

Proceedings
0-7695-187
Financial Model-Base Construction
for Flexible Model Manipulation of Models and Solvers

Keun-Woo Lee Soon-Young Huh
Graduate School of Management, Korea Advanced Institute of Science and Technology

{kwlee, syhuh}@kgsm.kaist.ac.kr

Abstract

As financial markets are volatile and rapidly changing,

preciseness and agility in price evaluation and risk
assessment in the portfolios are more important and
decision support systems containing diverse financial
products and pricing algorithms have been adopted to
support those quantitative analysis tasks. To effectively use
the financial DSS, the trader should be able to know which
algorithms are applicable to a specific product and to
match flexibly the product with appropriate algorithms
depending on his product-evaluation purposes. This paper
proposes model-base construction mechanisms in a
financial DSS that facilitates such mix-and-match
operations between financial products (considered as
models) and pricing algorithms (considered as solvers). As
a conceptual framework for the model-base, we use the
generic model concept for developing system constructs
and procedures. The constructs and procedures of the
model-base are represented as self-contained and well-
modularized objects that can be applied to a wide variety
of problem domains.

1. Introduction

As financial markets are volatile and rapidly change

[16,22], it is increasingly important for a trader, who
manages a portfolio of financial products, to be able to
cope with risks of losses arising from the fluctuations in
market prices of the constituting products [6]. Specifically,
the trader evaluates each financial product of his portfolio
by calculating analysis values such as net present value
(NPV) [14] and price movement indicators, and estimates
the extent of potential loss in each product using the
analysis values. Then, he controls the maximum
permissible loss of the portfolio by adjusting the
investment amount in each product. For the actual
algebraic instructions to calculate the analysis values,
financial researchers and practitioners have developed
various pricing algorithms and are continually creating
new algorithms to improve accuracy of such calculations
 of the 36th Hawaii International Conference on System Sciences (H
4-5/03 $17.00 © 2002 IEEE
[14,15,17]. Thus, when a trader calculates the analysis
values of a financial product, he adopts a pricing algorithm
that is most appropriate to his product-evaluation purposes
among the algorithms that can be applied to the product.

However, it is a very difficult task for a trader to select
an appropriate pricing algorithm and apply it to a financial
product manually since the algorithm is usually based on a
complicated mathematical formula. Moreover, since a
pricing algorithm can be applied to one or more financial
products and a product can be evaluated with one or more
algorithms, determining whether an algorithm can be
applied to a certain product or not is also not a trivial task.
This complexity in applying pricing algorithms call for the
creation of financial decision support systems (DSS) to
help a trader evaluate a financial product using various
pricing algorithms in an easy and timely manner.

In the perspective of traditional DSS areas, the financial
product and pricing algorithm can be considered as a
model and a solver, respectively. A model is defined as a
set of declarative statements describing a real-world
problem that the DSS wants to solve, and a solver is
defined as a set of algebraic instructions to solve the
modeled real-world problem [4,11,13,20]. In the financial
DSS, a real-world problem is evaluation of a financial
product, and thus we can conceptualize a financial product
as a model for its evaluation problem by specifying its
properties needed for the evaluation and the analysis
values resulted from the evaluation. Also, we can
conceptualize a pricing algorithm as a solver since it refers
to the properties of a financial product and calculates the
analysis values of the product. In this capacity, a financial
product and a pricing algorithm are called a product
model and a financial solver, respectively.

To support trader’s evaluation of product models
effectively, the financial DSS should enable a trader to mix
and match product models and financial solvers according
to his product-evaluation purposes. For the mix-and-match
operation, when a trader evaluates a product model, the
financial DSS should be able to intelligently provide
financial solvers that can be applied to the model so that
the trader can adopt a financial solver easily and at the
same time he is prevented from misusing financial solvers
ICSS’03)

Pro
0-7
that are syntactically and semantically incompatible with
the product model. After the trader selects a financial
solver, complicated tasks such as the application of the
selected solver to the product model and calculation of the
analysis values should be performed autonomously
without the trader’s intervention as well. This is very
beneficial to non-professional traders, and sometimes to
knowledgeable professional traders, because the semantics
of product models and financial solvers are complicated
and the choice and application of compatible financial
solvers for a given product model is not a trivial task.

Despite the needs and benefits of the mix-and-match
operation, however, most DSS researches do not provide
satisfactory discussion for such operations. This is because
they have primarily focused on the management science or
operations research (MS/OR) models [12,21] that have
different characteristics from the product models. Unlike
the product models, MS/OR models have a standardized
formal structure so that a solver can access and interpret
them in a uniform manner. For example, every linear
programming (LP) model can be considered as an
objective function restricted by several constraints. Thus, a
solver such as the simplex method can treat any LP model
in a same way by just syntactically interpreting its
structure whether it is for a transportation problem or a
feed mix problem. On the other hand, product models do
not have such a standardized formal structure, and thus a
financial solver may have to access syntactically different
problem statements for different financial products. For
example, Black-Scholes method [14], a representative
financial solver, should be able to access the stock price in
case of evaluating a stock option but the exchange rate in
case of a currency option. That is, a financial solver should
be able to access appropriate statements for each product
model even though they are syntactically different.

Recognizing these requirements and difficulties, in this
paper, we propose model-base construction mechanisms in
a financial DSS that facilitates the mix-and-match
operation between product models and financial solvers.
Specifically, we adopt the generic model concept [13] as a
conceptual framework for representing product models
and financial solvers systematically. The generic model
concept presents an effective modeling scheme to
represent management science or operations research
(MS/OR) models in a unified manner. Especially, by
providing flexible building blocks to conceptualize models
and solvers, the modeling scheme accommodates wide
applicability to various problem domains including
optimization, forecasting and queuing models.

This paper is organized as follows. Section 2 briefly
reviews the literature on model-and-solver integration for
supporting the mix-and-match operation. Section 3
describes the systematic representations for models and
solvers using the generic model concept. Based on the
representations, section 4 presents constructs and
 ceedings of the 36th Hawaii International Conference on System Sciences (H
695-1874-5/03 $17.00 © 2002 IEEE
procedures for a financial model-base that facilitates the
mix-and-match operation between product models and
financial solvers. The final section discusses the results
and contributions of the paper and provides future research
directions.

2. Literature on model and solver

integration

Among the previous model management researches in

DSSs, we can reference the following three approaches for
the model and solver integration according to the
interfacing scheme that defines how a solver is applied to a
model and accesses data values from the model.

The first approach has focused on an effective model
representation so that a solver can interpret models easily
when it solves the modeled real-world problems [8,9,11].
A solver is defined as an executable application, and it
accepts a model as input data to solve the modeled real-
world problem. Many researches in this approach
developed modeling languages such as SML [11] and
AMPL [8] to represent a model as a form that can be
readable by the solver applications and at the same time to
support a human modeler’s problem modeling. However,
since they primarily focused on MS/OR models which a
solver can understand easily due to their standardized
formal structure, considering how a solver application find
out statements of a model, which are necessary for its
problem solving task, was not satisfactorily discussed.

The second approach has also focused on an effective
model representation and it incorporated the interfacing
scheme between models and solvers into the model
representation [13,18,19,25]. Most researches in this
approach adopt object-oriented methodology, and define a
model as an object which has member operations
implementing interfacing schemes with its solvers. Based
on the object-oriented mechanisms such as polymorphism
and inheritance, these researches have many benefits for
reusing or extending the model objects. However, this
approach has a disadvantage in system maintenance:
whenever a new solver is created or an existing solver is
modified, every model that can be solved by the new or
modified solver should be also revised to reflect the
solver’s changes into its member operations.

The last approach has focused on the underlying system
architecture for the model and solver integration
[5,10,23,24]. Researches in this approach provided
detailed system constructs and procedures for system
developers to implement DSS applications effectively.
However, the constructs and procedures from those
researches did not have enough generality to be applied to
DSSs in various problem domains since they were
designed depending on structures of the models and
solvers that the researches dealt with.

In this sense, the three approaches are still
ICSS’03)

Pr
0-
unsatisfactory in supporting the integration of models and
solvers. Those limitations, as mentioned earlier, are
derived from that the previous researches have primarily
focused on MS/OR models that are relatively stable and
standardized in comparison with the product models. In
the following sections, we develop mechanisms for a
financial model-base that supports continually changing
but not standardized product models.

3. Model and solver representations using

generic model concept

This section defines the model and solver

representations adopting the generic model concept as a
conceptual framework. Based on these representations, we
develop detailed structures and mechanisms for product
models and financial solvers, which will be discussed in
the following sections.

First, we introduce a solver as an independent construct,
which was rather hard-wired into the models in the
original generic model concept. Hard-wiring a solver into
models is not desirable since it mixes the solver’s
implementation with the models’ and makes the models
harder to be understood and maintained. Also, it is difficult
to add new solvers or vary existing ones when the solver is
an integral part of a model. We can avoid these problems
by encapsulating solvers as an independent construct.

A model is responsible for maintaining and updating all
the problem statements, each of which is either an input or
output of the problem. For example, a product model for
an option maintains the properties of the option (e.g.,
exercise price and maturity date) and the analysis values
(e.g., NPV and price movement indicators). An end-user of
the financial DSS interacts with the product model to
evaluate the option. He sets the values of the properties
that are the inputs of the evaluation, and obtains the results
from the analysis values, which are the outputs. On the
other hand, a solver is responsible for calculating the
outputs of the problem from the inputs. For the calculation,
it implements a solving algorithm such as Black-Scholes
method, binomial method, and finite difference method,
and maintains its own inputs and outputs for the algorithm.
In the option’s example, whenever the user requests
evaluation of an option, the product model for the option
forwards the responsibility of the analysis value
calculation to its solver, which is formerly specified by the
solver. After finishing the calculation, the solver returns its
results to the model, and then the user can obtain the
results.

Figure 1 shows the conceptual representations of a
model, Model_A, and a solver, Solver_A, and illustrates
their interactions. Conceptually, every model is defined
with a set of ports regardless of problem domains and
modeling paradigms. A port encapsulates a single problem
statement of its model, and thus it becomes an external
 oceedings of the 36th Hawaii International Conference on System Sciences (H
7695-1874-5/03 $17.00 © 2002 IEEE
interface of a model. A user can interact with a model
through the ports. With respect to the interaction, the ports
of a model are classified into two types: input ports
(called inports) filled by a user and output ports (called
outports) provided to the user as problem-solving results.
For example, an option is represented by specifying a set
of ports that stands for its properties and analysis values.
The ports for the properties become inports and the ports
for the analysis values become outports. In Figure 1,
Model_A has three inports (Inport_1, Inport_2, and
Inport_3) and one outport (Outport_1).

On the other hand, a solver consists of a set of ports and
a calculation module. The ports of a solver are also
classified into inports and outports that contain input and
output values of the problem-solving task, respectively.
Solver_A in Figure 1 has three inports (Inport_a, Inport_b,
and Inport_c) and one outport (Outport_a). Each of the
arrows denotes the movement of port values between
Model_A and Solver_A. Initially, a user fills port values
into the Model_A’s inports. When Solver_A is applied to
Model_A, the port values in Model_A’s inports are
delivered to Solver_A’s inports. Then, the calculation
module of Solver_A performs the problem-solving task,
and through Outport_a, the result value is delivered to
Model_A’s Outport_1. Such a one-to-one relationship
between a model’s port and a solver’s port throughout the
movement of the port value is called a port-mapping.

Solver_A
Model_A

Calculation
Module

Inport_1

Inport_2

Inport_3

Outport_1

Inport_a

Inport_b

Inport_c

Outport_a

Figure 1. Model and solver representations using

generic model concept.

4. Constructs and procedures for financial

model-base

This section defines system constructs and procedures

for facilitating the mix-and-match operation between
product models and financial solvers in a financial DSS.

ICSS’03)

Pr
0-
4.1. Basic constructs for the model and solver
representations

As basic constructs for representing product models

and financial solvers, we define the following three
classes: ProductModel, FinancialSolver, and Port. First,
Port class encapsulates the port that is the most primitive
base element of product models and financial solvers. To
represent their diverse semantics, Port class should be able
to hold various data formats such as a single value (e.g.,
the exercise price of a stock option), multiple values (e.g.,
a time-series of the market price), and a function of other
ports (e.g., the coupon amount of a bond is the product of
the coupon rate and the face amount). The following
attributes are included in Port class to store such various
forms of port values:
y The name is a unique identifier for the port.
y The description is a general textual documentation

for the meaning of the port.
y The dimension is the unit used to measure the port

value. It includes not only physical units but also
logical conventions in financial domains. For
example, the dimension of the interest rate can be
‘% with semi-annual (SA) compounding’. The ‘%’ is
the physical unit and the ‘SA’ means that the
interests are compounded two times per annum, i.e.,
every six months.

y The format is the data type of the port value. It
specifies whether the port has a numeric value or a
text string and whether it has a single value, a list of
values, or a matrix.

y The value is the actual value of the port. It can be a
 oceedings of the 36th Hawaii International Conference on System Sciences (
7695-1874-5/03 $17.00 © 2002 IEEE
mathematical formula if the port represents a
function.

y The iostate is an interfacing role of the port, whether
it is an inport or an outport.

By aggregating Port class, ProductModel and
FinancialSolver classes encapsulate product models and
financial solvers. Figure 2 shows an object data model for
the three classes with an example for a stock option and
Black-Scholes method using the class diagram of Unified
Modeling Language (UML) [3]. In Figure 2,
ProductModel and FinancialSolver classes have two one-
to-many aggregations named inports and outports with
Port class to indicate their inports and outports,
respectively. Also, FinancialSolver class has a member
operation named calculate() to implement its calculation
module.

Although ProductModel class has generality in
representing diverse product models by aggregating Port
class, it is required to define more specialized classes for
some product models that need product-specific operations.
For example, a product model for option products must
have operations for exercise management, and a product
model for bonds must have operations for redemption
processing [6,14]. Such specialized classes are interrelated
to one another through the inheritance mechanism such
that a more specific class is expanded by incrementally
modifying a more general class. At the top of the
inheritance hierarchy, ProductModel as a meta-model class
provides general structural basis characterized by Port
class for other classes. Figure 3(a) shows an example of
the inheritance hierarchy for three kinds of financial
products: futures, options, and bonds. On the other hand,
FinancialSolver class is also specialized for algorithm-
1*

1*

inports

outports

1 *

1 *

inports

outports

StockOption
: ProductModel

name=“IBM”
description=“Option

on IBM stock”

<<instanceOf>>

: Port

name=“Exercise_Price”
description=“”
dimension=“”
format=“number”
iostate=“inport”

<<instanceOf>>

ProductModel

name: string
description: string

Port

name: string
description: string
dimension: string
format: string
value: string
iostate: string

BlackScholes
: FinancialSolver

name=“Black-Scholes
method”

description=“”

FinancialSolver

name: string
description: string

<<instanceOf>>

calculate(): number

Figure 2. An object data model for ProductModel, FinancialSolver, and Port classes.
HICSS’03)

Procee
0-769
specific operations needed for each pricing algorithm as
ProductModel class is specialized for product-specific
operations. Figure 3(b) shows an example of the
inheritance hierarchy for some financial solvers [14,15,17].

These class inheritances lead to effective division of
tasks and responsibilities between more general classes
and their specialized classes. More general classes take
care of generic tasks necessary for a broad range of models
and solvers, and their specialized classes focus only on
their product-specific or algorithm-specific tasks and
inherently have the benefits of the generic tasks as well.
Thus, we can create a new class for a product model
(financial solver) and make it conform to the model
(solver) representation characterized by the ports only by
inheriting it from ProductModel (FinancialSolver) class or
its specialized classes.

4.2. Port-mapping table

To evaluate a product model using a financial solver,

the financial DSS should establish port-mappings between
them for the solver to be able to get the inport values from
appropriate ports of the product model and return the
 dings of the 36th Hawaii International Conference on System Sciences (
5-1874-5/03 $17.00 © 2002 IEEE
outport values. Such port-mappings are dynamically
registered and removed as a new product model or
financial solver is added or an existing one is changed.
The port-mapping table is an information registry for
managing such dynamically changing port-mappings
effectively. It maintains three pieces of information: a
model-solver pair to be matched, a port pair of the model
and solver, and their port types. The first two show how to
establish a port-mapping for the designated pair of a
product model and a financial solver, and the last
discriminates whether the port-mapping is for inports or
outports. Figure 4 shows the conceptual structure of a port-
mapping table with the model and solver shown in Figure
1.

With the port-mapping table, we can get the following
three advantages. First, the financial DSS application
become independent of continually changing port-
mappings as they are separated from the application
program and maintained in the port-mapping table. Thus,
even when a new product model or a financial solver is
added or an existing one is changed, the application needs
not to be re-implemented or re-compiled to reflect the
changes of the port-mappings, which would be required if
ProductModel

Option BondFuture

AmericanOptionEuropeanOptionBondFuture USTreasuryBond

ProductModel

Option BondFuture

AmericanOptionEuropeanOptionBondFuture USTreasuryBond

FinancialSolver

Analytic
Approximation

TrinomialBinomial

Lattice Simulation

FiniteDifference BlackScholes MonteCarlo
Simulation

FinancialSolver

Analytic
Approximation

TrinomialBinomial

Lattice Simulation

FiniteDifference BlackScholes MonteCarlo
Simulation

(a) An example of the class inheritance hierarchy for product models

(a) An example of the class inheritance hierarchy for financial solvers
Figure 3. Class inheritance hierarchies for product models and financial solvers.
HICSS’03)

Proce
0-76
the port-mappings were hard-coded in the application.
Second, the financial DSS can find out financial solvers
that can be applied to a specific product model by
identifying solvers that have port-mappings with the
product model in the port-mapping table. These financial
solvers will be provided for traders who want to evaluate
the product model. Last, managing the complex
relationships between product models and financial
solvers becomes easy and familiar to the system
administrator since he can manipulate port-mappings as if
he treats data in database tables.

OutportOutport_aSolver_AOutport_1Model_A

InportInport_cSolver_AInport_3Model_A

InportInport_bSolver_AInport_2Model_A

InportInport_aSolver_AInport_1Model_A

Port TypeSolver PortSolverModel PortModel

OutportOutport_aSolver_AOutport_1Model_A

InportInport_cSolver_AInport_3Model_A

InportInport_bSolver_AInport_2Model_A

InportInport_aSolver_AInport_1Model_A

Port TypeSolver PortSolverModel PortModel

Port Mapping Table

Figure 4. An example context

of a port-mapping table.

4.3. Application of financial solver to product

model

Figure 5 shows an example procedure for application of

a financial solver to a product model. The financial DSS

h
so
u
h
S
o

S
o
th
se
c
m
to
m
a
re
a
re
⑦
c
p
a

p
in
ta
e
a

 edings of the 36th Hawaii International Conference on System Sciences (H
95-1874-5/03 $17.00 © 2002 IEEE
as two product models, M1 and M2, and two financial
lvers, S1 and S2, and the trader wants to evaluate M1

sing S1. As shown in the port-mapping table, M1 and S1
ave three port-mappings: two for their inports (MP1-
P1 mapping and MP2-SP2 mapping) and one for their
utports (MP3-SP3 mapping).

First, when the trader starts the evaluation of M1 using
1 ①, M1 looks up the port-mappings between M1 and S1
n their inports in the port-mapping table ②. On receiving
e port-mappings from the port-mapping table ③, M1
nds its inport values to S1 and sets each of them in the

orresponding inport of S1 according to the received port-
appings ④. After setting all the inports, M1 requests S1
 calculate analysis values ⑤. Then, using the calculation
odule CM1, S1 performs the analysis value calculation,

nd stores the result in its outport. To return the calculation
sult to M1, S1 looks up the port-mappings between M1

nd S1 on their outports in the port-mapping table ⑥. On
ceiving the port-mapping from the port-mapping table
, S1 sends the result to M1 and sets it in the

orresponding outport of M1 according to the received
ort-mapping ⑧. Finally, M1 routes the result (i.e., the
nalysis value of M1) to the trader ⑨.

As shown in this example, the solver-application
rocedure is performed autonomously based on the
terfacing information registered in the port-mapping
ble without any involvement of the trader. A trader can

valuate a financial product just by designating the pricing
lgorithm to be used, even if he does not have any
Financial Solvers

S2

Product Models

M2

Trader

① Evaluate M1 using S1

② Look up inport-mappings
of M1 and S1

③ Return the inport-mappings
of M1 and S1

④ Setting inport values of M1 in the inports of S1

⑤ Request S1 to calculate analysis values

⑥ Look up outport-mappings
of M1 and S1

⑦ Return the outport-mapping
of M1 and S1

⑧ Setting outport value of S1 in the outport of M1

⑨ Return the analysis value of M1

M1
MP1

MP2

MP3

S1

CM1

SP1

SP2

SP3

OutportSP3S1MP3M1

InportSP2S1MP2M1

InportSP1S1MP1M1

OutportSP3S1MP3M1

InportSP2S1MP2M1

InportSP1S1MP1M1

Port-Mapping Table

Figure 5. Application of a financial solver to a product model.
ICSS’03)

Proc
0-76
financial knowledge for the product evaluation.
In addition, the procedure is so general that it can be

performed on any kinds of product models and financial
solvers. This generality can be achieved since the financial
DSS manages detailed interfacing schemes for each
product model and financial solver pair in the independent
port-mapping table. Accordingly, when a new product
model or a financial solver is added, the financial DSS can
adapt itself to such changes just by revising the contents of
the port-mapping table.

5. Conclusions

In this paper, we propose mechanisms for financial

model-base construction while facilitating the mix-and-
match operations between product models and financial
solvers. In developing the mechanisms, we adopt the
generic model concept as a single formalism to represent
product models and financial solvers since its effective
modeling scheme makes it possible to represent the
various models and solvers in a unified manner. Based on
those representations, detailed interfacing information
between a product model and a financial solver is
enumerated as a set of port-mappings in the port-mapping
table.

By referencing the port-mapping table, a financial DSS
can find out which financial solvers can be applied to a
certain product model and enable a trader to select one
among the possible group of solvers, which is suitable for
his product-evaluation purposes. Between the product
model and the selected financial solver, data exchange
needed for the analysis value calculation is also performed
autonomously according to their port-mappings. Thus, the
mix-and-match operation including the intelligent solver
suggestion and the autonomous solver application can be
supported in the financial DSS. Moreover, by separating
the interfacing information from the application programs,
the financial DSS can be adaptable to the continually
changing product models and financial solvers. Those
mechanisms proposed in this paper are designed
generically so that they can be applied to models and
solvers in a wide range of problem domains. In this
context, the main contribution of this paper will be the
provision of the model-base construction mechanisms,
which are adequate for the continually changing financial
environment and support the development of an effective
DSS.

Future research is to focus on two directions:
refinement of the core constructs, and resolution of a port
type mismatch. Refinement of the core constructs will
include the elaboration of their structures and concrete
representation. Resolution of a port type mismatch is
geared to match the ports of a model and a solver, which
have different data types or domains.

 eedings of the 36th Hawaii International Conference on System Sciences (H
95-1874-5/03 $17.00 © 2002 IEEE
6. References

[1] Ba, S., R. Kalakota, and A.B. Whinston, “Using Client-

Broker-Server Architecture for Intranet Decision Support,”
Decision Support Systems, Vol.19, No.3, 1997, pp.171-192.

[2] Bhargava, H.K., R. Krishnan, S. Roehrig, M. Casey, D.
Kaplan, and R. Müller, “Model Management in Electronic
Markets for Decision Technologies: A Software Agent
Approach,” Proceedings of the Thirtieth Hawaii
International Conference on System Sciences, Vol.5, 7-10
Jan., 1997, pp.405-415.

[3] Booch, G., J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison Wesley,
Massachusetts, 1999.

[4] Eck, R.D., A. Philippakis, and R. Ramirez, “Solver
Representation for Model Management Systems,”
Proceedings of the Twenty-Third Annual Hawaii
International Conference on Systems Sciences, Vol.3, 2-5
Jan., 1990, pp.474-483.

[5] Eggenschwiler, T., E. Gamma, “ET++SwapsManager:
Using Object Technology in the Financial Engineering
Domain,” Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and
Applications, Vancouver, B.C. Canada, 18-22 October 1992,
pp.166-177.

[6] Elton, E.J. and M.J. Gruber, Modern Portfolio Theory and
Investment Analysis, John Wiley & Sons, Inc., New York,
1995.

[7] Engebretson, K.J., “The Use of Derivatives,” Issues of
Interest, Morgan Stanley Dean Witter & Co., Fall 1994,
http://www.morganstanley.com/institutional/investmentman
agement/.

[8] Fourer, F., D.M. Gay, B.W. Kernighan, “A Modeling
Language for Mathematical Programming,” Management
Science, Vol.36, No.5, 1990, pp.519-554.

[9] Fourer, R., “Database Structures for Mathematical
Programming Models,” Decision Support Systems, Vol.20,
No.4, 1997, pp.317-344.

[10] Gagliardi, M., C. Spera, “BLOOMS: A Prototype Modeling
Language with Object Oriented Features,” Decision Support
Systems, Vol.19, No.1, 1997, pp.1-21.

[11] Geoffrion, A.M., “The Formal Aspects of Structured
Modeling,” Operations Research, Vol.37, No.1, 1989,
pp.30-51.

[12] Hiller, F.S. and G.J. Lieberman, Introduction to Operations
Research, McGraw-Hill, Singapore, 1990.

[13] Huh, S.-Y., “Modelbase Construction with Object-Oriented
Constructs,” Decision Science, Vol.24, No.2, 1993, pp.409-
434.

[14] Hull, J.C., Options, Futures, and Other Derivatives,
Prentice Hall, New Jersey, 1997.

[15] Jarrow, R.A. and S.M. Turnbull, “A Unified Approach for
Pricing Contingent Claims on Multiple Term Structures,”
Review of Quantitative Finance and Accounting, Vol.10,
No.1, 1998, pp.5-19.

[16] Kempf, A., “Trading System and Market Integration,”
Journal of Financial Intermediation, Vol.7, No.3, 1998,
pp.220-239.

[17] Kwok, Y.-K., “Accuracy and Reliability Considerations of
Option Pricing Algorithms,” The Journal of Futures
Markets, Vol.21, No.10, 2001, pp.875-903.
ICSS’03)

Procee
0-769
[18] Lenard, M.L., “An Object-Oriented Approach to Model
Management,” Decision Support Systems, Vol.9, No.1, 1993,
pp.67-73.

[19] Ma, J., “Type and Inheritance Theory for Model
Management,” Decision Support Systems, Vol.19, No.1,
1997, pp.53-60.

[20] Mayer, M.K., “Future Trends in Model Management
Systems: Parallel and Distributed Extensions,” Decision
Support Systems, Vol.22, No.4, 1998, pp.325-335.

[21] Pindyck, R.S. and D.L. Rubinfeld, Econometric Models and
Economic Forecasts, McGraw-Hill, Singapore, 1991.

[22] Raff, D.M.G., “Risk Management in an Age of Change,”
working paper, The Wharton School, University of
Pennsylvania, 30 Jun., 2000.

[

[

[

 dings of the 36th Hawaii International Conference on System Sciences (H
5-1874-5/03 $17.00 © 2002 IEEE
23] Rizzoli, A.E., J.R. Davis, and D.J. Abel, “Model and Data
Integration and Re-use in Environmental Decision Support
Systems,” Decision Support Systems, Vol.24, No.2, 1998,
pp.127-144.

24] Zhang, J.Q. and E.J. Sternbach, “Financial Software Design
Patterns,” Journal of Object-Oriented Programming, Vol.8,
No.9, 1996, pp.6-12.

25] Zhuge, H., “Inheritance Rules for Flexible Model
Retrieval,” Decision Support Systems, Vol.22, No.4, 1998,
pp.379-390.
ICSS’03)

	HICSS36 2003
	Return to Main Menu

