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ABSTRACT 

Perspective-correct texturing for correct 3D graphics images 
requires the per-pixel division, but the division can be avoided 
by midpoint algorithms. Previous approaches using midpoint 
algorithms for perspective-correct texturing evaluate the integer 
texture coordinates, which are not suitable for trilinear filtering 
used in the most applications. In this paper, we propose a 
rasterizer architecture which separates the evaluation of integer 
part and the computation of fraction parts. The fraction part of a 
texture coordinate is computed per cycle in spite of short 
pipeline depth, consequently much smaller cost than divider. The 
implemented parallel rasterizer runs at 100 Mhz clock and 
evaluates 400M pixels and 800M texture coordinates per second. 

1. INTRODUCTION 

Every pixel on the display in widespread mobile phones or PDA 
systems must be rendered in higher quality because the average 
eye-to-pixel distance is very short. In order to improve 3D 
graphics image with no visual pixel defects, every textured pixel 
on the display must be rendered with perspective-correct 
methods. [1] However, usual implementations for perspective 
correct rendering of planar polygons require a division per pixel. 
[1] Division requires long latency and large area, so division per 
pixel makes it difficult to achieve high throughput of pixel-fill 
rate with small hardware cost. 

In order to avoid division per pixel, there have been several 
studies. Some techniques to approximate hyperbolic curve with 
linear and quadratic interpolation have been presented. [5] These 
polynomial algorithms use only adders instead of dividers, but 
they are approximations with possible errors. There have been 
other approaches that use midpoint algorithms [2,3], which are 
well known for the trace of hyperbolic functions. These 
approaches which induce mid-point algorithms for perspective 
correct texturing are well summarized and published by 
Barenbrug [3]. He demonstrates that the midpoint algorithm 
makes exact integer texture coordinates for point sampling, only 
using several additions instead of a division. However, point 
sampling does not provide good image quality, and then trilinear 
filtering instead of point sampling is usually used in the most 
applications. Usual filtering methods such as trilinear filtering 
require the fraction part of texture coordinates as filtering 
coefficients. Fixed point representations including fraction parts 
can be scaled such that they take integer values only, as 
mentioned in [3], but the number of iteration are too increased to 
be used in hardware.  

In this paper, we modify midpoint algorithms to be suitable 
for hardware and present its hardware architecture and 

implementation. The fraction part of texture coordinates are 
evaluated without iteration overhead. We also demonstrate 
mipmap level switching architecture using the internal variables 
for midpoint algorithms.  

 This paper is organized as follows. First, perspective-correct 
texturing and midpoint algorithms are reviewed. After that, 
fraction evaluations and mipmap switching are explained in 
detail. And then hardware architecture is described. Finally, 
discussion and summary are offered in conclusion. 

2. BACKGROUND 

2.1. Perspective-correct texture mapping 
The perspective texture coordinates of a certain pixel (u, v) are 
calculated as follows. For triangles, the screen coordinates and 
the texture coordinates are connected by a homogeneous linear 
transformation. The relation among the screen coordinates (x, y),
the homogeneous 2D screen coordinates (x’, y’, w’) and the 
texture coordinates (u, v) is given by: 
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Therefore, texture coordinates (u, v) can be represented in 
terms of screen coordinates (x, y) in the next relation. 
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As shown in (1), two division operations or one reciprocal 
and two multiplications are required in calculating exact texture 
coordinates of one pixel. 

2.2. Midpoint Algorithm 
The idea using midpoint algorithm in perspective texture 
rendering was proposed in [3]. The key idea of [3] is that 
repetition of additions can follow hyperbolic curves within given 
precision as shown in Figure 1. Let’s assume that u and x are 
represented by only integers. We do not need to know the exact 
value of f(xi) for given xi. The exact function value f(xi) must be 
taken in limited precision, so the nearest integer ui is acceptable 
for f(xi). The difference between ui and f(xi ) is smaller than the 
precision error. Therefore, ui is the exact value allowed by given 
precision. 

The acceptable value ui for xi must be an integer inside 
acceptable region shadowed in Fig. 1. Considering both of x and 
y in (1), this condition is formulated as follows.  
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Figure 1: Integer points in the acceptable region for a hyperbolic 
curve are evaluated by a midpoint algorithm.

Figure 2: When three bits are used to represent the fraction part, 
the acceptable region width and the minimum movement of 
iteration (6) are not 1 but 1/8.

As proposed in [3], several variables are introduced:  
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Assuming d>0, to substituting (3) simplifies (2) to (4). 
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A new variable A is introduced for simplicity. When x

increases by 1, d and E are changed as shown in (5). 
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When u increases by 1, A and E are modified as follows. 
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Therefore, when E and d change by increase or decrease of x
or y, E can be restored to satisfying inequality (4) by adjusting u
with iterative additions or subtractions in (6). 

However, In order to trace a hyperbolic curve as shown in 
Fig. 1, an increment by 1 in x or y may require multiple 
increments or decrements of u depending of partial derivatives of 
the hyperbolic curve.  The iteration of additions or subtractions 
does not have upper bound generally, but mipmap [�] limits the 
derivatives such as xu ∂∂ /  to two. But still, when using texture 
filtering requires fraction parts of texture coordinates, much 
more iterations must be done as shown in Fig 2. the example in 
Fig 2 shows the case that 5 iterations of   computing (6) and 
checking (4) are required to obtain correct ui+1 from ui.  To 
calculate ui+2, 3 iterations of (6) and (4) must be computed. If 
three bits are used to represent the fraction of u, 2�23=16 

iterations must be performed in the worst case in order to obtain 
texture coordinates of one pixel. This long latency by the 
iteration wastes clock cycles in the hardware implementation, 
like divisions. This problem can be solved by the proposed 
architecture that separates integer part interpolation and fraction 
part computation.  

3. COMPUTING FRACTION OF TEXTURE 
COORDINATES

Assuming that m bit precision of the texture coordinate fraction 
is required as texture filtering coefficients, inequalities (2) are to 
be modified to (7). 

11 2

1

2

1
++ +

++
++≤<−

++
++

m
ii

ii
im

ii

ii

TSyRx

MLyKx
u

TSyRx

MLyKx
 (7) 

Instead of (7), let us consider an inequality (8) and Fig. 3.  

TSyRx

MLyKx
u

TSyRx

MLyKx

ii

ii
im

ii

ii

++
++≤<−

++
++

2

1   (8) 

Figure 3: Acceptable region is changed by (8).

Fig. 3 shows the acceptable ui defined by inequality (8). 
Inequality (8) evaluates ui by truncation while inequality (7) 
rounds off f(xi ). Rounding off computes closer ui to original 
curves than truncation, but the difference is negligible for 
enough precision. 

We introduces E’ and A’ instead of E and A defined in (3) 
and (6) so that E’ is independent of m as follows. Note that the 
second and the third in the relation (5) are still valid. 
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Therefore, substituting E’ in (8) yields: 
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Let’s take the sequence k(u) to represent binary figures of 
fraction part of u as shown in the next relation. ⎣ ⎦iu  implies the 

largest integer equal to or less than ui.
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Naturally, ⎣ ⎦iu  satisfies (10) in the case of m = 0, as shown in 

(11). Notice that (11) and (4) have the same shape such that ⎣ ⎦iu

is evaluated as described in section 2.2.  
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Figure 4: Finding from k1 to km sequentially.

We will show that evaluation of ui in fraction level can be 
separated from the evaluation of ⎣ ⎦iu . ui can be evaluated from 

only ⎣ ⎦iu  regardless of ui-1, and ⎣ ⎦iu  is evaluated from ⎣ ⎦1−iu  by 

one or two iterations by (6).  
Let u|n imply the number with n fraction bits equal to or less 

than u. Then next relations are induced easily. 
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The conditions of sequence k are induced from (12) as shown 
in (13). 
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The sequence k is obtained from k1 to km step by step as 
shown in Fig. 4. These sequential evaluations can be pipelined 
and the required hardware resource for one pipeline stage is only 
one comparator for checking (13) and one adder for updating E’.

4. LEVEL OF DETAIL AND MIPMAP 

Mipmap is pyramidal data structure of pre-processed texture data. 
[4] Trilinear filtering using mipmap provides better image 
quality than point sampling. Mipmap also limits the derivatives 
so that the iteration limit is bound in midpoint algorithms.  

Because of its pyramidal structure, the texture coordinate u

goes to the half when a mipmap level is increased by one. 

Therefore, we rewrite (8) and (9) considering mipmap level ⎣ ⎦λ

as following expressions. When a mipmap level is changed, 
internal variables E’, A’ do not need to be calculated again. Only 
one bit shift operations solve new E’, A’, When a mipmap level 
is increased by one, E and A go half and hence, one bit right shift 
operation. In the case of level-down, E’ and A’ become double, 
and one bit left shift operations are used.  
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A mipmap level is determined by level-of-detail (LOD) value 
evaluated as expressed as follows. [3,4] B’ is defined for y

similarly as A’. �� implies the difference of the LOD value and 
the current mipmap level.  
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If �� is less than 0, the mipmap level will be decreased. If ��
is equal to or more than 1, the mipmap level will be increased. 
We can check this condition without logarithm as follows. 
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5. THE HARDWARE IMPLEMENTATION 

5.1. Overall Architecture 
In this section, overall architecture of the proposed rasterizer will 
be described. Fig. 5 shows the block diagram of a basic 
rasterization unit.  

Context Register contains the variables of a current pixel 
such as position, color, depth and texture coordinates. Note that 
Context Register stores only integer part of texture coordinates.  

Pixel Interpolator interpolates the contexts by the controls of 
FSM. Internal variables E’ and d are also updated by (5) in Pixel 

Interpolator.
Texel Interpolator finds correct the integer part of texture 

coordinates by (6). Texel Interpolator has two adder sets to 
avoid iterations.  

Mipmap Switching Detector checks the condition (14) to 
determine whether a current mipmap level must be changed. 
When a mipmap level is changed, the outputs of Pixel 

Interpolator and Texel Interpolator are not updated to Context 

Register. Instead, the outputs of Mipmap Switch are updated. 
This is one cycle loss to change a mipmap level, but mipmap 
level shifting is not frequently occurred.  
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Figure 5: The block diagram of Basic Rasterization Units.

Note that Mipmap Switching Detector determines mipmap 
level shifting by using A’ of integer texture coordinates. It is 
mathematically correct to use A’ of full texture coordinates, but 
this makes no problem since a precise mipmap level threshold is 
not critical. LOD evaluator generates the fraction of LOD for a 
trilinear filtering coefficient.  

Fraction Evaluator produces the fraction part of texture 
coordinate by (13). A Fraction Evaluator block produces only 
one fraction bit by (13), but pipelining multiple Fraction 

Evaluator blocks enable to obtain multiple bits of fraction parts 
without loss of performance. 4 bit fraction is usually enough for 
trilinear filtering coefficients. Therefore, 4 pipeline stages 
produce a texture coordinate per cycle.  

Fraction Evaluator is very simple, which is only composed 
of a comparator and an adder, but the registers to contain context 
of pixel are quite large. Therefore, it is better to cascading 
several Fraction Evaluator blocks in a pipeline stage to produce 
multiple fraction bits. This reduces the number of pipeline stages 
instead of increasing delay. 

5.2. Implementation 
The proposed architecture was verified by GATE [6] and 
implemented by Verilog HDL. The implemented rasterizer has 4 
parallel basic rasterization units for 4 pixels per cycle throughput. 
Each basic rasterization unit evaluates 4 texture coordinates to 
support two level multi-textures. All the internal variables and 
texture coordinates are represented in 16 bit fixed point 
representation and the fraction parts of texture coordinates are 4 
bits. The rasterizer is pipelined into two stages to evaluate 4 bit 
fraction. It is verified from static timing analysis in 0.13um 
process that the rasterizer affords 100 Mhz clock in the worst 
case. The total gate count is 220k. 

6. CONCLUSION 

To render perspective-correct textured images, divisions are 
required per pixels. However, using dividers is very expensive in 
terms of area and speed. Dividers are also deep pipelined to 
reduce latency, but the pipeline registers to store full pixel 
context are very large. Pipelined dividers with short latency have 
large look-up-tables. [7] 

To avoid expensive divisions, the proposed rasterizer uses 
midpoint algorithms. To use midpoint algorithms instead of 
divisions require also iterative computations, but the integer 
parts of texture coordinates are evaluated without iterations due 
to the characteristics of the 3D graphics mipmap structure. 

The fraction parts of texture coordinates are evaluated in 
pipelined methods. The pipeline depth is determined on the 
precision of only fraction parts while the pipeline depth of 
divider is related on full precision. The precision of fraction part 
is usually much less than the precision of integer part. Therefore, 
the pipeline depth is much shortened and the area overhead by 
the pipeline registers becomes small. Besides, one or two 
pipeline stages as we used in hardware implementation is not 
overhead in the entire graphics systems. Alpha test or pre-depth 
tests are located between rasterizer and texture engine and 
executed in parallel with the fraction evaluation.  

We implemented the proposed architecture into real 
hardware. The implemented parallel rasterizer produces 4 pixels 
with two texture coordinates for multi-texturing per cycle. The 
rasterizer operates at 100 Mhz clock and hence gives 400M 
pixels and 800M texture coordinates per second. 
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