MERSE B1E F28
19944 6 R 43

3 2l Aol E A% AA AY =Y Ha AAY Awt

%#

S
T

Development of an Object-Oriented Model Management Framework for
Computer Executable Algebraic Modeling Languagest

Soon-Young Huh*

ABSTRACT

A new model management framework is proposed to accommodate wide-spreading algebraic
modeling languages (AMLs), and to facilitate a full range of model manipulation functions, To
incorporate different modeling conventions of the leading AMLs (AMPL, GAMS, and SML)
homogeneously, generic model concepts are introduced as a conceptual basis and are embodied
by the structural and operational constructs of an Object-Oriented Database Management Sys-
tem (ODBMS), enabling the framework to consolidate components of DSSs(database,
modelbase, and associated solvers) in a single formalism effectively. Empowered by a database
query language, the new model management framework can provide uniform model manage-
ment commands to models represented in different AMLs, and effectively facilitate inte-
gration of the DSS components. A prototype system of the framework has been developed on
a commercial ODBMS, ObjectStore, and a C++ programming language.

Keywords :Model Management, Database Management Systems, Mathematical Programming
1. Introduction

During the last decade, an extensive body of model management studies has been developed re-

garding storage, retrieval, shared use, and execution of mathematical programming models, The

* WA B3 Hrled A9AN 2R ARFooh ALuitta AABSBN FAAH1BL), dFAN)ed 9B
Satoll A B eH4AK1983), vIF UCLAM S HGeistoln Fu Al2sorz 4G waetel(1992) & AS8A 29
HEgoke AMAFuolet Wo|29] AAHY Y, AR B2 © HoY ARofole) $-golrh

4 Soon-Young Hub RERHE

major focus of research is on the development of a single formalism to represent model and data
simultaneously;two predominant approaches have evolved:artificial intelligence (AI) methods and
database modeling approaches. In Al approaches, diverse model representation methods are devel-
oped on the basis of flexible symbolic knowledge representation techniques such as semantic n-
heritance nets [7], first order predicate calculus [6], graph [18], frame [1,4,19]. In database
modeling, relational database approaches [2,5,16] are prevalent, focusing on modelbase construction
using easy set-based relations. Both approaches emphasize more on the model representation and
retrieval aspect than on the model execution and solution aspect, partially because the underlying
formalism such as Al is relatively less efficient for the model solving tasks requiring heavy
procedural computation, and partially because solver accommodation is inappropriate in the data
manipulation languages such as SQL and QUEL (5,16] in database modeling. In contrast, with an
emphasis on model execution, several efforts are made at a system framework [20], and
object-oriented programming language (OOPL) approaches {15,17,21]. However, these underlying
platforms are yet to provide satisfactory results in terms of flexibility in accommodating models,
solvers, and data in a single formalism, and functionality in facilitating interactive manipulation
and execution commands. Fortunately, continuous database technology advances toward next-gener-
ation database management systems, called Object-Oriented Database Management Systems
(ODBMSs) [23] present us new ways to construct a robust platform, Combined with programming
language paradigm and database technology, an ODBMS facilitates object types to be user-defined,
persistent (as opposed to transiency in the OOPL), sharable by multiple users, and importantly,
provides a nontrivial database model and manipulation query language [12].

In parallel, recently, algebraic modeling languages (AMLs) such as IFPS /OPTIMUM [22],
GAMS [3], SML [10], and AMPL [8], have gained popularity from practitioners and researchers
due to their efficient and stable algebraic-notation based model representation methods and
user-friendly interfaces for model execution. Proliferation of the AMLs provides opportunities for
decision support system (DSS), specifically its model management component, because 1) the
AML models have become new organizational asset;and 2) the AMLs provide user-friendly and
semantically rich modeling power in diverse modeling domains (for instance, IFPS for what-if
analysis, GAMS and AMPL for optimization, and SML for general modeling), so that they become
suitable as model representation sublanguages, replacing previous proprietary model representation
methods.

Inspired by the emerging challenges facing model management, this paper proposes a new model
management framework based on ODBMS. The new model management framework has the follow-
ing objectives : 1) accommodating the diverse model semantics in the leading AMLs (GAMS,

SML, and AMPL) in a general and uniform way, 2) providing a full range of functions in model

#11% 2% Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 45

management, including creation, retrieval, update, deletion of models as well as model execution
and solution capabilities, and 3) furnishing high-level manipulation commands to facilitate manipu-
lation and integration of modelbase, solvers, and database, based on a database query language, As
a conceptual basis for the framework, we establish generic model concepts based on the systems
approach, to provide simplistic but flexible modeling constructs subsuming individual AML-specific
concepts. An Object-oriented Structured Query Language (OSQL), is also adopted to facilitate
flexible and dynamic model management.

2. Generic Model Concepts

A generic model is a model represented in AMLs as an abstract representation of a real world
problem. The generic model type is an object type for the generic model. As an external
interface, the generic model has a set of ports through which it interacts with its environment, i,
e. , human modelers and databases, by exchanging data. A port, characterized by a port type, has
a unique name, a set of attributes, and operations to describe the information pertaining to al-
gebraic expressions and data values. Three types of ports exist in terms of data exchange : input
ports (inports), output ports (outports), and mid ports (midports). The inport and outport admit
and produce data, respectively, in connection with the outside environment, while the midport
holds intermediate computation results, or contains constrainsts of the model, if any. The classifi-
cation of ports, specifically the midport, needs discretionary judgement based on a thorough under-
standing of the model semantics. The external interface provides a simplified uniform view (what
is required and produced through the ports) of the model, and thus relieves non-technical users
from the details of the model that may look overwhelmingly complicated.

The internal view captures the detailed semantics inside the model. The ports are grouped at a
higher level by some model-specific logical constructs (e. g. , set group, parameter group, etc.)
called modules. Modules can be organized into higher-level modules. Thus, a generic model is the
highest aggregation of a number of modules which, in turn, consist of a set of ports and, possibly,
lower-level modules. A module, characterized by a module type, has a set of attributes and
operations to describe its conceptual meaning, component modules, and ports. Figure 1 illustrates
the relationships between the external interface and internal view. In terms of a tree structure, all
the leaf nodes become the ports while the remaining internal nodes become the modules.

To the generic model, we add a set of specific model-execution operations, to transform the
data from inports or midports into outports by invoking a solver, or to convert a generic model
into a machine-readable form. When the model-execution operations are added to the generic

model, the result is a functional model that captures the external and internal views of a decision

46 Soon-Young Huh BEHE

inPorts OutPorts
D C

Port 7

Port 1
Module Moduie Module
1 2 3

@ / Port \ ort 6

3 Moduie
¥ :

Model Builder 90"3,1 \foﬁ 4 Port 5 Decision Maker
A A ~7
MidPorts
Model X

Figure 1. Conceptual Architecture of Generic Model Concepts.

model, and facilitates model-execution operations, Thus, the functional model is a specialized model
which focuses on individual AML and problem-solving. Also, at the bottom of the system, there
exists a solver library ; to an individual functional model, only legitimate solvers are visible to pro-
tect users from applying unauthorized, incompatible solvers to the model. Several functional
models can exist at the same time as long as the types of model-execution operations differ from

one another. A functional model type (or model type) is an object type of the functional model.
3. Syntax Analysis of AMPL, GAMS, and SML

AMLs' primary reliance on the algebraic notation and the indexing structures leads them to have
syntactic and semantic commonalities in their model representation. From the common features,
we want to extract general structures which can uniformly capture the model components indepen-
dent of the idiosyncratic syntax of the individual languages, and can facilitate development of the
modelbase which can store models of disparate AMLs in a single repository. To this end, in this
section, we conduct a high-level syntax analysis for the three AMLs, and apply the generic model
concepts in the context of the AMLs,

In the syntax analysis, square brackets, ‘[1, a vertical bar, ‘|’, and brackets ‘(Y respectively
denote optionality, alterneity, and repetition. A statement is different from an expression in that
the statement is a syntactically complete, self-contained sentence whereas expression, as part of

the statement, is an incomplete, partial assertion.

#11% B2% Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 47

3. 1. AMPL Model

AMPL model is composed of five types of entity statements which are declared by keywords in-
cluding set (set), param (parameter), var (variable), minimize /maximize (objective), and subject
to (constraint), In an AMPL model, a data section is separated from the model structure, and an
entity declaration statement always accompanies an assignment expression or a definition ex-
pression as part of the declaration statement, Figure 2 represents the high-level AMPL syntax of

diverse types of statements,

set entity _name [set expression | indexing expression]; [comment]

param entity_name [{set_entity name <, set_entity_name>}] [computation expression | qualifying expression]; [comment]
var entity name [{set_entity_name <, set_entity_name>}] [computation expression | qualifying expression]; [comment]
subject to entity_name [{set_entity _name <, set_entity_name>}]: computation expression; [comment]

minimize{maximize entity_name : computation expression; {comment]

Figure 2. High-Level Syntax of AMPL Modeling Entities.

In general, each statement consists of two parts: 1) a declaration part with an entity type, en-
tity name, and underlying indexed sets, 2) a definition part with computation or assignment
expressions. From Figure 2, a general AMPL structure, uniformly capturing the five types of

modeling statements, can be perceived as shown in Table 1.

fields type entity-name | [index] [index /set { <expression>] [comment]
expression]
contents |set, param, var, entity name |set entities |set expression, computation expression, |comment
subject to, indexing expression, |etc
minimize /maximize

Table 1. General AMPL statement structure.

To show how a model is represented in the high-level AMPL syntax and how the generic model
concepts can be practically applied, we pick a typical transportation model shown in Figure 3. The
decision problem of the model is to identify optimal shipping quantity in each plant and each fac-
tory in order to minimize total transportation cost.

In Figure 3, using the comments such as SETS, PARAMETERS, VARIABLES, CONSTRA-
INTS, and OBJECTIVE, the individual statements are grouped together to present the abstract
model structure of the transportation model at a higher level. Arranged by the comment
statements, the transportation model can make other abstract model structures at modeler’s will.

In essence, these groups become the modules of the generic model concepts, and thus, a model, in

48 Soon-Young Huh RERHR

SETS

set factory; # canning factorics
set market; # markets

PARAMETERS #it#

param factory_sup{factory}; # supply of factory
param market_dem{market}; # demand of market
param cost{factory,market} ; #transportation cost
VARIABLES

var qty{factory, market} >= 0; # shipment quantitics
OBJECTIVE

minimize total_cost:
sum{i in factory} sum{j in market} (cost{ij]*qty{ij]);
CONSTRAINTS
subject to supply {i in factory}:
sum{j in market) (atylij]) <= factory_sup[il;
subject to demand {j in market}:
sum i in factory} (qtyfij]) >= market_dem{j];

data;

set factory := SEATTLE SAN-DIEGO;
set market := NEW-YORK CHICAGO TOPEKA;
param cost: PORTLAND NEW-YORK CHICAGO TOPEKA HOUSTON:=
SEATTLE 3 25 18 19 18
SAN-DIEGO 10 2 17 19 15
LOS-ANGELES 8 20 15 17 15;
param factory_sup: SEATTLE SAN-DIEGO LOS-ANGELES :=
350 600 500;
param market_dem: PORTLAND NEW-YORK CHICAGO TOPEKA HOUSTON:=
220 325 300 275 280;

Figure 3. An AMPL Transportation Model.

an abstract view, is an aggregation of several mdules. Individual modeling statements in Figure 3
identify model ports. From the external interface viewpoint, the inports of the model are the ports
that admit data from users or outside the model. By virtue of explicit separation of a model struc-
ture from its data part, all ports that are instantiated by some datasets such as sets including fac-
tory and market, and parameters including freight, distance, factory—sup, and market—dem, be-
come the inports, On the contrary, the outports of the model are the ports that will produce out-
put values as final results of model execution; they involve the qty variable as a decision variable
and the total —cost as an objective value of the model. Finally, the rest of the ports are midports;
they entail all the constraints and parameters that are not instantiated within the data section (in
AMPL, these parameters are termed computed parameters.) such as cost parameter, and supply

and demand constraints,
3. 2. GAMS Model
GAMS model is composed of several basic entities including sets, data, variables, equations and

model manipulating statements. The set, data, variable entities are declared with corresponding

keywords; data assignments for the declared entities are individually followed by either separate

#11% 2% Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 49

assignment statements or list /table data insertion commands, Declaration and definition of an
equation entity are made in separate statements, GAMS model also involves a number of model
manipulation statements that are not usually associated with specific entities,

In analyzing the GAMS syntax, we modify GAMS modeling conventions so that more simplistic
articulation of the syntax is made possible without serious loss of GAMS modeling power : 1) a
model structure is separated from data set, 2) a declaration statement includes assignment
statements or definition statements if they are all associated with a single entity. Reflecting such

syntactic considerations, Figure 4 delineates the high-level GAMS syntax,

and assignment/d pition

ol

ity declarati e
SCALA entity i

CINCT)

SLALCTIICTILS
statement]

_name [comment] [assignment
SET entity_name [comment] [set statement]
PARAMETER entity_name [(set_entity_name <, set_entity_name>)] [comment] [assignment statement]
TABLE entity_name (set_entity name <, set_entity_name>) [comment] [table statement]
[range] VARIABLE entity_name [comment] [assignment statement]
EQUATION entity_name [(set_entity_name <, set_entity_name>)] [comment] .. [definition statement]

model manipulation statements
MODEL model_name detail_statement
SOLVE detail_statement

DISPLAY detail_statement

ABORT detail_statement

OPTION detail_statement

LOOP detail_statement

Figure 4. High-Level Syntax of GAMS Modeling Entities

fields type entity-name | [index] [<range>] |[<expression>] [comment]

contents |SCALA, SET, PARAMETER, [entity name |set entities range entity |set expression, table comment
TABLE, VARIABLE, expression, assignment
EQUATION, MODEL, etc statement, definition
statement, detail
statement, etc

Table 2. General GAMS statement structure.

Note that the high-level syntax shown in Figure 4 primarily forces such related statements (i. e.
, the declaration statement and definition statement of a same entity) to be aggregated into a
single statement, A general GAMS statement structure will be as shown in Table 2.

Figure 5 shows how a transportation model is actually represented in GAMS. As in the case of
the AMPL model, all the statements are grouped by the entity types such as SETS, PARA-

50 Soon-Young Huh REHR

METERS, etc. , making them modules. Under each module, individual entities are procedurally
declared, assigned, or detaily defined. The port identification of the GAMS model is similar to
that of the AMPL model and we omit the detailed process, but provide the summary result in the
Table 6.

3. 3. SML Model

SML model is an algebraic model based on Structured Modeling (SM) framework {91 to rep-
resent analytical deterministic models by using an acyclic, attributed graph. SM provides a general
modeling approach to diverse MS /OR paradigms such as mathematical programming, forecasting,
regression, and simulation, Since the primary component of a structured model is a genus, the syn-
tactic analysis of a structured model structure focuses only on the genus paragraph. Thus, the

syntax of the genus (paragraph) statement is as follows :

genus—name [index—variable] [(set—genus—name ¢, set—genus—name))] /type/ [{index set ex-

pression}] [:range expression] [;generic rule expression] [interpretation]

The general SML statement structure can be arranged as shown in Table 3.

fields type entity-name | [index] [<range>] [<expression>] {comment]
contents |pe, ce, a, va, ft genus name |indexed range expression index set expression, interpret-
and genuses generic rule expression, |ation
index vari-
able

Table 3. General SML statement structure,

A SML model matches well with the generic model concepts due to the modular, and hierarchi-
cal characteristics of the SM framework. Basically, the SML modules correspond to the modules
of the generic model concepts while the SML genera (i. e. , plural of genus) correspond to ports.
Since the calling sequence embedded among genus statements can be implemented in the ports
capturing individual genera, visualization of the calling sequence among the ports, can illustrate
abstract, definitional interdependence among ports (genera), supplementing the internal view of a
model.

As an example, let’s consider a SML transportation model shown in Figure 5.

#11% S28 Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 57

GAMS Modet

SML Model

SETS

1 canning factories / Seattle, SanDiego, LosAngeles /

] markets /Portland, NewYork, Chicago, Topeka,Houston /
PARAMETERS

FACTORY—SUP(I) capacity of factory i in cases;
MARKET~-DEM(J) demand at market j in cases;

TABLE

COST(1,]) transportation cost in thousand of dollars per
case;

VARIABLES

QTY(L,J) shipment quantities in cases

TOTAL-COST total transportation costs in thousands of
dollars;

POSITIVE VARIABLE QTY;

EQUATIONS

OBJECTIVE define objective function;

SUPPLY(I) observe supply limit at factory i;
DEMAND(J) demand at market j;

OBJECTIVE. TOTAL-COST =E= SUM(I,])*QTY(L]));
SUPPLY(I). SUM(J,QTY(L,J))=L= FACTORY-SUP(I);
DEMAND(J). SUM(1,QTY(I,])}=G= MARKET-DEM(J)

MODEL TRANSPORT /ALL/:
SOLVE TRANSPORT USING LP
MINIMIZING TOTAL-COST ;

&FACTORY —DATA FACTORY DATA MODULE

FACTORYi /pe/ There is a list of FACTORYS,

SUP(FACTORYi) /a/ {FACTORY) : Real+ For each FACTORY, there is
FACTORY SUPPLY in tons.
&MARKET~DATA MARKET DATA MODULE

MARKET] /pe/ There is a list of MARKETS,

DEM(MARKET]) /a/ {MARKET) :Real+ For each MARKET, there is
MARKET DEMAND in tons,
&TRANSPORTATION-DATA TRANSPORTATION DATA MODULE
LINK (FACTORYi, MARKET]) /ce/ Select {FACTORY} x {MARKET}
where i covers {FACTORY}, j covers {MARKET} There are some transpor-
tation LINKS from FACTORYS to MARKETS.

COST (LINKij) /a/ {LINK} : Real+ Each LINK has a Transportation
COST in $ /ton,

QUANTITY (LINKij) /va/ (LINK) : Real+ There can be a nonnegative
transportation QUANTITY in tons over each LINK.

&OBJECTIVE OBJECTIVE FUNCTION MODULE

TOTAL-COST (COST, QUANTITY) /f/ 1: @SUMi SUM;j (COSTij %
QUANTITYij) TOTAL COST associated with all QUANTITYS to be
minimized.

&CONSTRAINT CONSTRAINT MODULE

T:SUPPLY (QUANTITYi ,SUPi) /t/ (FACTORY}; @SUM;
(QUANTITYij) (= SUPi Is the total QUANTITY leaving a FACTORY
less than or equal to its
FACTORY—SUPPLY ? This is called the SUPPLY CONSTRAINT TEST.,
T:DEMAND (QUANTITY, jDEMj) /t/ {(MARKET}: @SUMi

(QUANTITYij) = DEM; Is the total QUANTITY arriving at a MARKET
exactly equal to its MARKET-DEMAND? This is called the MARKET
CONSTRAINT TEST.

Figure 5. Transportation models represented by GAMS and SML

In the transportation model of Figure 5, five modules are identified which are &FACTO-
RY~DATA, &MARKET-DATA, &TRANS-DATA, &CONSTRAINT, and &OBJECTIVE. In
deciding inports and outports from the individual genera, since the SML is a general-purpose
AML, modelers pose an optimization problem for the model structure in advance by choosing the
type of optimization (minimization or maximization), objective functions, constraints, and decision
variables, Thus, in the transportation model, we choose TOTAL—COST and FLOW as objective
function and decision variable respectively, and assign them as outports, In contrast, all genera
which are rather close to independent parameters and element types such as primitive and com-
pound entities (pe, ce), and attributes (a) including FACTORY, SUP, MARKET, DEM, LINK,
COST become inports since they are instantiated with datasets supplied by human modeler or ex-

ternal data sources, The rest of genera which are similar to dependent parameters or variables

52 Soon-Young Huh REHS

with element types such as function (f) or test (t) including COST, T :SUPPLY, and T:DE-
MAND become midports.

3. 4. A Core Structure Capturing a Modeling Statement of AMPL, GAMS, and SML

Fundamental reliance on the algebraic notation as underlying model representation scheme in the
three modeling languages leads to three similar general statement structures as shown in Table 1,
2, and 3. From the three general statement structures, we extract a core structure that is common

to any of the modeling statements of the three AMLs as follows:

type [entity—name] [{index)] [{expression)] [comment]

The syntax of the core structure includes entity type, entity name, a list of indices, a list of
expressions, and a camment. The common structure provides a basis for a generic port type so
that it can facilitate building specialized port types for the individual AMLs by adding
language-specific attributes.

4. An Object-Oriented Database Model for the Model
Management Framework

This section presents an object-oriented database model, embodying the generic model concepts
into persistent object types, and facilitating diverse model management commands. The database
model is composed of three generic object types, which are generic model type
(GenericModel Type), module type (ModuleType), and port type (PortType), and two subtypes,
which are functional model types and specialized port types. Additionally, DataType is introduced
for the data storage requirement in the PortType. Table 4 provides the object type definitions for

the database schema. Detailed description of individual types are as follows.
4. 1. GenericModelType

In the definition of GenericModelType, we want to note that the module attribute ensures refer-
ential integrity between a generic model and its component modules via binary inverse relationship.
In support of the external view of the model, the three port attributes (1. e. , inport, outport, and
midport) individually hold a portion of ports that have the same interfacing roles. In fact, each
port attribute forms a transitive closure of a certain type of ports ; for instance, the inport attri-

bute refers to all inports of a model no matter to which modules the inports directly belong. In

#1% 25 Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 53

define type GenericModelType define type Module Type
(structure (structure
string name, © string name,
string comment, string comment,
List of ModuleType module inverse model GenericModelType model inverse module of
of ModuleType, GenericModel Type,
list of PortType inport, outport, midport, list of portType port inverse module of PortType,
list of string solvers Module Type ParentModule inverse childModule,
operation list ofModuleType ChildModule inverse parentModule
GenericModel Type (name), operation
showlIntemal (), ModuleType(name),
showExtemal(), Module Type(name, model),
customizable display(), convert(), Module Type(name, port),
customizable solve(), solve(solverName), showModulelntermal())
customizable type())
define type PortType define DataType
(structure (structure
string name, comment int lastLabel, : nidex no. of last label
ModuleType module inverse port of array[] of string label, ; array of abels
Module Type, int row, col, ; row and column size
string type, unit arry[][] of real value, ; arry of real
set of string expression, operation
list of PortType index, DataType(label). ; input text labels
state iostate, insertLable(label), : input text labels
DataType data, insert Value(value), : input numeric values
operation printLabel(), : print labels
PortType(name), printValue(), ; printvalues
PortType(name, comment, PrintPair(), ; print label and value
module, type), matrix(range), : output matrix
customizable showDependency () table(range) : output matrix
. index dependency of model) 5 with row and column labels)

Table 4. Object Type Definitions for Generic Model Concepts,

accommodating multiple ports, like the module attribute, the individual port attributes are
multi-valued object-valued attributes.

Regarding model management operations for the GenericModelType, basic DBMS
operations such as insert, delete, or update are presumed to be supported by the ODBMSs.
In addition, to leverage an emphasis on the multiple abstract views of a model, the
GenericModelType suplies several generic operatins., The showExternal() provides the gen-
eral description of a model and its external interface by describing all ports in terms of
inport, outport, and midport. In contrast, the showlnternal() furnishes a tree structural
view of the model by enumerating all modules and their component ports. The display()
reassembles the decomposed model components from the modelbase, and restores a natural

form of the model as shown in Figure 3 or Figure 5, while the convert() offers a machine

54 Soon-Young Huh REHNS

readable form of the model such as MPS format, and the solve() facilitates model solving. Lastly,
the type() returns the model type.

However, owing to syntactic differences in individual AMLs, specifically the last four operations
need to behave differently in the context of each AML. To facilitate such adaptation of generic
operations to individual AML environments, functional model types are defined to inherit all the
attributes and generic operations as defined in the GenericModelType, and to additionally tailor
some of the generic model-execution operations by making them specific to individual modeling
environments, In the creation of the functional model type, additional attributes and operations can
be further incorporated for more elaborated manipulation and solution of the model. As an example
of a functional model type, AMPLModelType can be defined as follows to accommodate models

represented in AMPL, and provide AMPL-specific model execution operations,

define type AMPLModelType : supertype GenericModelType
(structure
operation
customizable display(), ; display the whole AMPL model
customizable convert(), ; convert the model into a standard format
customizable solve(), : solve the model
customizable type()) ; return the model type, e. g. , “AMPL”

Table 5 illustrates how the three types of ports are categorized in an AMPL transportation
model shown in Figure 3. Figure 5 and Table 6 show how the GenericModelType can accommodate
the identical transportation models represented in GAMS and SML.

4. 2. ModuleType

The key objective of the ModuleType defined in Table 4 is to capture intermediate building
blocks of the model by aggregating a set of ports and child modules, while maintaining relation-
ship to a model to which the module belongs. To do this, in addition to name and comment
attributes, the ModuleType has the model attribute for an inverse reference to the model, in fact,
as a matching inverse reference attribute for the module attribute of the GenericModelType. The
port attribute clusters a set of component ports, and ensures another binary referential integrity
between a module and its component port. Consequently, when we update a port of a model, the
port as a part of a module is also updated, and thus data integrity on the port is secured.

The parentModule and childModule attributes allow the current module to be a child module as
well, possibly at the same time, a parent module of other modules, facilitating the nested module

construction, The nested module construction can enhance the semantic expressiveness by making

1% F2% Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 55

cost

{transportation, AMPLModelType, decide product shipping quantity between each factory and each market to minimize total transportation

(PARAMETERS)),
(CONSTRAINT)),

(CONSTRAINT))]

module [{name, comment, (model), (component ports))]
[(SETS, index sets, (transportation), (factory, market)),
(PARAMETERS, parameter data, (transportation), {factory~sup, market —dem, freight, distance, cost)),
(VARIABLES, decision variable, (transportation), (qty))
(OBJECTIVE, objective function, {transportation), (total —cost)),
(CONSTRAINT, constraints, (transportation), (supply, demand))]

’

operation
/ showlnternal(), and showExternal() are inherited from Generic Model Type
customized display(),
customized solve(), / simplex
customized convert(), / MPS file format

inport [<name, (index), type, indexExpr, computeExpr, comment, unit, (module))] %
[{factory, AMPLPortType, , set, , , list of factory names, , (SETS))
(market, , set, , , list of market names, , (SETS)),
{factory—sup, (factory), param, {factory}, , supply capacity of factory, ton, (PARAMETERS)),
{market ~dem, (market), param, {market}, , demand amount of market, ton, (PARAMETERS))
(cost, (factory, market), param, {factory, market},)= 0, transportation cost, , (PARAMETERS))],

outport [{qty, (factory, market), var, {factory, market}, Y= 0, transportation quantity over links, ton, (VARIABLES))
{total ~cost, , minimize, , sumii in factory} sumfj in market} (costlij]* qty[ij], total transportation cost, 1000 §, (OBJECTIVE))]

midport [{cost, (factory, market), param, {factory, market}, freight % distance(factory, market) /1000, transportation cost, $ /ton,

)

v

Csupply, (factory), subject to, i in factory}, sum{j in market} qty[ij] (= factory —sup(i], supply constraint test, ,

{demand, (market), subject to, {j in market}, , sumfi in factory} qtyli, j])= market ~dem(j], demand constraint test, ,

* Bold-face templates at the inport and module attributes represent simplified templates for the PortType and ModuleType. Note that all port
instances are of the AMPLPortType, a subtype of the PortType., To differentiate object values

enclosed by parentheses,

Table 5. The Model Structure of AMPL Transportation Model.

GAMSModel Type SMLModel Type
name “transportation” “transportation”
comment “Minimizing the cost of transporting “Minimizing the cost of transporting
products from factories to markets” products from factories to markets”
module (set), (parameter), (table), (scala), (&FACTORY ~DATA),
(variable), (equation), {manipulation) (&MARKET-DATA),
(&TRANS-DATA), (&RESULT)
inport (factory), (market), (factory—sup), (FACTORY), (SUP), (MARKET),
(market —dem), (cost) (DEM), (COST)
outport (qty), (total —cost) (TOTAL-COST), (QUANTITY),
(T:SUPPLY), (T : DEMAND)
midport (supply —cons), (demand—cons), (LINK)
(model), (solve)

Table 6. Generic Models for GAMS and SML transportation models represented by GAMS and SML

from data values, all object values are

56 Soon-Young Huh BB

it consistent with the natural semantics of some modeling languages such as SML. In general, the
ModuleType is flexible enough to adapt itself to diverse kinds of logical constructs that are unique
to individual modeling languages. In Table 5, module examples for the AMPL transportation model

are shown,

4. 3. PortType

The basic structure of a port is already identified from the core structure of the modeling
statements of AMLs. Additionally, the port incorporates temporary data storage to interact with
the surrounding databases or other models. With such objectives, the PortType has name and
comment attributes, The module attribute facilitates an inverse reference to the module to which
the port is directly attached. The type attribute is used to specify the base type of a model entity
which is captured as a port. The unit and expression attributes respectively define the unit of
data value, and contain an algebraic expression. The index attribute can contain an index defi-
nition of the port. For example, in the AMPL model, the “cost” port contains object references to
its index sets such as “factory” and “market”. The iostate attribute specifies the interfacing role
of the port in terms of inport, outport, or midport. Again, in Table 5, ports arranged by the exter-
nal interfacing roles with the detailed descriptions are illustrated in the AMPL transportation
model,

As the last attribute, the data attribute serves as a resident data repository for the port. In sup-
port of the data storage, the DataType primarily provides two independent, variable-length arrays
to accommodate text labels as well as numeric values in diverse formats, ranging from a single
real number to a matrix. Additionally, to leverage the interfacing role of a port, it provides vari-
ous operations to facilitate data manipulation and port integration with source databases. The flexi-
bility of the two arrays combined with user-defined, array manipulation operations allow the port
to effectively accommodate nontrivial data sets such as numeric array, label array, array of label
and numeric value in pairs, or numeric matrix with row and column labels. As an example, con-
sider the inports “market” and “market—dem” of the AMPL transportation model where the
markets are located in New York, Chicago, and Topeka, and their corresponding market demands
are respectively 325, 300, 275 tons, To store these data sets, the “market” port employs the label
array in the data attribute of the port, while the “market —dem” port employs the numeric array.
In support of these input tasks, the insertLabel() and insertValue() operations are specifically pro-
vided to take an array of text labels and an array of real numbers. For output operations, the
printLabel() and printValue() respectively print out text labels and numeric data values of a port

in an array form. To retrieve matrix data, the matrix(range) or the table(range) can be used :

$11% %28 Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 57

while the matrix() retrieves only a numeric matrix, the table() operation supplements the matrix
with the row and column text labels, enhancing matrix readability.

Since the PortType embodies the core parts of the three AML ports, to adequately incorporate
all the language-specific data structures and operations, the PortType specializes itself to three
subtypes including AMPLPortType, GAMSPortType, and SMLPortType.

5. Model Manipulation Language

As a model manipulation language (MML), a hypothetical OSQL is used, since it could easily il-
lustrate powerful features that the relational SQL does not have : navigational capability and invo-
cation of operations of an object type. The navigational path among individual objects is
hierarchically addressed by a nested dot notation, (.), and makes a normal nested SQL to be
more simplistic and intuitive. Queries presented subsequently are all simulated by the ObjectStore

query language [14].
5. 1. Model Instantiation Queries

In the model management framework, the modelbase is made up of three interrelated collections
of objects : MODELS, MODULES, and PORTS. The three collections are matched with three
major object types : GenericModel Type, ModuleType, and PortType. Though there may exist mul-
tiple functional model types, all the functional models are accommodated by the MODELS collec-
tion. To show typical model structure instantiation procedures, several commands are exemplified.
The following command instantiates an AMPL model named “transportation” into MODELS.

)

INSERT AMPLModelType into MODELS

{name = “transportation”,

comment = “decide shipping quantity between each factory and each market to minimize
total transportation cost”)

The INSERT command is also used to create a module and its child port, and insert them into
the MODULES and PORTS collections while interrelating them with their parent model in the
MODELS collection. In the following two commands dealing with the AMPL transportation model,
the first one shows how “parameter” module is created and inserted into MODULES with a proper
reference to the model. The second one shows how “factory—sup” port is created and inserted
into PORTS in relation to the “parameter” module. Note that inserting the module into the trans-

portation model automatically assigns the module’s port into the model's external interface.

58 Soon-Young Huh RERS

INSERT ModuleType into MODULES

(name = “parameter”, comment = “input parameter data”, model = M)
FROM M in MODELS

WHERE M. name = “transportation” and M. type() = “AMPL”

INSERT PortType into PORTS

(name = “factory—sup”, comment = “supply capacity of factory”, iostate = INPORT,
module = MD)

FROM MD in MODULES

WHERE MD. name = “parameter”

These commands reflect the advantages of an ODBMS approach by supporting object-orientation
and referential integrity. Object-orientation means that, in these commands, the parameters are
specified directly by objects (e. g. , model = M, module = MD) than by indirect values ; this
considerably simplifies model manipulation queries by nullifying the need for supplementary

relations that is often required in a relational approach.

5. 2. Model Retrieval Queries

Once models are instantiated and accumulated in the modelbase, the modelbase can be utilized
for various purposes at the individual user level. For instance, the decision maker, who prefers to
handle models at the most abstract level for retrieving and running models, and understanding

their outputs, can type the following command to view the external interface of a model.

SELECT M. showExternal()
FROM M in MODELS
WHERE M. name = “transportation” and M. type() = “AMPL”

For knowledgeable model builder, showlnternal() is available in place of showExternal().
Depending on the model type, additional internal view of model is available ; for instance, for
SMLModelType, showCallingSequence() would visualize definitional interdependencies among ports
(i. e. , genera). Meanwhile, for browsing data stored in a specific port, a variety of convenient re-
trieval methods are available on the basis of operations encapsulated in the DataType : we can re-
trieve the location and the capacity of each factory of the transportation model using the

printPair() operation in the following query.

#11% 2% Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 59

SELECT P. data, printPair()

FROM P in PORTS

WHERE P. name = “factory—sup” and P. model. name = “transportation”
and P. model. type() = “AMPL*

Or, by specifying ranges of matrix portion in the matrix() or table() operation, various portions
of a matrix can be dynamically retrieved. The following query retrieves a portion of a distance
matrix that covers all column values ranging from “new york” to “topeka” of the “san diego” row

of the transportation model with corresponding row and column labels,

SELECT P. data. matrix(“san diego”, “new york” : “topeka”)

FROM P in PORTS

WHERE P. name = “distance” and P. model. name = “transportation”
and P. model. type() = “AMPL”

For reuse or easy development of models from the existing model blocks, the model builder may
be interested in examining a particular module. This view may need to include detailed port infor-
mation of the module as well as the description of the module. The following query retrieves
names and expressions of all ports attached to a module named “equation”, of the transportation
model represented in AMPLModelType.

SELECT M. module. port. name, M. module. port. expression

FROM M in MODELS,

WHERE M. module. name = “equation” and M. name = “transportation” and M. type() =
“AMPL”

5. 3. Integration among modelbase, database, and solvers

Integration of modelbase with database, in more concrete terms, refers to a direct data exchange
between a functional model and a source database. Many operations of the DataType are provided
for the integration. For instance, either the insertValue() or insertLabel() operation of the
DataType facilitate direct data-instantiation of a model structure : since both operations take an ar-
ray of data at a time, data instantiation focusing on the data attribute of a port can be greatly
simplified by matching the port and the array of data. Assume that there is a corporate database
called “MarketDB” which provides product demand information of large number of individual
markets. The insertion query first retrieves the market demand for the product “PROD-A” from
the corporate database, and then inserts the retrieved tuples into the inport specified as
“market —dem”.

60 Soon-Young Huh BEHR

SELECT M. inport. data. insertValue(demandArray)
FROM M in MODELS
WHERE M. name = “transportation” and M. type() = “AMPL”
and M. inport, name = “market—dem” and
demandArray of array[] of real
= SELECT MKT. demand
FROM MKT in MarketDB
WHERE MKT. product = “PROD-A”

On the other hand, integration of modelbase with solver operations is naturally supported in the
model management framework, since the object type definition allows encapsulation of a set of
solver operations inside a model type. The following example shows how to execute a solver oper-

ation available in a functional model type.

SELECT M. solve()
FROM M in MODELS
WHERE M. name = “transportation” and M. type() = “AMPL”

Depending on a system builder’s choice, solve() operation can restore an executable model in-
stance from the modelbase, transform it into a matrix form using a modeling language translator,
and submit the matrix to some external optimization solvers such as MINOS and LINDO, Current
ObjectStore-based implementation follows this approach. As a whole, to both the decision maker
and the model builder, encapsulation of solver operations inside a functional model type can be-

come powerful and convenient, since it can make the model solving processes less error-prone.

6. Conclusions

This paper proposes a new model management framework for models in AMLs on the basis of
an ODBMS; it can accommodate both algebraic models and their problem-solving methods in a
single formalism, and can facilitate a query-based user dialog interface to manipulate and integrate
components of the DSS: modelbase, solvers, database. As a conceptual foundation of the frame-
work, we establish generic model concepts based on a systems approach. The concepts aim to pro-
vide a generalized model representation scheme to capture diverse models represented in AMLs,
and lead to development of a modelbase that can facilitate incorporating different AMLs : intern-
ally, the semantic expressiveness of the concepts adaptively accommodate uniqueness of modeling
conventions and model-execution methods of each AML so that users can make the best use of

the advantageous features of individual AMLs. At the same time, the concepts facilitate the pro-

#1135 2% Development of an Object-Oriented Model Management Framework for Computer Executable Algebraic Modeling Languages 67

vision of homogeneous model management interfaces, minimizing the idiosyncratic interfaces of in-
dividual languages.

The primary insight gained in combining the generic model concepts and model management
capabilities of the DSS is the applicability of ODBMS technology. Specifically, persistent object
types play the key role in constructing GenericModel Type, ModuleType, PortType, DataType, and
functional model types; structurally, they enable users to capture the complex structures of the
generic model concepts directly, and the modeling semantics of different AMLS, and to deal with
all the elaborated model representation concepts and mechanisms associated with the generic
model concepts consistently. Operationally, blended with a powerful programming paradigm, they
also facilitate accommodation of model-execution and solution operations inside the functional
model types in addition to conventional operations such as storing and retrieving models,
empowering the framework to be a full-fledged model management system.

A prototype system of the model management framework is developed on a commercial ODBMS
called ObjectStore. The object types and operations proposed in the framework are implemented
without any conceptual distortion in C4++, an object-oriented extension of the C programming
languages; the hardware platform used is the Sun-4 system. Figure 6 shows an example session of
the prototype system retrieving information from a SML transportation model. Technical details of

the implemented system is the subject of separate documents,

// model manipulation query script

GenericModei Tvpe *modei;
model = GenericModei Type:: MODELS] (name == “transportarion”) &:4& type() = SMI.)3
+{ executa the following operations
modei->thowExzernail);
model->showModarOutline);
cemuit of the first query (showExternal().. e—————
M the cost of" products trom factories to marksty

[external imerrace]
INPORT:

FACTORY list of facronies

SUP suoply capacity of factory

MARKET list of markets

DEM demand amount of market

COST TARSOOrTALon cOSt mamx between factaries and mariets
QUTPORT:

TOTAL COST tonal transportation cost
QUANTITY ransvortation quantities
T:SUPPLY SuUDpLY COnSTRUN L
T:DEMAND demand constraunt test

MIDPORT:
LINK Tansoortation iink between factories and markets

resuit of the second query (. AoaularCuttine).. ;
RFACTORY _DATA

FACTORY

SUMFACTORY)
FAAKRET DATA

MARKET

DEM(MARKET)
ZTRANS JATA
LINKFACTORY MARKET)
GQUANTTTYILINK)
COSTILNG
ZCONSTRANT
TiSUPPLIOUANTITY SUPY
T.DEMANT(QUANTTTV.DEM)
FORIECTIVE
TOTAL_COSTHECST.QUANTTTA

Figure 5. Aa Example Session of the Protorype Svstem.

62

Soon-Young Huh BERS

10.

11.

12.

13.

14.

15.

References

. Binbasioglu, M., and Jarke, M., “Domain Specific DSS Tools for Knowledge-Based Model

Building”, Decision Support Systems 2 (1986) 213-223.

. Blanning, R., “A relational Framework for Join Implementation in Model Management”, De-

cision Support Systems 1 (1985) 69-82.

. Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User’s Guide, Scientific Press, Red-

wood City, CA, 1988

. Dolk, D., and Konsynski, B., “Knowledge Representations for Model Management Systems”,

IEEE Transactions on Software Engineering 10/6 (1984) 619-628.

. Dolk, D., “Model Management and Structured Modeling : The Role of an Information Resource

Dictionary System”, Communications of ACM 31/6 (1988) 704-718.

. Dutta, A., and Basu, A, “An Artificial Intelligence Approach to Model Management In De-

cision Support Systems”, IEEE COMPUTER 17/9 (1934) 89-97.

_Elam, J., Henderson, J., and Miller, L., “Model Management Systems : An Approach to De-

cision Support in Complex Organizations”, Proceedings of the Ist Int. Conference on Infor-
mation Systems (1980) 98-110.

. Fourer, R., Gay, D. M., and Kernighan, B. W., “A Modeling Language for Mathematical Pro-

gramming”, Management Science 36 /5 (1990) 519-554.

. Geoffrion, A., “An Introduction to Structured Modeling”, Management Science 33/5 (1987)
547-588.
Geoffrion, A., “SML: A Model Definition Language for Structured Modeling”, Western Man-

agement Science Institute, Working Paper 360, Anderson Graduate School of Management,
UCLA, August 1990.

Hogan, W. W., and Weyant J. P., “Methods and Algorithms for Energy Model Composition :
Optimization in a Network of Process Models”, Energy Models and Studies, 1983,
Amsterdam:North-Holand

Huh, S. -Y. “Modelbase Construction with Object-Oriented Constructs,” Decision Sciences
24 /2 (1993) 409-434.

Kendrick, D. and R. Krishnan, “A Comparison of Structured Modeling and GAMS,” Computer
Science in Economics and Management 2/1 (1989) 17-36.

Lamb, C., Landis, G., Orenstein, J., and Weinreb, D., “The ObjectStore Database System”,
Communications of ACM 34 /10 (1991) 50-63.

Le Claire, B., and Sharda, R., “An Object-Oriented Architecture for Decision Support
Systems”, Proceedings of the 1990 International Society for Decision Support Systems Confer-
ence (1990) 567-586.

#11% 23 Development of an Object-Oriented Mode! Management Framework for Computer Executable Algebraic Modeling Languages 63

16.

17.

18.

19.

20.

21.

22.

23.

Lenard, M., “Representing Models as Data”, Journal of Managemen; Information Systems 2 /4
(1986) 36-48.

Lenard, M., “An Object-Oriented Approach to Model Management”, Proceedings of the 20th
Hawaii International Conference on System Science 1 (1987) 509-515.

Liang, T., “A Graph-Based Approach to Model Management”, Proceedings of Seventh Inter-
national Conference on Information Systems (1986) 136-151.

Mannino, M. V., Greenberg, B. S., and Hong, S. N,, “Model Libraries: Knowledge Represen-
tation and Reasoning”, ORSA Journal on Computing 2 /3 (1990) 287-301.

Muhanna, W., and Pick, R., “Composite Models in SYMMS", Proceedings of the 21st Hawaii
Intl. Conference on System Sciences (1988) 418-427.

Muhanna, W. A., “An Object-Oriented Framework for Model Management and DSS Develop-
ment” to appear in Decision Support Systems.

Roy, A., L. Lasdon, and J. Lordeman, “ Extending Planning Languages to Include Optimization
Capabilities,” Management Science 32 (1986) 360-373.

Zdonik, S. and D. Maier, Readings in Object-Oriented Database Systems, Morgan Kaufmann,
1990.

