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Abstract

Many diseases cause other diseases with strength
of influences and time intervals. Prognostic and
therapeutic assessments are the important part of
clinical medicine as well as diagnostic assessments.
In cases where a patient already has manifestations
of multiple disorders (complications), progress
forecasting and therapy decision by physicians
without support tools are very difficult: physicians
often say that “Once complications set in, the
patient may die.”

Treating complications are difficult tasks for
physicians. because they have to consider all of the
complexities, possibilities and interactions between
the diseases. The prediction of multiple disorders
has many bundles that arise from such time-
dependent interrelationships between diseases and
nonlinear progress.

This paper proposes a model based on time-
dependent influences. which appropriately describes
the progress of multiple disorders, and gives some
modifications for applying this model to medical
domains.  time-dependent influence  matrix,
manifestation vector, therapy efficacy matrix, S-
shaped curve approximation, definitions of which
are provided. This research proposes an algorithm
for forecasting the state of each disease on the time
horizon and for evaluation of therapy alternatives
with not toy example, but real patient history of
multiple disorders.

L Introduction

The large amount of existing medical knowledge.
and the rapid growth of that knowledge during the
last quarter of this century. have resulted in a
situation where most physicians find it increasingly
difficult to assimilate all of the information which
would be wuseful in making optimal clinical
judgments. Unfortunately under normal
circumstances. the biomedical scientist is not solely
interested in the mathematical model of a
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physiological system under healthy or orthological
conditions.

While specialization provides a partial solution to
this problem, the rapid evolution of technology and
clinical research makes it difficult for even the
specialist to keep up. This problem extended across
all aspects of medical decision making from
diagnosis to patient management. For at least 23
years now the idea has been advanced that
Computer-assisted  Afedical  Decision  making
(CMD) systems might provide a solution to many of
the problems created by this information explosion.
The motivations for attempts to understand and
assist the process of clinical decision making have
been numerous [1].

Clinicians often encounter challenging cases that
involve patients with several diseases that interact
with one another. For example, nearly 40% of the
patients that undergo EMG (electromyography)
examination have two or more diagnoses [3]. A
multiple disorder, or complication, is a mixture of
symptoms and diseases in one patient. A multiple
disorder is the complicated and difficult problem
that faces clinicians.

To diagnose multiple disorders causal modeling
has improved the physicians’ ability to make
diagnoses by considering both intermediate
pathologic states and disease manifestations [5.6].
Patient Specific Afodels (PSM) can generate
coherent descriptions of disease findings in patients
through causal reasoning [7]. The ability to
diagnose multiple interacting disorders and explain
them in a coherent causal framework has only
partially been achieved in medical expert systems.
However, Artificial /ntelligence in AMedicine (AIM)
systems have not been able to explain the collection
of pathophysiologic states and findings when
several interacting diseases are present. The
problem of correctly diagnosing, treating, and
forecasting multiple disease entities in a single
patient is a difficult problem facing AIM systems.
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I1. Multiple disorders

A multiple disorder, so called complication, is a
mixture of symptoms and diseases in one patient. A
complication is a new illness, or a new development
of an illness caused by another disease, that makes
treatment more difficult. Most physicians use
unstructured  inductive  or  deductive  logic
individually to make diagnosis and prognosis of
multiple disorders. This process requires much
medical knowledge and complex inference, so the
accuracy and reliability of the clinical work mainly
varies with physician’s experiences. But physicians
currently do not have any decision supports to
forecast the progress of complications and to select
the optimal therapy for multiple disorders. There
are some mathematical difficulties when deriving
the model equations from biomedical phenomena. A
further difficulty in describing physiological
systems mathematically is due to the well-known
fact that the vast majority of physiological processes
implies wide-range, intrinsic nonlinearities, that
cannot be approximately determined by linearities.
The ability to diagnose and explain multiple
disorders requires a detailed examination of the
interactions between disease entities in the
knowledge base. With few exceptions, most
probability-based knowledge base assume that
discases are mutually exclusive and all features are
independent for a given disease [17]. Belief
networks improved an this limitation in
probabilistic reasoning but do not provide for a
simple way to generate convincing explanations
[18]. Manifestations of each disease in a multiple
disorder are neither mutually complementary or
exclusive and all features are independent for a
given disease. A disease has many manifestations
and then a manifestation may be induced by two or
more diseases.

The stage of a disease are divided as shown in
Figure 1. Although the divisions between these
stages arc not always apparent, most individuals
follow the general pattern [19].

IIL. Model and algorithm

3.1, Definitions

Medical knowledge for explaining influences
between diseases is represented in a map which is
composed of nodes and arcs, and the former are
diseases or symptoms and the latter are influences
between nodes. A double-lined node is a disease (or
symptorn) which is treatable by treatment.

A disease is different from a symptom in that a
symptom is the sign of the existence of something

bad or changes in the body that indicates an illness.
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Figure 1 Stage of disease

You can say that a disease is determined by
symptoms. Therefore, a symptom in a map can be
untreatable (uncontrollable). Every node has a
numeric value which explains the seriousness which
is determined by laboratory tests.

The map is a directed graph G = (X, M, I, T)
consisting of a finite set X of V nodes (diseases and

AN . .
symptoms), X = {I },.:1, a set M of manifestation
N
values m;, M = {”71} a set I of arcs
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. and a set T of
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therapy efficacy arcs /. = {t,]} . wherei.j €
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Each m; has the lower bound and upper bound,
normal range of the parameter value of discase /.
then the disease is classified into an abnormal
state ,where m, & [’";LJ",-” ].

Each arc i, of the map has two kinds of relative
causalities; the strength s; € [s.. sy] and the
duration d;; € [dy. dy;). where sp and s, are the
lower bound and upper bound of the strength for
making the problem more realistic. The duration
holds the same idea with the strength. An arc i; is
the recursive arc which means the increasing (or
decreasing) percents of the parameter value of node
i when the patient has only disease /.

Each arc t, of the map also has two kinds of
relative treatment characteristics: the therapy
strength (efficacy) ts;, and the therapy duration tdy.
where i = j, so the matrix T is a diagonal matrix
with £, on the diagonal. An arc f, is the recursive
arc which means the increasing (or decreasing)
percentages of the parameter value of node / after
therapy is done.
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As described above. we deal with time lags on not
continuos but discrete space. The d;; is a value in a
finite set Q) of M-many values. () = {du' }’\11 . For
example, if the duration (time lag) involved before
an influence from node / has an effect on node ;. d(i
-> /) = 5 days. then we can assign d;; = 5. After the
first time lag the influence from node i to node j is
assigned as s/ sy/dy by influence strength
translation. Thus. it has a different duration on each
arc i;. An arc from node /i to node ; has two values
that physicians know or can estimate. One is the
strength and the other is the duration. If disease i
affects disease ; directly, we put an arc from node i/
to node j (i.e. i — j). If disease i in abnormal state
causes an increase of the parameter value of disease
J, then the arc has a plus (positive) sign (i.e. if
abnormal i — m; T theni — s J, where s > 0 is the
strength or intensity of the causal relationship). If
disease 7 in abnormal state causes a decrease in the
parameter value of disease j, then the arc has a
minus (negative) sign (i.e. if abnormal i — m; A
then i — s/, where v < 0).

An arc is classified to two kind of influences. One
is the influence arc from disease / to disease j (i),
and the other is the therapy efficacy (¢;;). When the
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Figure 2 Approximation of influences’

change curve from / to j

therapy on specific disease i is performed. the
recursive arc /; will be cut and the therapy efficacy
arc f;; is added into the map as the recursive arc of
disease /.

3.2. Assumptions

As described above, actual clinical manifestations,
influences from a disease to another disease (s), and
responses to certain treatments are understood to be
S-shaped curve. This  makes the biomedical
problem more complicated when applying
mathematical modeling because the estimation of
progress 1s very difficull to calculate. The
approximation in the change of influence intensity

from disease 7 to disease j according to time horizon
is proposed to make the problem easier to deal with.
With only two information (s; and d;) about the
influences, the explanation for the change in
influences can be reasonably forecast by this
approximation work (see Figure 2).
When m; falls into the abnormal range, the effect

m .
! ? effects to others no effect
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Figure 3 Approximation of therapy efficacy’s

change curve

from disease i to disease ; starts. The human body
has compensatory mechanisms against agents, so
the influence intensity in the incipient stage is not
significant.
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Figure 4 A map of the example (Congestive

heart failure)

The approximation about the therapy efficacy
change is shown in Figure 3. The therapy efficacy
hold the same idea with the effects, but it has
influence to m; without delay. The recursive arc is
also approximated like as the efficacy. So the
recursive arcs and therapy efficacy arcs are linear
influence.

When a patient with one (or more) disease (s)
consults with a physician, the physician performs
laboratory tests to determine if the disease (s) is in
the abnormal state (s) or not and to determine the
seriousness about that disease (s). If the parameters
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of some diseases are ascertained to be in abnormal
range by laboratory tests on suspicious diseases, the
diseases float above the therapy surface with the
arcs that represent the influences from diseases in
the abnormal state to other diseases. A disease
under the therapy surface is one in which the
parameter value falls into the normal range in
initial time or after therapy.

IV. Example - A Set of Congestive Heart Failure
and the Others

Congestive heart failure is considered to be the
condition in which an abnormality of cardiac

subnormal cardiac output, and (4) neurohumoral
adjustment which maintains cardiac output. These
compensatory mechanisms also have harmful effect
to the failing heart, for example, neurohumoral
mechanism results in fluid retention and systemic
edema, and because of Frank-Starling law the heart
become more dilated which precipitates fatal
ventricular arrhythmia and aggravates heart failure.
During heart failure, systemic and renal blood flows
are compromised, so acute renal failure (prerenal
azotemia) is usually present. With renal failure
hyperkalemia is induced which is one of the
important  causes  of sudden-death-inducing
ventricular arrhythmia. If systemic edema is tended

Hyperkalemia

Systemic edema

Diseases (or symptoins) Parameters Normal Crucial
Acute respiratory failure PaO, > 95 mmHg < 60 mmHg
Pulmonary edema Severity - H H+
Heart failure Ejection fraction 55~65% <25%
Ventricular arrhythmia Grade 0, LILIOL IV v
Acute renal failure Creatinine < 1.5 mg/dl > 8.0 mg/dl

(in serum)

K* concentration
(in serum)

A Body weight

3.5~3.5mEq/dl |> 7.0 mEq/dl

change % individual

Table 1

function is responsible for the inability of the heart
to pump blood at a rate commensurate with the
requirements of the metabolizing tissues (see Figure
4). Heart failure induces the elevation of venous
pressure and volume retention. as a result, systemic
edema is developed. It also elevates intrapulmonary
pressure and results in fluid retention in the lungs
which cause the pulmonary edema and acute
respiratory failure in severe cases. A series of
adaptive mechanisms aid heart faced with increased

Parameters of the example

to treat, we must consider beneficial and harmful
effect of volume retention. The parameters and
therapy efficacy are shown in Table 1 and Table 2.

V. Experiment

A 20-year-old male patient entered Seoul National
University Hospital (SNUH). complaining of
dyspnea when he exercised. He was trcated in the
[CU, because his manifestations were so serious.

Disease (symptom) Therapy Efficacy
Acute respiratory failure Oxygen therapy  &for mechanical 20 1]
ventilation
Pulmonary edema Diuretics -25 (2]
Heart failure Inotropic agent (cardiac glycoside) 20 [2]
Ventricular arrhythmia Anti-arrhythmic agent - 25 13]
Acute renal failure Hemodialysis -30[2]
Hyperkalemia Glucose & insulin, hydration -10 [1}
Systemic edema Diuretics =20 [1]

Table 2

Therapy efficacies of the example

hemodynamic burden. These mechanisms include:
(1) the Frank-Starling law operating through
increased in loading to heart; (2) the development
of myocardial hypertrophy: (3) redistribution of a

The laboratory tests on respiratory failure and heart
failure proved that the two diseases were abnormal.
The tests on a set of abmormal diseases, renal
failure, and hyperkalemia were performed on day 1.
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Figure 5

day 4, day 11, and day 13 after entering the
hospital. The real manifestation vectors and
estimated manifestation vectors on the time horizon
(from day 1 to day 13) are shown in Table 3 and the
graphs of the progress of the disease are shown in
Figure 5 and 6. Details in procedures and
illustrative explanations have been omitted. The
treatments for respiratory failure and heart failure
began on day 1 as did the mechanical ventilation for
respiratory failure and the inotropic agent dosage
for heart failure. But therapy for respiratory failure
stopped on the day 5 because PaO; climbed into the
normal range.

The mean values of forecasting error are 3.01
(mmHg) in repertory failure, 4.52 (%) in heart
failure and 0.6 (mEq/dl) in hyperkalemia.
According to the cstimated progress of the patient
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Progress of respiratory failure and heart failure

yet, but these influences slightly increased (0.2
mg/dl) creatinine concentration in serum in real
history.

While the real data about hyperkalemia increased,
the estimated value of K concentration in serum
did not work. One reason for this could be the late
admission to hospital and/or the effects from
respiratory failure and heart failure have enough
time to cause hyperkalemia. Consequently the
estimated progress of multiple disorders presented
similar behavior with real history, and the model
could reflect the trend in multiple disorders.

VI. Conclusions

The major contributions of this research can be
summarized as follows:
1. This paper proposed a model which is

the recovery time for heart failure was calculated on appropriate  to  represent  biomedical

K+
creatinine concentration
9.0 . Do _l crucial 7.0 C — c¢rucial
8.0 651

real
7.0 6.0 :
6.0 55
5.0 | 5.0
4.0 45 normal
real
3.0 : 4.0
2.0 350 : -
forecasted
1.0 R _] normal 30| AR
forecasted
— day - day
1 2 3 4 5 o 7 8& 9 10 11 12 13 I 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6

day 7. while it is after day 13 in real history. About
progress of renal failure, this algorithm estimated
that the indirect influences from respiratory failure
and heart failure were not arrived at renal failure

Progress of renal failure and hyperkalemia

knowledge about time-dependent influences,
progress of diseases .and treatment efficacy.
The physicians can learn more detailed and
exact knowledge with a map which is made by

—509—



more distinguished physicians;

2. This research developed an algorithm to
enhance the physicians’ ability to assess
reasonable forecasting about progress of
multiple disorders.

Parameter estimation either to optimize the model
behavior by optimizing the parameter sets can be
used, or to estimate even those parameters which
are not directly measurable that are important for
updating in health care units. For example, you can
more accurately forecast the progress of diseases in
the example by changing the efficacy duration of
inotropic agent from 2-day duration to 3-day
duration (mean of error with 7: 2.94mmHg in PaO,
and 4.46% in EF).

T=[2001] -2521 2002] 23] -30[2] -1ofl] -2001] O]
=20 -252] 20031 -253] -3002] -101] -20(1] O]

The influence matrix / can become a singular form
by adding or deleting some nodes, and then this
nonhomogeneous system can be solved with many
real data by simple Gaussian elimination.
Knowledge about multiple disorders can be
achieved by connecting different maps which have
the same node, so the model has the ability to grow
because it can connect two or more different maps.
This connecting work is vital. This model can be
further developed and improved with new medical
knowledge and techniques.
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