
DIVISION-FREE RASTERIZER FOR PERSPECTIVE-CORRECT TEXTURE FILTERING

Donghyun Kim and Lee-Sup Kim

Dept. of EECS, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of KOREA

ABSTRACT

Perspective-correct texturing for correct 3D graphics images
requires the per-pixel division, but the division can be avoided
by midpoint algorithms. Previous approaches using midpoint
algorithms for perspective-correct texturing evaluate the integer
texture coordinates, which are not suitable for trilinear filtering
used in the most applications. In this paper, we propose a
rasterizer architecture which separates the evaluation of integer
part and the computation of fraction parts. The fraction part of a
texture coordinate is computed per cycle in spite of short
pipeline depth, consequently much smaller cost than divider. The
implemented parallel rasterizer runs at 100 Mhz clock and
evaluates 400M pixels and 800M texture coordinates per second.

1. INTRODUCTION

Every pixel on the display in widespread mobile phones or PDA
systems must be rendered in higher quality because the average
eye-to-pixel distance is very short. In order to improve 3D
graphics image with no visual pixel defects, every textured pixel
on the display must be rendered with perspective-correct
methods. [1] However, usual implementations for perspective
correct rendering of planar polygons require a division per pixel.
[1] Division requires long latency and large area, so division per
pixel makes it difficult to achieve high throughput of pixel-fill
rate with small hardware cost.

In order to avoid division per pixel, there have been several
studies. Some techniques to approximate hyperbolic curve with
linear and quadratic interpolation have been presented. [5] These
polynomial algorithms use only adders instead of dividers, but
they are approximations with possible errors. There have been
other approaches that use midpoint algorithms [2,3], which are
well known for the trace of hyperbolic functions. These
approaches which induce mid-point algorithms for perspective
correct texturing are well summarized and published by
Barenbrug [3]. He demonstrates that the midpoint algorithm
makes exact integer texture coordinates for point sampling, only
using several additions instead of a division. However, point
sampling does not provide good image quality, and then trilinear
filtering instead of point sampling is usually used in the most
applications. Usual filtering methods such as trilinear filtering
require the fraction part of texture coordinates as filtering
coefficients. Fixed point representations including fraction parts
can be scaled such that they take integer values only, as
mentioned in [3], but the number of iteration are too increased to
be used in hardware.

In this paper, we modify midpoint algorithms to be suitable
for hardware and present its hardware architecture and

implementation. The fraction part of texture coordinates are
evaluated without iteration overhead. We also demonstrate
mipmap level switching architecture using the internal variables
for midpoint algorithms.

 This paper is organized as follows. First, perspective-correct
texturing and midpoint algorithms are reviewed. After that,
fraction evaluations and mipmap switching are explained in
detail. And then hardware architecture is described. Finally,
discussion and summary are offered in conclusion.

2. BACKGROUND

2.1. Perspective-correct texture mapping
The perspective texture coordinates of a certain pixel (u, v) are
calculated as follows. For triangles, the screen coordinates and
the texture coordinates are connected by a homogeneous linear
transformation. The relation among the screen coordinates (x, y),
the homogeneous 2D screen coordinates (x’, y’, w’) and the
texture coordinates (u, v) is given by:

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛=
'

'

'

1
'

'
,

'

'
,

w

y

x

TSR

QPN

MLK

v

u

w

y

w

x
yx

Therefore, texture coordinates (u, v) can be represented in
terms of screen coordinates (x, y) in the next relation.

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
++

++
++=

TSyRx

QPyNx

TSyRx

MLyKx
vu ,, (1)

As shown in (1), two division operations or one reciprocal
and two multiplications are required in calculating exact texture
coordinates of one pixel.

2.2. Midpoint Algorithm
The idea using midpoint algorithm in perspective texture
rendering was proposed in [3]. The key idea of [3] is that
repetition of additions can follow hyperbolic curves within given
precision as shown in Figure 1. Let’s assume that u and x are
represented by only integers. We do not need to know the exact
value of f(xi) for given xi. The exact function value f(xi) must be
taken in limited precision, so the nearest integer ui is acceptable
for f(xi). The difference between ui and f(xi) is smaller than the
precision error. Therefore, ui is the exact value allowed by given
precision.

The acceptable value ui for xi must be an integer inside
acceptable region shadowed in Fig. 1. Considering both of x and
y in (1), this condition is formulated as follows.

5.05.0 +
++
++

≤<−
++
++

TSyRx

MLyKx
u

TSyRx

MLyKx

ii

ii
i

ii

ii (2)

II - 1530-7803-8251-X/04/$17.00 ©2004 IEEE ISCAS 2004

➠ ➡

Figure 1: Integer points in the acceptable region for a hyperbolic
curve are evaluated by a midpoint algorithm.

Figure 2: When three bits are used to represent the fraction part,
the acceptable region width and the minimum movement of
iteration (6) are not 1 but 1/8.

As proposed in [3], several variables are introduced:

)2()2()2(),(),,(

2),(

MTyLSxKRyxuduyxE

T)Sy(Rxyxd

+−+−+−=
++=

 (3)

Assuming d>0, to substituting (3) simplifies (2) to (4).

0),,(),(≤<− iiiii uyxEyxd (4)

A new variable A is introduced for simplicity. When x

increases by 1, d and E are changed as shown in (5).

)(),,(),,1(

2),(),1(

212)(

uAuyxEuyxE

Ryxdyxd

K)Ru(uA

+=+
+=+

−−=
 (5)

When u increases by 1, A and E are modified as follows.

RuAuA

yxduyxEuyxE

2)()1(

),(),,()1,,(

+=+
+=+

 (6)

Therefore, when E and d change by increase or decrease of x
or y, E can be restored to satisfying inequality (4) by adjusting u
with iterative additions or subtractions in (6).

However, In order to trace a hyperbolic curve as shown in
Fig. 1, an increment by 1 in x or y may require multiple
increments or decrements of u depending of partial derivatives of
the hyperbolic curve. The iteration of additions or subtractions
does not have upper bound generally, but mipmap [�] limits the
derivatives such as xu ∂∂ / to two. But still, when using texture
filtering requires fraction parts of texture coordinates, much
more iterations must be done as shown in Fig 2. the example in
Fig 2 shows the case that 5 iterations of computing (6) and
checking (4) are required to obtain correct ui+1 from ui. To
calculate ui+2, 3 iterations of (6) and (4) must be computed. If
three bits are used to represent the fraction of u, 2�23=16

iterations must be performed in the worst case in order to obtain
texture coordinates of one pixel. This long latency by the
iteration wastes clock cycles in the hardware implementation,
like divisions. This problem can be solved by the proposed
architecture that separates integer part interpolation and fraction
part computation.

3. COMPUTING FRACTION OF TEXTURE
COORDINATES

Assuming that m bit precision of the texture coordinate fraction
is required as texture filtering coefficients, inequalities (2) are to
be modified to (7).

11 2

1

2

1
++ +

++
++≤<−

++
++

m
ii

ii
im

ii

ii

TSyRx

MLyKx
u

TSyRx

MLyKx
 (7)

Instead of (7), let us consider an inequality (8) and Fig. 3.

TSyRx

MLyKx
u

TSyRx

MLyKx

ii

ii
im

ii

ii

++
++≤<−

++
++

2

1 (8)

Figure 3: Acceptable region is changed by (8).

Fig. 3 shows the acceptable ui defined by inequality (8).
Inequality (8) evaluates ui by truncation while inequality (7)
rounds off f(xi). Rounding off computes closer ui to original
curves than truncation, but the difference is negligible for
enough precision.

We introduces E’ and A’ instead of E and A defined in (3)
and (6) so that E’ is independent of m as follows. Note that the
second and the third in the relation (5) are still valid.

KuRuA

MLyKxyxuduyxE

22)('

)(2),(),,('

−=
++−=

 (9)

Therefore, substituting E’ in (8) yields:

0),,('
2

),(
≤<− iiim

ii uyxE
yxd

 (10)

Let’s take the sequence k(u) to represent binary figures of
fraction part of u as shown in the next relation. ⎣ ⎦iu implies the

largest integer equal to or less than ui.

⎣ ⎦ }{ 10
21

,k
k

uu j

m

j
j

j

ii ∈+= ∑
=

⎣ ⎦ 0),,('),(≤<− iiiii uyxEyxd (11)

Naturally, ⎣ ⎦iu satisfies (10) in the case of m = 0, as shown in

(11). Notice that (11) and (4) have the same shape such that ⎣ ⎦iu

is evaluated as described in section 2.2.

II - 154

➡ ➡

Figure 4: Finding from k1 to km sequentially.

We will show that evaluation of ui in fraction level can be
separated from the evaluation of ⎣ ⎦iu . ui can be evaluated from

only ⎣ ⎦iu regardless of ui-1, and ⎣ ⎦iu is evaluated from ⎣ ⎦1−iu by

one or two iterations by (6).
Let u|n imply the number with n fraction bits equal to or less

than u. Then next relations are induced easily.

⎣ ⎦

⎣ ⎦

0),,('
2

),(

),(
2

),('),,('

22

1
1

1

0

1

1
1
1

1

≤<−

+=

==

+=+=

+
+

+

+

=
+
+

+ ∑

niiin

ii

iin

n
niiiniii

imiii

n

j
j

j

in

n
nini

uyxE
yxd

yxd
k

uyxEuyxE

uuuu

k
u

k
uu

 (12)

The conditions of sequence k are induced from (12) as shown
in (13).

1
2

),(
),,('

2

),(

00),,('
2

),(

11

11

=→−≤<−

=→≤<−

++

++

nn

ii
niiin

ii

nniiin

ii

k
yxd

uyxE
yxd

kuyxE
yxd

 (13)

The sequence k is obtained from k1 to km step by step as
shown in Fig. 4. These sequential evaluations can be pipelined
and the required hardware resource for one pipeline stage is only
one comparator for checking (13) and one adder for updating E’.

4. LEVEL OF DETAIL AND MIPMAP

Mipmap is pyramidal data structure of pre-processed texture data.
[4] Trilinear filtering using mipmap provides better image
quality than point sampling. Mipmap also limits the derivatives
so that the iteration limit is bound in midpoint algorithms.

Because of its pyramidal structure, the texture coordinate u

goes to the half when a mipmap level is increased by one.

Therefore, we rewrite (8) and (9) considering mipmap level ⎣ ⎦λ

as following expressions. When a mipmap level is changed,
internal variables E’, A’ do not need to be calculated again. Only
one bit shift operations solve new E’, A’, When a mipmap level
is increased by one, E and A go half and hence, one bit right shift
operation. In the case of level-down, E’ and A’ become double,
and one bit left shift operations are used.

⎣ ⎦ ⎣ ⎦

⎣ ⎦

⎣ ⎦
KuRuA

MLyKxyxuduyxE

TSyRx

MLyKx
u

TSyRx

MLyKx

ii

ii
im

ii

ii

λ

λ

λλ

2

2
2)('

)(
2

2
),(),,('

2

1

2

1

2

1

−=

++−=

++
++

≤<−
++
++

A mipmap level is determined by level-of-detail (LOD) value
evaluated as expressed as follows. [3,4] B’ is defined for y

similarly as A’. �� implies the difference of the LOD value and
the current mipmap level.

(){ } dBvBuAvAu

d

Bv

d

Av

d

Bu

d

Au

y

v

x

v

y

u

x

u

22

2

2

log',',','maxlog

'
,

'
,

'
,

'
maxlog

,,,maxlog

−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂=∆λ

If �� is less than 0, the mipmap level will be decreased. If ��
is equal to or more than 1, the mipmap level will be increased.
We can check this condition without logarithm as follows.

()
() dBvBuAvAu

dBvBuAvAu

<↔<∆

≥↔≥∆

',',','max0

2',',','max1

λ

λ
 (14)

5. THE HARDWARE IMPLEMENTATION

5.1. Overall Architecture
In this section, overall architecture of the proposed rasterizer will
be described. Fig. 5 shows the block diagram of a basic
rasterization unit.

Context Register contains the variables of a current pixel
such as position, color, depth and texture coordinates. Note that
Context Register stores only integer part of texture coordinates.

Pixel Interpolator interpolates the contexts by the controls of
FSM. Internal variables E’ and d are also updated by (5) in Pixel

Interpolator.
Texel Interpolator finds correct the integer part of texture

coordinates by (6). Texel Interpolator has two adder sets to
avoid iterations.

Mipmap Switching Detector checks the condition (14) to
determine whether a current mipmap level must be changed.
When a mipmap level is changed, the outputs of Pixel

Interpolator and Texel Interpolator are not updated to Context

Register. Instead, the outputs of Mipmap Switch are updated.
This is one cycle loss to change a mipmap level, but mipmap
level shifting is not frequently occurred.

II - 155

➡ ➡

Pixel Interpolator

x, y, LOD and other
context

A’E’d u|0

Texel Interpolator

⎣ ⎦),,(' iii uyxE

⎣ ⎦),,1(' iii uyxE +

⎣ ⎦iu

⎣ ⎦),,1(' 1++ iii uyxE ⎣ ⎦)(' 1+iuA ⎣ ⎦1+iu

),1(ii yxd +

Mipmap
Switching
Detector

Mipmap
Switch

LOD
Evaluator

Fraction Evaluator

1/2

x, y, LOD and other
context

E’d u|1

2

),(ii yxd
),,('

1iii uyxE
1iu

controls

controls

Interpolation
coefficients

Context
Register

Pipeline
Register

1/2

Fraction Evaluator

x, y, LOD and other
context

E’d u|2
Pipeline
Register

22

),(ii yxd
),,('

2iii uyxE
2iu

⎣ ⎦)(' 1+iuA

),(ii yxd

Figure 5: The block diagram of Basic Rasterization Units.

Note that Mipmap Switching Detector determines mipmap
level shifting by using A’ of integer texture coordinates. It is
mathematically correct to use A’ of full texture coordinates, but
this makes no problem since a precise mipmap level threshold is
not critical. LOD evaluator generates the fraction of LOD for a
trilinear filtering coefficient.

Fraction Evaluator produces the fraction part of texture
coordinate by (13). A Fraction Evaluator block produces only
one fraction bit by (13), but pipelining multiple Fraction

Evaluator blocks enable to obtain multiple bits of fraction parts
without loss of performance. 4 bit fraction is usually enough for
trilinear filtering coefficients. Therefore, 4 pipeline stages
produce a texture coordinate per cycle.

Fraction Evaluator is very simple, which is only composed
of a comparator and an adder, but the registers to contain context
of pixel are quite large. Therefore, it is better to cascading
several Fraction Evaluator blocks in a pipeline stage to produce
multiple fraction bits. This reduces the number of pipeline stages
instead of increasing delay.

5.2. Implementation
The proposed architecture was verified by GATE [6] and
implemented by Verilog HDL. The implemented rasterizer has 4
parallel basic rasterization units for 4 pixels per cycle throughput.
Each basic rasterization unit evaluates 4 texture coordinates to
support two level multi-textures. All the internal variables and
texture coordinates are represented in 16 bit fixed point
representation and the fraction parts of texture coordinates are 4
bits. The rasterizer is pipelined into two stages to evaluate 4 bit
fraction. It is verified from static timing analysis in 0.13um
process that the rasterizer affords 100 Mhz clock in the worst
case. The total gate count is 220k.

6. CONCLUSION

To render perspective-correct textured images, divisions are
required per pixels. However, using dividers is very expensive in
terms of area and speed. Dividers are also deep pipelined to
reduce latency, but the pipeline registers to store full pixel
context are very large. Pipelined dividers with short latency have
large look-up-tables. [7]

To avoid expensive divisions, the proposed rasterizer uses
midpoint algorithms. To use midpoint algorithms instead of
divisions require also iterative computations, but the integer
parts of texture coordinates are evaluated without iterations due
to the characteristics of the 3D graphics mipmap structure.

The fraction parts of texture coordinates are evaluated in
pipelined methods. The pipeline depth is determined on the
precision of only fraction parts while the pipeline depth of
divider is related on full precision. The precision of fraction part
is usually much less than the precision of integer part. Therefore,
the pipeline depth is much shortened and the area overhead by
the pipeline registers becomes small. Besides, one or two
pipeline stages as we used in hardware implementation is not
overhead in the entire graphics systems. Alpha test or pre-depth
tests are located between rasterizer and texture engine and
executed in parallel with the fraction evaluation.

We implemented the proposed architecture into real
hardware. The implemented parallel rasterizer produces 4 pixels
with two texture coordinates for multi-texturing per cycle. The
rasterizer operates at 100 Mhz clock and hence gives 400M
pixels and 800M texture coordinates per second.

7. ACKNOWLEGEMENT

This work is supported in part by SAMSUNG Electronics and A
Collaborative Project for Excellence in Basic System IC
Technology.

8. REFERENCES

[1] J.F. Blinn, “Hyperbolic Interpolation”, IEEE Computer

Graphics and Applications, pp. 89-94, July 1992.
[2] M. Pitteway, et al., “Algorithms for drawing ellipses or
hyperbolae with a digital plotter”, Computer Journal, 10(3), pp.
282-289, 1967.
[3] B. Barenbrug, et al., “Algorithms for Division Free
Perspective Correct Rendering”, Proceeding of SIGGRAPH

/EUROGRAPHICS workshop on Graphics Hardware, pp. 7-13,
2000.
[4] J. Ewins, et al., “MIP-map level selection for texture
mapping”, IEEE Transactions on Visualization and Computer

Graphics, vol.4, no. 4, pp. 17-29, 1998.
[5] M. Demirer, et al. “Approximation Techniques for High
Performance Texture Mapping”, Computer&Graphics, vol. 0, no.
4, pp 483-490, 1996.
[6] Inho. Lee, et al, “A hardware-like high-level language based
environment for 3d graphics architecture exploration”,
Proceedings of the 2003 International Symposium on Circuits

and Systems, vol. 2, pp 512–515, May, 2003.
[7] P.Hung, et al, “Fast division algorithm with a small lookup
table”, Conference Record of the 33rd Asilomar Conference on

Signals, Systems and Computers, Vol.2, pp 1465-1468, 1999.

II - 156

➡ ➠

