

Group Decision Support System (GDSS) is
composed of a lot of technologies such as,
networking, DBMS basically, and decision
supporting tools such as idea generator, idea
organizer[2,9]. These technologies evolve
respectively without considering other ones and
thus making the system more complex and less
maintainable. Therefore we need a new
methodology to deal with this problem. By using
OMT we can consider all components of GDSS as

object which are more managable and flexible.

Since the mid-1980’s there has been growing
interest among system researchers in an alternative
approach to systems development called object-
oriented analysis and design (OOAD)[10]. The
advantage of this approach can be summarized as:
better user/analyst communication and thus easier
modeling; reusability of code; improved flexibility;
increased productivity and better reliability.

OMT is one of technmiques that realized the
concept of OOAD. OMT presents an object-
oriented approach to software development based
on modeling objects from the real world and then
using the model to build a language-independent
design organized around those objects. Object-
oriented models are useful for understanding
problems and designing programs and databases. A
design made with OMT has a lot of flexibility and
maintainability.

In this paper, we propose a design of GDSS
using OMT and its implementation. Developers of
GDSS can use this design or objects for developing
their own systems or for combining their design or
objects to ours.

The rest of the paper is organized as follows.
Section 2 presents an overview of OMT with its 3
models. Section 3 outlines the analysis and design
of GDSS. On section 4 we discuss a few
implementation issues. Finally, section 5 concludes
the paper by describing future works.

* This paper was supported by Korea Science and Engineering Foundation(KOSEF# 93-0100-12-01-3).

—200—

2. Object-oriented Modeling Technique (OMT)
Overview

OMT presents a methodology for object-
oriented development and a graphical notation for
representing object-oriented concepts. The
methodology consists of building a model of an
application = domain and then adding
implementation details to it during design of a
system. The methodology has following stages:
Analysis : Starting from a statement of the problem,
the analyst builds a model of the real-world
situation showing its important properties. The
analysis model is a concise, precise abstraction of
what the desired system must do, not how it will be
done.

System Design . During system design, the target
system is organized into subsystems based on both
the analysis structure and the proposed architecture.
Object Design : The object designer builds a design
model based on the analysis model but containing
implementation details. The focus of object design
is the data structure and algorithms needed to
implement each class.
Implementation : The object classes and
relationships developed during object design are
finally translated into a particular programming
language, database, or hardware implementation.
The OMT methodology uses three kinds of
models to describe a system:
Object mode! describes the static structure of the
objects in a system and their relationships. The
object model contains object diagrams. Object
diagram is a graph whose nodes are object classes
and whose arcs are relationships among classes.
Dynamic model describes the aspects of a system
that change over time. The dynamic model is used
to specify and implement the control aspects of a
system. The dynamic model contains state
diagrams. A state diagram is a graph whose nodes
are states and whose arcs are transitions between
states caused by events.
Functional model describes the data value
transformations within a system. The functional
model contains data flow diagram.
The three models are orthogonal parts of the

description of a complete system and are cross-
linked. The object model is fundamental, however,
because it is necessary to describe what is changing
or transforming before describing when or how it
changes.

Object-oriented development inverts the
previous function-oriented methodology, as
exemplified by the methodologies of Yourdon [3]
and DeMarco [4]. In these methodologies, primary
emphasis is placed on specifying and decomposing
system functionality. By contrast, the object-
oriented approach focuses first on identifying
objects from the application domain, then fitting
procedures around them. Object-oriented software
holds up better as requirements evolve, because it is
based on the underlying framework of the
application domain itself, rather than the ad-hoc
functional requirements of a single problem.

3. Anaysis and Design

3.1 Analysis

At first we found out the objects from the real
world. We could find the objects from the problem
statement[1] which described the real meeting. The
problem statement contains what, when and how. In
object modeling step, we focus on only what. The
objects found are Meeting, Leader, Participant,
Agenda, and Activity. Fig. 1 shows the simple
object model.

(] [

Fig. 1. Object model of meeting

(===

Leader makes the agenda, controls the
meeting, and supports the participants. Participants
joins some activities such as brainstorming, voting
or so. There can be various activities, but here we

—201—

included only 4 major activitics. By the paradigm
of object-oriented concept, new activities can be
added easily. At the design step, we add more
system dependent objects and methods or
operations that correspond to when and how on the
basis of this object model.

And next, we built the dynamic model and
functional model. These models complement the
object model because only the object model cannot
describe the whole system. These models became
the bases for design.

3.2 Design

In this step, we revised the object model
derived from the analysis step. We added some
system dependent objects such as database and
removed unnecessary objects. Fig. 2 shows the
object design of overall system.

Meeting Uses Tool

Joine Agenda I
or
Schedule
Talks

Person

Leader

1 | Participant

Select

Voting | { Search | | Categorizer

Fig. 2. Object design of GDSS

A person can be a leader or a simple
participant. A leader creates a meeting and a
participant joins the meeting. Agenda and Schedule
are link attributes. We have Too! object instead of
Activity object in the analysis step. It’s because we
are designing an executable system in this step, we
consider an activity as a tool or a utility that users
use. Tool object will be a menu item of the
implemented system. The objects Person,
Sechedule, Meeting and Agenda will be a database.
These objects contains data rather than operations.
But the objects that belong to Tool object -
Electronic Brainstorming, Voting,
Categorizer - contain operations rather than data.
These objects use network and database objects. In
Fig. 1, we omitted network object and database

object. We will discuss these objects on the next

Search,

section.

Fig. 3 shows the Electronic Brainstorming
object in detail. Electronic Brainstorming object is
composed of two objects Private and Public. These
objects correspond to private screen and public
screen respectively. Through Private object
participants enter their ideas. And Public object
shows the ideas that all participants entered. Each
of these two objects connected to /dea Server object.
Idea Server object manages the idea object. In this
design Private and Public don’t have to know how
to manage the database. They just have to know
where the Idea Server is. Three objects Person,
Idea, Meeting are actually databases. If these
objects are implemented in certain vendor’s
database, only the Jdea Server object must be
changed, not influencing other objects. That is one
of the advantages that object-oriented concepts
have.

Person |1+
name
position® 1 eates
Send Ideas L
dea Server
dea
Poirter to Idea aneges
DataBas &
Private Public Dpenldea DB Keyword
Input ideas Output ideas CiloseldeaDB
; Receiveidea || Receiveidea
Road 0o o | | Displayidea Add idea ts
idea 1ce Meeting
Display idea Tle
Receive Ideas Abstract |-
Creates or Joins

Fig. 3. Object design of Electronic Brainstorming

In this object design the objects Idea Server,
Person, Idea, Meeting are going to be located on
the server and other objects are going to be located
on the client. Thus this design can be implemented
as a Client/Server system.

4. Implementation Issues

In this section we discuss how we
implemented the design. There’s no need to use
only object-oriented programming (OOP)
languages but we used C++[5] because it’s very
easy to implement an object with OOP. And also
one of our objectives was to provide a set of objects

—202—

for code reusability not only for design reusability.
If some developers want to use our design they also
can use our implemented objects.

The objects that are actually databases are
implemented with MS-SQLServer[6]. If someone
wants to implement with other vendor’s DBMS,
he/she must change the database related objects.
But actually most of vendors provide database
related objects, thus all we have to do is to replace
the current object with new one.

Client objects typically handle network related
events. For example, the methods Send idea to
Server in Private object must know how to handle
the network. And there are various network
protocols in real world. But to solve this problem,
we don’t have to implement all kinds of network
protocols whenever we port our system to new
flatform. We can solve this problem by using
objects that was built before by others. There are
many class libraries that help building protocol-
independent network objects[7].

Here’s a tip of code that implemented
Electronic Brainstorming object.

class CBrainstorming

{
public:
CBrainstorming(); // constructor
// attributes
CString ServerName; // name of idea server
LOGINREC *login; // login data

CString m_PrvString; // buffer for private screen

CString m_PubString; // buffer for public screen
/I methods

virtual CString ReadIdea();

virtual void SendIdea();

virtual CString Receiveldea();

virtual void Displayldea(CString *Idea);

5. Conclusion

In this paper we proposed a design of GDSS
through applying OMT. OMT helped us analyze
and design GDSS from the point of object-oriented
concept. By exploiting the object-oriented

paradigm, our design confines database and
network constraints in a few easily upgradable
objects, thus resulting in a highly system-
independent design. And by the object-oriented
paradigm this design and its implementation can be
easily reused. Our design is not perfect but anyone
who wants to develop a GDSS can extend our
design and implementation, that is one of our
objectives.

But our design has a limitation. The problem
statement from which we started analysis are not
complete. There are various kinds of meetings such
as reporting , decision making, generating new
ideas, and planning project[8]. But our problem
statement described only idea generation, thus our
design can not cover various kinds of meetings. So
we need to extend our design to cover various
meetings in future.

References

{1] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,
F., Lorensen, W., Object-Oriented Modeling and
Design, Prentice Hall, 1991.

[2] Morrison, J., Sheng, O., “Communication
technologies and collaboration systems : Common
domains, prolbems and solutions,” Information &
Management 23, 1992. pp.13-31.

[3]1 Yourdon, E., Modern Structured Analysis,
Yourdon Press, 1989.

[4] DeMarco, T., Structured Analysis and System
Specification, Prentice Hall, 1979.

[5] Stroustrup, B., The C++ Programming
Language, 2nd Ed, Addison Wesley, 1992.

[6] Davis, R., Windows Network Programming,
Addison Wesley, 1993.

[7] Nath, A., The Guide to SQLServer, Addison
Wesley, 2nd Edition, 1994.

[8] Park, H., Olfman, and Satzinger, “Attitude
toward and preference for group work,” working
paper in Claremont Graduate School, 1995.

[9] DeSanctis, G., and B. Gallupe. “A Foundation
for the Study of Group Decision Support Systems,”
Management Science, Vol. 33, No. 5 (1987):589-
609.

[10] Graham, 1., Object Oreinted Methods, 2nd
Edition, Addison Wesley, 1993.

—203—

