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Abstract 
 
As financial markets are volatile and rapidly changing, 

preciseness and agility in price evaluation and risk 
assessment in the portfolios are more important and 
decision support systems containing diverse financial 
products and pricing algorithms have been adopted to 
support those quantitative analysis tasks. To effectively use 
the financial DSS, the trader should be able to know which 
algorithms are applicable to a specific product and to 
match flexibly the product with appropriate algorithms 
depending on his product-evaluation purposes. This paper 
proposes model-base construction mechanisms in a 
financial DSS that facilitates such mix-and-match 
operations between financial products (considered as 
models) and pricing algorithms (considered as solvers). As 
a conceptual framework for the model-base, we use the 
generic model concept for developing system constructs 
and procedures. The constructs and procedures of the 
model-base are represented as self-contained and well-
modularized objects that can be applied to a wide variety 
of problem domains. 

 
 

1. Introduction 
 
As financial markets are volatile and rapidly change 

[16,22], it is increasingly important for a trader, who 
manages a portfolio of financial products, to be able to 
cope with risks of losses arising from the fluctuations in 
market prices of the constituting products [6]. Specifically, 
the trader evaluates each financial product of his portfolio 
by calculating analysis values such as net present value 
(NPV) [14] and price movement indicators, and estimates 
the extent of potential loss in each product using the 
analysis values. Then, he controls the maximum 
permissible loss of the portfolio by adjusting the 
investment amount in each product. For the actual 
algebraic instructions to calculate the analysis values, 
financial researchers and practitioners have developed 
various pricing algorithms and are continually creating 
new algorithms to improve accuracy of such calculations 
  of the 36th Hawaii International Conference on System Sciences (H
4-5/03 $17.00 © 2002 IEEE 
[14,15,17]. Thus, when a trader calculates the analysis 
values of a financial product, he adopts a pricing algorithm 
that is most appropriate to his product-evaluation purposes 
among the algorithms that can be applied to the product. 

However, it is a very difficult task for a trader to select 
an appropriate pricing algorithm and apply it to a financial 
product manually since the algorithm is usually based on a 
complicated mathematical formula. Moreover, since a 
pricing algorithm can be applied to one or more financial 
products and a product can be evaluated with one or more 
algorithms, determining whether an algorithm can be 
applied to a certain product or not is also not a trivial task. 
This complexity in applying pricing algorithms call for the 
creation of financial decision support systems (DSS) to 
help a trader evaluate a financial product using various 
pricing algorithms in an easy and timely manner. 

In the perspective of traditional DSS areas, the financial 
product and pricing algorithm can be considered as a 
model and a solver, respectively. A model is defined as a 
set of declarative statements describing a real-world 
problem that the DSS wants to solve, and a solver is 
defined as a set of algebraic instructions to solve the 
modeled real-world problem [4,11,13,20]. In the financial 
DSS, a real-world problem is evaluation of a financial 
product, and thus we can conceptualize a financial product 
as a model for its evaluation problem by specifying its 
properties needed for the evaluation and the analysis 
values resulted from the evaluation. Also, we can 
conceptualize a pricing algorithm as a solver since it refers 
to the properties of a financial product and calculates the 
analysis values of the product. In this capacity, a financial 
product and a pricing algorithm are called a product 
model and a financial solver, respectively. 

To support trader’s evaluation of product models 
effectively, the financial DSS should enable a trader to mix 
and match product models and financial solvers according 
to his product-evaluation purposes. For the mix-and-match 
operation, when a trader evaluates a product model, the 
financial DSS should be able to intelligently provide 
financial solvers that can be applied to the model so that 
the trader can adopt a financial solver easily and at the 
same time he is prevented from misusing financial solvers 
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that are syntactically and semantically incompatible with 
the product model. After the trader selects a financial 
solver, complicated tasks such as the application of the 
selected solver to the product model and calculation of the 
analysis values should be performed autonomously 
without the trader’s intervention as well. This is very 
beneficial to non-professional traders, and sometimes to 
knowledgeable professional traders, because the semantics 
of product models and financial solvers are complicated 
and the choice and application of compatible financial 
solvers for a given product model is not a trivial task. 

Despite the needs and benefits of the mix-and-match 
operation, however, most DSS researches do not provide 
satisfactory discussion for such operations. This is because 
they have primarily focused on the management science or 
operations research (MS/OR) models [12,21] that have 
different characteristics from the product models. Unlike 
the product models, MS/OR models have a standardized 
formal structure so that a solver can access and interpret 
them in a uniform manner. For example, every linear 
programming (LP) model can be considered as an 
objective function restricted by several constraints. Thus, a 
solver such as the simplex method can treat any LP model 
in a same way by just syntactically interpreting its 
structure whether it is for a transportation problem or a 
feed mix problem. On the other hand, product models do 
not have such a standardized formal structure, and thus a 
financial solver may have to access syntactically different 
problem statements for different financial products. For 
example, Black-Scholes method [14], a representative 
financial solver, should be able to access the stock price in 
case of evaluating a stock option but the exchange rate in 
case of a currency option. That is, a financial solver should 
be able to access appropriate statements for each product 
model even though they are syntactically different. 

Recognizing these requirements and difficulties, in this 
paper, we propose model-base construction mechanisms in 
a financial DSS that facilitates the mix-and-match 
operation between product models and financial solvers. 
Specifically, we adopt the generic model concept [13] as a 
conceptual framework for representing product models 
and financial solvers systematically. The generic model 
concept presents an effective modeling scheme to 
represent management science or operations research 
(MS/OR) models in a unified manner. Especially, by 
providing flexible building blocks to conceptualize models 
and solvers, the modeling scheme accommodates wide 
applicability to various problem domains including 
optimization, forecasting and queuing models. 

This paper is organized as follows. Section 2 briefly 
reviews the literature on model-and-solver integration for 
supporting the mix-and-match operation. Section 3 
describes the systematic representations for models and 
solvers using the generic model concept. Based on the 
representations, section 4 presents constructs and 
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procedures for a financial model-base that facilitates the 
mix-and-match operation between product models and 
financial solvers. The final section discusses the results 
and contributions of the paper and provides future research 
directions. 

 
2. Literature on model and solver 

integration 
 
Among the previous model management researches in 

DSSs, we can reference the following three approaches for 
the model and solver integration according to the 
interfacing scheme that defines how a solver is applied to a 
model and accesses data values from the model. 

The first approach has focused on an effective model 
representation so that a solver can interpret models easily 
when it solves the modeled real-world problems [8,9,11]. 
A solver is defined as an executable application, and it 
accepts a model as input data to solve the modeled real-
world problem. Many researches in this approach 
developed modeling languages such as SML [11] and 
AMPL [8] to represent a model as a form that can be 
readable by the solver applications and at the same time to 
support a human modeler’s problem modeling. However, 
since they primarily focused on MS/OR models which a 
solver can understand easily due to their standardized 
formal structure, considering how a solver application find 
out statements of a model, which are necessary for its 
problem solving task, was not satisfactorily discussed. 

The second approach has also focused on an effective 
model representation and it incorporated the interfacing 
scheme between models and solvers into the model 
representation [13,18,19,25]. Most researches in this 
approach adopt object-oriented methodology, and define a 
model as an object which has member operations 
implementing interfacing schemes with its solvers. Based 
on the object-oriented mechanisms such as polymorphism 
and inheritance, these researches have many benefits for 
reusing or extending the model objects. However, this 
approach has a disadvantage in system maintenance:  
whenever a new solver is created or an existing solver is 
modified, every model that can be solved by the new or 
modified solver should be also revised to reflect the 
solver’s changes into its member operations. 

The last approach has focused on the underlying system 
architecture for the model and solver integration 
[5,10,23,24]. Researches in this approach provided 
detailed system constructs and procedures for system 
developers to implement DSS applications effectively. 
However, the constructs and procedures from those 
researches did not have enough generality to be applied to 
DSSs in various problem domains since they were 
designed depending on structures of the models and 
solvers that the researches dealt with. 

In this sense, the three approaches are still 
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unsatisfactory in supporting the integration of models and 
solvers. Those limitations, as mentioned earlier, are 
derived from that the previous researches have primarily 
focused on MS/OR models that are relatively stable and 
standardized in comparison with the product models. In 
the following sections, we develop mechanisms for a 
financial model-base that supports continually changing 
but not standardized product models. 

 
3. Model and solver representations using 

generic model concept 
 
This section defines the model and solver 

representations adopting the generic model concept as a 
conceptual framework. Based on these representations, we 
develop detailed structures and mechanisms for product 
models and financial solvers, which will be discussed in 
the following sections. 

First, we introduce a solver as an independent construct, 
which was rather hard-wired into the models in the 
original generic model concept. Hard-wiring a solver into 
models is not desirable since it mixes the solver’s 
implementation with the models’ and makes the models 
harder to be understood and maintained. Also, it is difficult 
to add new solvers or vary existing ones when the solver is 
an integral part of a model. We can avoid these problems 
by encapsulating solvers as an independent construct. 

A model is responsible for maintaining and updating all 
the problem statements, each of which is either an input or 
output of the problem. For example, a product model for 
an option maintains the properties of the option (e.g., 
exercise price and maturity date) and the analysis values 
(e.g., NPV and price movement indicators). An end-user of 
the financial DSS interacts with the product model to 
evaluate the option. He sets the values of the properties 
that are the inputs of the evaluation, and obtains the results 
from the analysis values, which are the outputs. On the 
other hand, a solver is responsible for calculating the 
outputs of the problem from the inputs. For the calculation, 
it implements a solving algorithm such as Black-Scholes 
method, binomial method, and finite difference method, 
and maintains its own inputs and outputs for the algorithm. 
In the option’s example, whenever the user requests 
evaluation of an option, the product model for the option 
forwards the responsibility of the analysis value 
calculation to its solver, which is formerly specified by the 
solver. After finishing the calculation, the solver returns its 
results to the model, and then the user can obtain the 
results. 

Figure 1 shows the conceptual representations of a 
model, Model_A, and a solver, Solver_A, and illustrates 
their interactions. Conceptually, every model is defined 
with a set of ports regardless of problem domains and 
modeling paradigms. A port encapsulates a single problem 
statement of its model, and thus it becomes an external 
 oceedings of the 36th Hawaii International Conference on System Sciences (H
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interface of a model. A user can interact with a model 
through the ports. With respect to the interaction, the ports 
of a model are classified into two types:  input ports 
(called inports) filled by a user and output ports (called 
outports) provided to the user as problem-solving results. 
For example, an option is represented by specifying a set 
of ports that stands for its properties and analysis values. 
The ports for the properties become inports and the ports 
for the analysis values become outports. In Figure 1, 
Model_A has three inports (Inport_1, Inport_2, and 
Inport_3) and one outport (Outport_1). 

On the other hand, a solver consists of a set of ports and 
a calculation module. The ports of a solver are also 
classified into inports and outports that contain input and 
output values of the problem-solving task, respectively. 
Solver_A in Figure 1 has three inports (Inport_a, Inport_b, 
and Inport_c) and one outport (Outport_a). Each of the 
arrows denotes the movement of port values between 
Model_A and Solver_A. Initially, a user fills port values 
into the Model_A’s inports. When Solver_A is applied to 
Model_A, the port values in Model_A’s inports are 
delivered to Solver_A’s inports. Then, the calculation 
module of Solver_A performs the problem-solving task, 
and through Outport_a, the result value is delivered to 
Model_A’s Outport_1. Such a one-to-one relationship 
between a model’s port and a solver’s port throughout the 
movement of the port value is called a port-mapping. 

 

Solver_A
Model_A

Calculation
Module

Inport_1

Inport_2

Inport_3

Outport_1

Inport_a

Inport_b

Inport_c

Outport_a

 
Figure 1. Model and solver representations using 

generic model concept. 

 
4. Constructs and procedures for financial 

model-base 
 
This section defines system constructs and procedures 

for facilitating the mix-and-match operation between 
product models and financial solvers in a financial DSS. 
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4.1. Basic constructs for the model and solver 
representations 

 
As basic constructs for representing product models 

and financial solvers, we define the following three 
classes:  ProductModel, FinancialSolver, and Port. First, 
Port class encapsulates the port that is the most primitive 
base element of product models and financial solvers. To 
represent their diverse semantics, Port class should be able 
to hold various data formats such as a single value (e.g., 
the exercise price of a stock option), multiple values (e.g., 
a time-series of the market price), and a function of other 
ports (e.g., the coupon amount of a bond is the product of 
the coupon rate and the face amount). The following 
attributes are included in Port class to store such various 
forms of port values: 
y The name is a unique identifier for the port. 
y The description is a general textual documentation 

for the meaning of the port. 
y The dimension is the unit used to measure the port 

value. It includes not only physical units but also 
logical conventions in financial domains. For 
example, the dimension of the interest rate can be 
‘% with semi-annual (SA) compounding’. The ‘%’ is 
the physical unit and the ‘SA’ means that the 
interests are compounded two times per annum, i.e., 
every six months. 

y The format is the data type of the port value. It 
specifies whether the port has a numeric value or a 
text string and whether it has a single value, a list of 
values, or a matrix. 

y The value is the actual value of the port. It can be a 
 oceedings of the 36th Hawaii International Conference on System Sciences (
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mathematical formula if the port represents a 
function. 

y The iostate is an interfacing role of the port, whether 
it is an inport or an outport. 

By aggregating Port class, ProductModel and 
FinancialSolver classes encapsulate product models and 
financial solvers. Figure 2 shows an object data model for 
the three classes with an example for a stock option and 
Black-Scholes method using the class diagram of Unified 
Modeling Language (UML) [3]. In Figure 2, 
ProductModel and FinancialSolver classes have two one-
to-many aggregations named inports and outports with 
Port class to indicate their inports and outports, 
respectively. Also, FinancialSolver class has a member 
operation named calculate() to implement its calculation 
module. 

Although ProductModel class has generality in 
representing diverse product models by aggregating Port 
class, it is required to define more specialized classes for 
some product models that need product-specific operations. 
For example, a product model for option products must 
have operations for exercise management, and a product 
model for bonds must have operations for redemption 
processing [6,14]. Such specialized classes are interrelated 
to one another through the inheritance mechanism such 
that a more specific class is expanded by incrementally 
modifying a more general class. At the top of the 
inheritance hierarchy, ProductModel as a meta-model class 
provides general structural basis characterized by Port 
class for other classes. Figure 3(a) shows an example of 
the inheritance hierarchy for three kinds of financial 
products:  futures, options, and bonds. On the other hand, 
FinancialSolver class is also specialized for algorithm-
1*

1*

inports

outports

1 *

1 *

inports

outports

StockOption
: ProductModel

name=“IBM”
description=“Option

on IBM stock”

<<instanceOf>>

: Port

name=“Exercise_Price”
description=“”
dimension=“”
format=“number”
iostate=“inport”

<<instanceOf>>

ProductModel

name: string
description: string

Port

name: string
description: string
dimension: string
format: string
value: string
iostate: string

BlackScholes
: FinancialSolver

name=“Black-Scholes
method”

description=“”

FinancialSolver

name: string
description: string

<<instanceOf>>

calculate(): number

 
Figure 2. An object data model for ProductModel, FinancialSolver, and Port classes. 
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specific operations needed for each pricing algorithm as 
ProductModel class is specialized for product-specific 
operations. Figure 3(b) shows an example of the 
inheritance hierarchy for some financial solvers [14,15,17]. 

These class inheritances lead to effective division of 
tasks and responsibilities between more general classes 
and their specialized classes. More general classes take 
care of generic tasks necessary for a broad range of models 
and solvers, and their specialized classes focus only on 
their product-specific or algorithm-specific tasks and 
inherently have the benefits of the generic tasks as well. 
Thus, we can create a new class for a product model 
(financial solver) and make it conform to the model 
(solver) representation characterized by the ports only by 
inheriting it from ProductModel (FinancialSolver) class or 
its specialized classes. 

 
4.2. Port-mapping table 

 
To evaluate a product model using a financial solver, 

the financial DSS should establish port-mappings between 
them for the solver to be able to get the inport values from 
appropriate ports of the product model and return the 
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outport values. Such port-mappings are dynamically 
registered and removed as a new product model or 
financial solver is added or an existing one is changed. 
The port-mapping table is an information registry for 
managing such dynamically changing port-mappings 
effectively. It maintains three pieces of information:  a 
model-solver pair to be matched, a port pair of the model 
and solver, and their port types. The first two show how to 
establish a port-mapping for the designated pair of a 
product model and a financial solver, and the last 
discriminates whether the port-mapping is for inports or 
outports. Figure 4 shows the conceptual structure of a port-
mapping table with the model and solver shown in Figure 
1. 

With the port-mapping table, we can get the following 
three advantages. First, the financial DSS application 
become independent of continually changing port-
mappings as they are separated from the application 
program and maintained in the port-mapping table. Thus, 
even when a new product model or a financial solver is 
added or an existing one is changed, the application needs 
not to be re-implemented or re-compiled to reflect the 
changes of the port-mappings, which would be required if 
ProductModel

Option BondFuture

AmericanOptionEuropeanOptionBondFuture USTreasuryBond

ProductModel

Option BondFuture

AmericanOptionEuropeanOptionBondFuture USTreasuryBond

FinancialSolver

Analytic
Approximation

TrinomialBinomial

Lattice Simulation

FiniteDifference BlackScholes MonteCarlo
Simulation

FinancialSolver

Analytic
Approximation

TrinomialBinomial

Lattice Simulation

FiniteDifference BlackScholes MonteCarlo
Simulation

(a) An example of the class inheritance hierarchy for product models

(a) An example of the class inheritance hierarchy for financial solvers  
Figure 3. Class inheritance hierarchies for product models and financial solvers. 
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the port-mappings were hard-coded in the application. 
Second, the financial DSS can find out financial solvers 
that can be applied to a specific product model by 
identifying solvers that have port-mappings with the 
product model in the port-mapping table. These financial 
solvers will be provided for traders who want to evaluate 
the product model. Last, managing the complex 
relationships between product models and financial 
solvers becomes easy and familiar to the system 
administrator since he can manipulate port-mappings as if 
he treats data in database tables. 

 

OutportOutport_aSolver_AOutport_1Model_A

InportInport_cSolver_AInport_3Model_A

InportInport_bSolver_AInport_2Model_A

InportInport_aSolver_AInport_1Model_A

Port TypeSolver PortSolverModel PortModel

OutportOutport_aSolver_AOutport_1Model_A

InportInport_cSolver_AInport_3Model_A

InportInport_bSolver_AInport_2Model_A

InportInport_aSolver_AInport_1Model_A

Port TypeSolver PortSolverModel PortModel

Port Mapping Table

 
Figure 4. An example context 

of a port-mapping table. 

 
4.3. Application of financial solver to product 

model 
 
Figure 5 shows an example procedure for application of 

a financial solver to a product model. The financial DSS 
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as two product models, M1 and M2, and two financial 
lvers, S1 and S2, and the trader wants to evaluate M1 

sing S1. As shown in the port-mapping table, M1 and S1 
ave three port-mappings:  two for their inports (MP1-
P1 mapping and MP2-SP2 mapping) and one for their 
utports (MP3-SP3 mapping). 

First, when the trader starts the evaluation of M1 using 
1 ①, M1 looks up the port-mappings between M1 and S1 
n their inports in the port-mapping table ②. On receiving 
e port-mappings from the port-mapping table ③, M1 
nds its inport values to S1 and sets each of them in the 

orresponding inport of S1 according to the received port-
appings ④. After setting all the inports, M1 requests S1 
 calculate analysis values ⑤. Then, using the calculation 
odule CM1, S1 performs the analysis value calculation, 

nd stores the result in its outport. To return the calculation 
sult to M1, S1 looks up the port-mappings between M1 

nd S1 on their outports in the port-mapping table ⑥. On 
ceiving the port-mapping from the port-mapping table 
, S1 sends the result to M1 and sets it in the 

orresponding outport of M1 according to the received 
ort-mapping ⑧. Finally, M1 routes the result (i.e., the 
nalysis value of M1) to the trader ⑨. 

As shown in this example, the solver-application 
rocedure is performed autonomously based on the 
terfacing information registered in the port-mapping 
ble without any involvement of the trader. A trader can 

valuate a financial product just by designating the pricing 
lgorithm to be used, even if he does not have any 
Financial Solvers

S2

Product Models

M2

Trader

① Evaluate M1 using S1

② Look up inport-mappings
of M1 and S1

③ Return the inport-mappings
of M1 and S1

④ Setting inport values of M1 in the inports of S1

⑤ Request S1 to calculate analysis values

⑥ Look up outport-mappings
of M1 and S1

⑦ Return the outport-mapping
of M1 and S1

⑧ Setting outport value of S1 in the outport of M1

⑨ Return the analysis value of M1

M1
MP1

MP2

MP3

S1

CM1

SP1

SP2

SP3

OutportSP3S1MP3M1

InportSP2S1MP2M1

InportSP1S1MP1M1

OutportSP3S1MP3M1

InportSP2S1MP2M1

InportSP1S1MP1M1

Port-Mapping Table

 
Figure 5. Application of a financial solver to a product model. 
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financial knowledge for the product evaluation. 
In addition, the procedure is so general that it can be 

performed on any kinds of product models and financial 
solvers. This generality can be achieved since the financial 
DSS manages detailed interfacing schemes for each 
product model and financial solver pair in the independent 
port-mapping table. Accordingly, when a new product 
model or a financial solver is added, the financial DSS can 
adapt itself to such changes just by revising the contents of 
the port-mapping table. 

 
5. Conclusions 

 
In this paper, we propose mechanisms for financial 

model-base construction while facilitating the mix-and-
match operations between product models and financial 
solvers. In developing the mechanisms, we adopt the 
generic model concept as a single formalism to represent 
product models and financial solvers since its effective 
modeling scheme makes it possible to represent the 
various models and solvers in a unified manner. Based on 
those representations, detailed interfacing information 
between a product model and a financial solver is 
enumerated as a set of port-mappings in the port-mapping 
table. 

By referencing the port-mapping table, a financial DSS 
can find out which financial solvers can be applied to a 
certain product model and enable a trader to select one 
among the possible group of solvers, which is suitable for 
his product-evaluation purposes. Between the product 
model and the selected financial solver, data exchange 
needed for the analysis value calculation is also performed 
autonomously according to their port-mappings. Thus, the 
mix-and-match operation including the intelligent solver 
suggestion and the autonomous solver application can be 
supported in the financial DSS. Moreover, by separating 
the interfacing information from the application programs, 
the financial DSS can be adaptable to the continually 
changing product models and financial solvers. Those 
mechanisms proposed in this paper are designed 
generically so that they can be applied to models and 
solvers in a wide range of problem domains. In this 
context, the main contribution of this paper will be the 
provision of the model-base construction mechanisms, 
which are adequate for the continually changing financial 
environment and support the development of an effective 
DSS. 

Future research is to focus on two directions:  
refinement of the core constructs, and resolution of a port 
type mismatch. Refinement of the core constructs will 
include the elaboration of their structures and concrete 
representation. Resolution of a port type mismatch is 
geared to match the ports of a model and a solver, which 
have different data types or domains. 
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