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Utility Max-Min Flow Control Using
Slope-Restricted Utility Functions

Jeong-woo Cho, Member, IEEE, and Song Chong, Member, IEEE

Abstract—We present a network architecture for the distributed
utility max-min flow control of elastic and nonelastic flows where
utility values of users (rather than data rates of users) are enforced
to achieve max-min fairness. The proposed link algorithm con-
verges to utility max-min fair bandwidth allocation in the presence
of round-trip delays without using the information of users’ utility
functions. To show that the proposed algorithm can be stabilized
not locally but globally, we found that the use of nonlinear control
theory is inevitable. Even though we use a distributed flow-con-
trol algorithm, it is shown that any kind of utility function can be
used as long as the minimum slopes of the functions are greater
than a certain positive value. Though our analysis is limited to the
single-bottleneck and homogeneous-delay case, we believe that the
proposed algorithm is the first to achieve utility max-min fairness
with guaranteed stability in a distributed manner.

Index Terms—Absolute stability, delay systems, flow control,
nonlinear systems.

I. INTRODUCTION

NE OF THE MOST common understandings of fairness
for a best-effort service network is max-min fairness as de-
fined in [1]. An easy algorithm for obtaining a max-min fair allo-
cation, which is also known as a waterfilling algorithm, is given
in [1] and [2]: rates of flows are increased at the same pace until a
link is saturated. Then the rates of flows passing through the satu-
rated link are fixed, and others continue to increase at the same
pace. There are several works [3]-[6] that provide distributed
and stable max-min flow-control algorithms that work in mul-
tiple-bottleneck networks in spite of round-trip delays. (In this
paper, we do not deal with other concepts of fairness [7]-[9]).
The rapid growth of multimedia applications has triggered a
new fairness concept: utility max-min fairness. The definition of
utility max-min fairness is similar to that of bandwidth max-min
fairness, except that utility values of users are max-min fair. In a
single-link case, utility max-min corresponds to the satisfaction
(utilities) of each user in the network being equal. Let us con-
sider a simple network in which a link of capacity ( is shared by
two flows: an elastic flow with utility function U;(-) and a real-
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Fig. 1. Bandwidth max-min fairness versus utility max-min fairness.

time flow that transfers voice data with utility function Us(-). As
shown in Fig. 1, if the link capacity is shared equally (i.e., acq =
(14/2)), the utility of the elastic flow, u1 (= Uy (aeq)), becomes
much larger than that of the real-time flow, ua(= Uz (aeq)). and
the real-time flow is unsatisfactory because the allowed rate is
smaller than the voice encoding rate. In contrast, if the link ca-
pacity is shared in a way that U; ' (teq) + Uy *(tteq) = 1, then
both flows gain an identical utility (i.e., Ui(a1) = Us(az) =
Ueq), and the real-time flow is satisfied with the allocation be-
cause the allowed rate is greater than the voice encoding rate.
The former represents the bandwidth max-min fair allocation
(equal bandwidth allocation in the single-link case), whereas the
latter represents the utility max-min fair allocation (equal utility
allocation in the single-link case).

A. Related Works

Originally, Bianchi et al. [10] motivated application perfor-
mance-oriented flow control in wireless networks by proposing
utility-fair bandwidth allocation where application-specific
quality-of-service (QoS) of flows are satisfied. They also pre-
sented a centralized algorithm that can equalize utilities of flows,
assuming utility functions are piecewise-linear. Cao and Zegura
[11] introduced a broader conception, utility max-min fairness.
They emphasized that applications have various kinds of utility
function in general. For example, a voice over IP (VoIP) user cor-
responds to a step-like utility function, because his satisfaction is
atamaximum if the allowed rate is larger than the voice encoding
rate, and is at a minimum if the allowed rate is smaller than the
encoding rate. The satisfaction of teleconference users with mul-
tilayer streams consisting of a base-layer stream and multiple
enhancement-layer streams would incrementally increase as
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additional layers were allowed. Therefore, to accommodate var-
ious types of application, it is necessary to relax the restriction
on the shapes of utility functions as much as possible.

Regarding the characteristics of the utility max-min fair-
ness, two works are remarkable: Radunovi¢ and LeBoudec [2]
pointed out that there are some cases to which the notion of a
bottleneck link and the waterfilling approach is not applicable.
They considered not only max-min, but also min-max fairness,
and observed that the existence of max-min fairness is actually
a geometric property of the set of feasible allocations. Based on
the relation between max-min fairness and leximin ordering, a
concept they borrowed from economy, they completed a unified
framework encompassing weighted and unweighted max-min
fairness and utility max-min fairness, and provided a central-
ized algorithm that yields these fairness properties. Sakar and
Tassiulas [12] found that a utility max-min fair allocation does
not necessarily exist when we relax the assumptions that utility
functions are continuous and strictly increasing. To complete
a consistent fairness concept, they introduced a maximally fair
utility allocation that complements the utility max-min fair
allocation. They also presented an algorithm for computing the
allocation in polynomial number of iterations. In the meantime,
Harks and Poschwatta [13], [14] introduced the concept of
utility proportional fairness, where utilities’ values of flows
are enforced to achieve proportional fairness. They presented
distributed algorithms to achieve the fairness although they did
not consider the stability in the presence of round-trip delays.

There are several works [2], [11], [15] that present link al-
gorithms to achieve the utility max-min fair bandwidth alloca-
tion, assuming that each link knows the utility functions of all
the flows sharing the link. Note that the algorithms used in the
cited studies are not distributed in the strict sense, because they
require global information, such as utility functions of users.
Wydrowski et al. [16] proposed a somewhat similar architec-
ture, although they did not mention utility max-min fairness.
They considered a linearized model in which even gain values
depend on the equilibrium point, which cannot be known in ad-
vance. Note that utility functions are naturally nonlinear, and
local stability results obtained through linearization techniques
cannot guarantee global stability. It is very difficult to find a re-
gion of attraction [17] in such works.

B. Our Contribution

After we examine related works, two questions remain: 1)
whether or not there exists a distributed link algorithm that does
not require per-flow information, including utility function in-
formation; and 2) whether or not such an algorithm converges
in the presence of round-trip delays. As a solution to these ques-
tions, we provide a network architecture with a distributed flow-
control algorithm that achieves utility max-min fairness without
using any kind of per-flow operations, and provides stability re-
sults for the proposed flow-control algorithm. In our proposed
architecture, links do not need to know the utility functions of
flows sharing the links.

It should also be noted that we consider a nonlinear model that
does not exploit knowledge of the equilibrium point. To the best
of our knowledge, this is the first work dealing with an analytical
framework for the original problem and its global stability.
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C. Paper Organization

The rest of this paper is organized as follows. In Section II,
we provide a formal definition of utility max-min fairness and
our proposed network architecture for utility max-min flow con-
trol. In Section III, we provide stability results based on Dewey
and Jury’s [20] criterion for our proposed systems. We provide
a method for estimating the number of flows bottlenecked at
a link, and give emphasis to the applicability of our work in
Section IV. After presenting several simulation results with a
multiple-bottleneck network in Section V, we conclude.

II. UTILITY MAX-MIN ARCHITECTURE

To introduce a formal definition of the utility max-min fair-
ness, let us denote flow ¢’s utility value and utility function by
u; and U;(+), respectively. Two technical assumptions on U;(-)
for the analysis of the proposed network architecture are given
as follows.

[A.1] We assume that U;(+) is a continuous and increasing
function of user ¢’s allocated data rate. By this assump-
tion, there always exists an inverse function of U;(-), i.e.,
U;*(-). Itis quite natural that the values of utility functions
increase as the allocated data rates increase. Note that this
assumption does not hold for all utility functions [12].

[A.2] We assume that U;(0) = 0. Itis also quite reasonable,
since the utility function value of user ¢, i.e., the degree of
user ¢’s satisfaction, is zero when zero data rate is allocated.

Let us denote the set of all links, the set of all flows, and the set
of flows traversing link [ by L, N, and N (1), respectively. Their
cardinalities are denoted by |L|, |[N|, and |N(1)|, respectively.
Then, similar to the bandwidth max-min fairness [1], the utility
max-min fairness can be defined as follows.

Definition 1: A rate vector (ay,...,a|N]) is said to be fea-
sible if it satisfies a; > 0, VI € N and ZieN(l) a; < oyl
VL € L.

Definition 2: A rate vector (a1, .. .,a|y)|) is said to be utility
max-min fair if it is feasible, and for each 7+ € N and feasible rate
vector (a1, ...,ay|) for which U;(a;) < Ui(a;), there exists
some ¢’ with Uz(az) > Ui/(aif) > Ui/(ﬁi/).

Here 41! denotes the capacity of link /, and o. is a constant
defining target link use of link /(0 < af < 1). Let a vector
(u1,...,u)y|) denote the utility vector corresponding to the
rate vector (ai, ..., a|y|) where u; = Uj(a;) Vi € N. Then,
Definition 2 can be restated more informally as follows: a rate
vector (a1, ..., a|y|) is said to be utility max-min fair if it is fea-
sible and for each user 7 € N, its utility u; cannot be increased
while maintaining feasibility without decreasing the utility u;
for some user #’, for which u;; < ;.

We propose a network architecture that achieves utility
max-min fairness at equilibrium. The network architecture with
multiple sources and links is depicted in Fig. 2. Let us consider
a bottleneck link [ € L. Then, the dynamics of the buffer of the
link can be written as

> oait—r) -l ¢'(t) >0

y iEN(1)

q'(t) = l + )]
> ot -7t =t ¢'(t)=0

ieN(l)
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Fig. 2. Network architecture for utility max-min fairness.

where a;(t) is the sending rate of source i, 7./ is the forward-
path delay from source i to link /, ;2! is the link capacity of the
link, and the saturation function []* = max][-,0] is such that
¢'(t) cannot be negative.

Source i sends packets at a data rate of a;(t). There is one
reserved field in every packet that carries the current utility
value. The initial value is replaced with a sufficiently large
value. When a packet reaches a link along the forward path of
its flow, each link replaces the field value with its utility value
if its utility value is smaller than the field value. In this way, the
smallest one among utility values of links along the forward
path of flow ¢ is delivered to source <. Thus we assume the
following source algorithm:

Source Algorithm : a;(t) = U;! <ln1Li(I1)[ul(t - 7'“’)])
€Lz

~ J

1>

u; (t)

(SA)

where L(i) is the set of links which flow i traverses, u!() is
the utility value assigned by link [ on the path of flow 4, Til -b
is the backward-path delay from link [ to source %, and U;(-) is
the user-specific utility function of user ¢. Because the min][-]
operation is taken over a finite number of links, there should
exist at least one link [ such that 4! = min[.]. Therefore, each
flow ¢ has at least one bottleneck | € L(3).
There are two assumptions employed for the analysis of the
network model.
[B.1] We assume that the sources are persistent until the
closed-loop system reaches a steady state. By “persistent,”

we mean that the source always has enough data to transmit
at the allocated rate.

[B.2] Two delays, say, the forward-path delay Til */ and the
backward-path delay Til *include propagation, queueing,
and transmission and processing delays. We denote the
sum of two delays by 7; and assume that this is constant. In
general, stability analysis of nonlinear systems with time-
varying delays requires the application of Razumikhin the-
orems [18] which are known to be abstruse.

A. PID and Proportional-Integral-Double-Integral® (PII?)
Link Controller Models

To control flows and to achieve utility max-min fairness, we
use a proportional-integral-derivative (PID) link controller at
each link. In the PID link controller model, there is a specified
target queue length ¢}, to avoid underuse of the link capacity.
Because we have a nonzero target queue length qép, the PID
model implies that o}, = 1 in Definition 1. Each link calculates
the common feedback utility value u!(#) for all flows traversing
the link according to the PID control mechanism.

In general, a proportional term increases the convergence
speed of transient responses and reduces errors caused by dis-
turbances. An integral term effectively eliminates steady-state
error and results in the size of the stability region being reduced.
A derivative term adds some damping and extends the area of
the stability region. It also improves the performance of the
transient period.

Let us denote the set of flows bottlenecked at link [ and its
cardinality by Q' and |Q'|, respectively. The link algorithm with
PID controller that uses the difference between ¢'(t) and gk,
as input is given by the Link Algorithm 1 described by (LA1),
where ¢! (t) £ ¢!(t) — g} is the error signal between control
target and current output signal, and gp > 0 and g7, gp > 0.
It should be noted that we also can use a PII? controller as we
did in [19], by defining eh(t) £ 37, vy ai(t — 7/'7) — adp!
where o/, < 1. The link algorithm with the PII* controller is
given by the Link Algorithm 1 in (LA2). See (LA1) and (LA2)
at the bottom of the page.

This link algorithm controls flows so that the queue length
at steady state becomes zero at the cost of link underuse. The
main advantage of this model is that the feedback signal is not
saturated at ¢'(t) = 0, and it is shown through simulations in
[19] that the PII? model results in faster convergence. In this
paper, though we focus on the PID model to avoid repeating
similar arguments for the PI12 model, readers should note that
one can derive similar arguments regarding the PII? model with
ease, as was done in [19].

1 t *
Link Algorithm 1: u'(t) = [——l' <gpell(t) + 91 / el (t)dt + gDéll(t)ﬂ
J0

1 ot t t
Link Algorithm 2: «/(t) = [—— <hpelz(t)+h1 / eb(t)dt + hp / / eg(t)dtdtﬂ
JO 0 Jo

(LAD)

(LA2)
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Fig. 3. Block diagrams of the proposed architecture. (a) Original. (b) After loop transformation.

B. Steady-State Analysis

Suppose that the closed- loop system has an equilibrium point,
ie., ¢'(t) — ¢&, u!(t) — u!*, and a;(t) — a}. More formally,
the set of flows bottlenecked at link [ is given by

= {i e N() | a} = U7 ' (u™)} @

and the set of all flows not bottlenecked at link [ but traversing
link I, N(I) — @', is given by

N() - Q' ={ie N(I)|a} < U7 (u")}. 3)

Then (1) implies that the link capacity ! in the PID link con-
troller model is fully used as follows:

Z ai = p. “)
ieN(1)
Using (4), and the definitions (2) and (3), we obtain

Z Ui—l Z U,L-_l(ul/

1€Q! ieEN()-Q!

Thus, we finally get the following equation, which means that
flows with utility values u!* < u'*, which are not bottlenecked
at link /, are assigned data rates Ui_l(ul,*) in advance, and the
remaining capacity is fairly distributed to flows bottlenecked at
link [ based on the common utility value u'*

-1

Z Ufl Ml -

1eQ!

Ui(aj) =

Yo U™

iEND)—-Q!

for all i € Q'. From the above arguments, we can show that
the proposed network architecture possesses the utility max-min
fairness property. (All proofs in this paper are in the appen-
dices.)

Theorem 1 (Utility Max-Min Fairness): The proposed net-
work architecture described by (1), (SA), and (LA1) [or (LA2)]
achieves utility max-min fairness at steady state.

III. STABILITY ANALYSIS: SINGLE-BOTTLENECK AND
HOMOGENEOUS-DELAY CASES

Although we presented a multiple-bottleneck network model
in Section II, rigorous stability analysis of these kinds of models
was shown to be very difficult in [4], due to the dynamics cou-
pling among links that operate on a “first come first served”

(FCES) principle. In [4] and [19], though such dynamics cou-
pling exists in theory, the effect of coupling was shown to be
negligible through various simulations. Recently, Wydrowski et
al. [16] also showed that the dynamics coupling is of a very
weak form. Thus, in this section, we drop the superscript [, and
the analysis is focused on a single-bottleneck model. We conjec-
ture that our analytical results can be extended to multiple-bot-
tleneck models without significant modification.

We provide a stability theorem in a single-bottleneck net-
work, where the saturation functions employed in (1) and (LA1)
are relaxed. Although our main stability theorem assumes that
flows experience the same forward-path and backward-path de-
lays, we conjecture that our theorem will hold even if flows ex-
perience heterogeneous delays, when an upper bound of 7;s,
i.e., T > max;ecn[m] is used. Note that we are confident that
this conjecture is true, since we have provided a similar net-
work architecture with a distributed flow-control algorithm that
achieves bandwidth max-min fairness in [19], and have proved
that an analogous conjecture is really true.

To analyze the single-bottleneck and homogeneous-delay
cases of the PID control model, let Tif =, =7rtVieQ
and 7¥ + 7% = 7. Then all flows experience the same for-
ward-path and backward-path delay. By (LA1) and (1), we
obtain the following equation:

+ gIaz(t - T)

it -1 = |Q|(ZQPC%

1€Q

+gpi’i(t — T))-

Thus we can see that the following transfer function G(s),
which is generated by taking the Laplace transform of the
above equation, defines the relationship between — 3,5 a;(?)
and u(t — 7°):

s gps + g1 + gps*

G(s) = exp(—Ts). (6)

By defining U(-) as follows, we acquire the block diagram
shown in Fig. 3(a), which is a feedback connection of G(s) and
an increasing and continuous nonlinearity 4/(-)

02 g 7

1€Q
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Fig.4. Explicit stability region in terms of G p, GG p, and G; when the feedback
is an identity function.

Thus, we can expect from Fig. 3(a) that an absolute stability the-
orem might be applicable to the proposed closed-loop system.
Of various absolute stability criteria, we have found that Dewey
and Jury’s criterion [20] is suitable for our systems.

The first procedure when applying this criterion is to deter-
mine whether G(s) is asymptotically stable, because G(s) it-
self without feedback is required to be asymptotically stable to
apply the criterion. However, we can see that the transfer func-
tion G(s) itself without feedback is not asymptotically stable,
because it has a double pole at s = 0. To overcome this problem,
we use a loop transformation with a constant & > 0, and the re-
sulting system is shown in Fig. 3(b). It should be noted that the
modified system is identical to the original system.

In our previous paper [19], it was shown the closed-loop
system with feedback //~1(u) = w (an identity function) is
asymptotically stabilized if and only if (iff) the gains Gp = gp,
Gp £ gpT,and Gy £ gr7? fall within a restricted area, shown
in Fig. 4. Since the system achieving the bandwidth max-min
fairness was linear, the stability analysis could be carried out
with the help of Nyquist stability criterion [21]. Secondly, with
the help of the zero exclusion theorem [22], we have proven that
the system with homogeneous delay 7 is asymptotically stable
iff all systems with heterogeneous round-trip delays 7; < 7T are
asymptotically stable. Moreover, the same stability is preserved
even if the actual sum of flows’ weights w; is smaller than the
estimate, i.e., |Qu| < |Qul|. (w;,|Qu|, and |Q.,| are defined
in [19]. In our system, w; = 1 Vi € .) To summarize, this
result implies the closed-loop system is asymptotically stable
for =" (u) = hu and h € (0,1], that corresponds to letting
|Qu| = [Qul/h in [19].

Hence, we can see that G(s)/(1 + hG(s)) is asymptotically
stable for any gain sets (Gp, G p, G) falling within a restricted
area shown in Fig. 4, and h € (0, 1]. We are now ready to state
the main result of this paper.

Theorem 2 (Homogeneous-Delay Case): The closed-loop
system described by (1), (SA), and (LA1) [or (LA2)] with the

homogeneous-delay assumption 77 = 7/, 7% = 7 Vi € Q,

and 77 + 7% = 7 is asymptotically stable for arbitrary utility
functions with 0 < k < dU; /da < 0o Va € [0,00) and Vi € Q
if a gain set (Gp,Gp,Gr) falls within a restricted area shown
in Fig. 4, and there exist a finite number 7 and a finite number
6 > 0 such that the open-loop transfer function G(jw) satisfies
the following equation for arbitrarily small & > 0:

jwn G(jw)
> 0.
Re [(1—1— 1+0w2> l—i—hG(jw)] +k>0 Yw>0. (8)

Remark 1: One should note that this requirement is not strin-
gent, because the maximum slopes of the utility functions are
not restricted, except for the condition that they should not be
infinite. In other words, this restriction means that a user’s sat-
isfaction should increase with minimum slope of & for the sta-
bility of the whole network. A user can sufficiently emphasize
that his satisfaction increases significantly at a certain data rate
with relatively high slope at that data rate; because what matters
is not the absolute shape of one’s utility function, but its relative
shape compared with those of others.

Remark 2: If we multiply (8) by k /k, where kisa positive
number, it becomes

Jjwn
1
< + 1+9w2>

where h = (k/k)h. Then, we can observe from (9) that the
modified open-loop transfer function (k/k)G(jw) and the min-
imum slope k satisfy Theorem 2 again. To restate this, if we
use modified gain values gp — (k/k)gp, g1 — (k/k)gr.
and gp — (k/k)gp, the minimum slope constraint becomes
dU;/da > I:;.~ To sum up, if you want to replace the minimum
slope k with k, you can simply multiply stable gains by k/k.

The most effective aspect of this theorem is that utility func-
tions have only the minimum slope requirement, and one user
can use an arbitrarily shaped nonlinear utility function that may
differ from the other users’ utility functions. We strongly believe
that our requirement is one of the least restrictive and most prac-
tical requirements in utility max-min network architecture.

We know from [19] that the closed-loop system is asymptot-
ically stable when U;(a) = a for all ¢ € N. Thus we can infer
that Theorem 2 is meaningful only when there exists k£ < 1 sat-
isfying (8). Even though it is difficult to find a k satisfying (8)
for general cases, the inequality admits an intuitive graphical
technique similar to the Nyquist stability criterion [21]. Let us
define two functions X and Y as follows:

Gjw) }
1+ hG(jw)

v G(jw)
1T+6w02 [1 + hG(jw)} '

EG(jw)

Re —
1+ hEG(jw)

+k>0 )

X(w) 2Re [

Y(w) 2
Then (8) is equivalent to the following condition:

Xw)—-nY(w)+k>0 Vw>0

= (1 —n)<)Y(((Zj§)>—k Yw>0. (10)
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In 2-D Euclidean space, this inequality entails that the closed-
loop system is asymptotically stable if there is a line with slope
1/ and an intercept on the X axis —k such that (X (w), Y (w))
trajectory is completely contained in the open right half-space
of the line. Because we have found that it is very difficult to find
an equivalent and explicit symbolic expression of (8) indepen-
dent of w, we provide minimum values of & when two optimal
gain sets found in [19] are used. The gain sets are optimal in
the sense that they maximize the asymptotic decay rates of the
closed-loop systems employing the identity utilities U;(a) = a
Vi € N, whereas it is impossible even to define the asymptotic
decay rates of nonlinear delayed systems. To find a k value in-
dependent of 7, we rewrite G(jw), X (jw), and Y (jw) into the
following equations:

. ju1Gp + G — wWiG
Gljwn) = — 12GP sz iGp
1

. (008(021) —)J sin(w1))
A G jw1
X(wr) =Re {H—T(Jw)}

w1 m G(le)
1+ 6w? 1+ hG(jwr)

where w; £ 7w and §' = 0/72.

Corollary 1 (Explicit Range of k):
(Gp,Gp,Gr) = (0.242,0.868,0.261) and G2, =
(Gp,Gp,Gr) = (0,0.482,0.091) that correspond to the
PID and proportional-integral (PI) optimal gain sets, respec-
tively. If G3;p x p and G3p X p are used where p > 0, the
minimum values of & are 0.480 x p and 0.338 x p, respectively.

Remark 3: Note that for # = 0 (or #/ = 0 in Fig. 5), the
inequality (8) reduces to the well-known Popov criterion where
the minimum slope constraint is dropped. The minimum slope
constraint in our theorem is essential for getting a smaller k,
because the Popov criterion requires k& = 2800 for G (p =
1) as shown in Fig. 5. Since G}y, is optimal only for identity
utilities U;(a) = a Vi € N, a closed-loop system satisfying

3 Y
Let G{p =

the sector condition,! i.e., U;(a)/a > 2800 Vi € N, converges
at an extremely low speed. Thus, instead of the Popov criterion,
which has been regarded as one of the least conservative criteria
when the nonlinear feedback ¢(+) is time-invariant, we must use
Dewey and Jury’s criterion [20], which allows much smaller
values of & thanks to the minimum slope constraint.

This corollary provides minimum values of k for two optimal
gain sets. For the PID and PI controller models, respectively,
with the gain set G2,y x p and G311 X p, we can use any kinds of
utility function that satisfy, respectively, 0.480 x p < dU; /da <
oo and 0.338 x p < dU;/da < oo. The astute reader might
already have observed from Remark I that the linear relationship
between the gain set and the minimum slope in Corollary I are
much more important than the minimum slope itself. The point
is how small the minimum slope can be for a given gain set.
Thus, for brevity, we assume p = 1 from now on. To introduce
stability margins to the closed-loop system, it is recommended
that the minimum slopes of utility functions be bounded by 1.

Last, we would like to comment on the inevitability of the
minimum-slope constraint in our distributed utility max-min ar-
chitecture, represented by (1), (SA), and (LA1). In a single-link
case, (SA) reduces to a;(t) = U; ' (u(t — 77)). If the slope
dU; /du is sufficiently small, a small change in w(¢) can in-
duce a large fluctuation in a;(t). Since feedback delays between
a;(t) and u(t) are nonzero, the fluctuation of a;(t) is not allevi-
ated immediately and causes the instability of the queue length
through (1). Thus, we can see that the minimum-slope constraint
of utility functions is inevitable in a distributed utility max-min
architecture with nonzero feedback delays.

IV. MISCELLANEOUS TOPICS

A. Estimation of |Q'|

The usage of |Q'|, the number of flows bottlenecked at link
lin (LA1) and (LA2), is not a specific requirement of our ar-
chitecture but an inevitable requirement of most approaches.

Popov criterion requires the sector condition, i.e., U;(a)/a > k, while
Dewey and Jury’s criterion [20] requires the incremental sector condition, i.e.,
dU;(a)/da > k. For a more detailed explanation, see [23].
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Fig. 6. Utility functions for different application classes and multiple-bottleneck network used for simulation.

In most approaches, the gain value used for updating source
rates or link prices is normalized by analogous terms. However,
routers should store per-flow information regarding flows’ ac-
tiveness to know the exact value of |Q!|. Thus, to eliminate this
overhead, |Q'| must be estimated properly. The condition of
(12) is still satisfied when |Q| in (7) is replaced by |Q| > |Q|.
Thus, we can see that the overestimation |Q'| is allowed, while
severe overestimation slows down the convergence speed of the
closed-loop system.

We largely follow the method described in [5] and modify the
method for utility max-min fairness. When the jth data packet
arrives at link [ at time ¢/, it contains two fields, a; (/ — Til 7y and
ul (7 — Til/’f ) where [’ is the current bottleneck link for flow i.
Using these two values, for the kth interval, the number of flows
bottlenecked at link [ can be approximated by

DPS?
tie((k—1ywkw) W - a; (tj - Til’f)
1 {u” (tj - Tj"f) > 6-ul(tj)} (11)

Q'F =

where 1{-} is the indicator function, W is the time interval used
for averagéng, and DPS’ is the size of the jth data packet. When
u (7 —71T) > §.ul(t7), flow i is regarded a flow bottlenecked
at link / and the indicator function returns 1, otherwise 0. The
value 6 = 0.9 is used to introduce a margin for estimation.
Note that (11) provides an efficient method for estimating | Q' in
addition to preventing underestimation of |Q'|. For suppression
of the fluctuation in estimation, the value |Q'| is computed as
follows:

Q') — max[1, Q'] + (1 = )| Q"[*]

where A is an averaging factor, and it is found that A yields the
stable and effective estimation of |()'| when itis setto A = 0.98.

B. Applicability of Our Work

Recently, Tang et al. [24] showed that max-min fairness
achieves higher aggregate throughput than proportional fair-
ness [7]-[9] in some cases. Thus, as of now, no one can say
that one is better than the other. Sarkar and Tassiulas [12]
also argued that max-min fairness might be a fairer choice
than proportional fairness from the user’s viewpoint, because

max-min fairness treats flows equally irrespective of their path
length, whereas proportional fairness penalizes flows traversing
longer paths. Since the same argument applies to utility-based
fairness concepts, it can be asserted that the stability analysis
of distributed utility max-min flow control is also important.

To support various multimedia applications in multirate
multicast networks, Rubenstein er al. [15] employed utility
max-min fairness. They noted that different network applica-
tions can have differing bandwidth requirements to support
a given level of quality for an application. They showed that
if multicast sessions are multirate, the utility max-min fair
allocation satisfies desirable fairness properties that do not
hold in a single-rate utility max-min fair allocation. Bianchi et
al. [10] emphasized that the scalable properties of multimedia
content should be exploited when the desired resources are only
partially available, and motivated the need of adaptive QoS
techniques in wireless networks. As an adaptation technique,
they adopted equal utility allocation. After due consideration
of these works, we believe that our distributed link algorithms,
which achieve the utility max-min fairness with guaranteed
stability, will facilitate the application of utility-based fairness
concepts.

V. SIMULATION RESULTS

We provide several simulation results using the ns-2 simulator
[25] to demonstrate the merits of utility max-min flow control
and the performance of our algorithms. The largest round-trip
propagation delays are set to 100 ms. To avoid messy figures,
we simulated our architecture with only two kinds of three-term
link controllers, i.e., PID and PII? controllers. Simulation results
for the PID and PII? link controller models are, respectively,
denoted by Gy and G, . For two-term link controllers, i.e.,
PI and PII2 controllers, we can obtain simulation results similar
to those given in [19].

Four utilities, i.e., premium, elastic, real-time, and stepwise
utilities, are approximated by slope-restricted utility functions in
Fig. 6. To satisfy the minimum slope constraint and to introduce
stability margins, all utilities in Fig. 6 are designed to satisfy
dU; /du(a) > 1. Tt should be remarked that the value of U;(a)
has no specific meaning, and its unit can be arbitrarily chosen
by introducing some scaling factor in (LA1) and (LA2).

To show that the proposed models work well in multiple-bot-
tleneck networks, we consider a network configuration in which
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TABLE I
FLOW MODELS USED FOR SIMULATION
source utility d; begin(s) at end(s) at sink
St premium 35ms —00 oo Sink3
So elastic 15ms -0 oo Sinkl
Ss3 elastic 20ms —00 oo Sink2
S4 elastic Sms —00 oo Sink3
Ss, Sg elastic 25, 30ms 10, 10.1s oo Sinkl
S7, Sg, Sg, S10, S11 || real-time 20, 40, 15, 40, 25ms 20, 20.1, 20.2, 20.3, 20.4s oo Sink2
S12, S13, S14 stepwise 30, 40, 10ms 40, 40.1s oo Sink3
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Fig. 7. Simulation results.

there are three bottleneck links; see Fig. 6, where 7 = 120 ms is
used. The flow models are summarized in Table I. In Fig. 7(a),
although there are queue overshoots at ¢ = 10, 20, and 40 s
because several flows begin transmission simultaneously, such
dramatic events (e.g., S7 ~ Si; begin transmission simulta-
neously) do not occur frequently in real networks. In steady
states, the sending rates of flows satisfy the feasibility condi-
tion in Definition I and the utility max-min property in Defini-
tion 2, as shown in Fig. 7(b). For the PID model, the link ca-
pacity is fully used, while the target queue length (¢. = 75 kB)

is obtained. For the PII> model, the target use (o, = 0.95) is
achieved, while the queue length at steady state becomes zero.
Because Sy traverses links 1, 2, and 3, a;(t) becomes nearly
identical to the minimum of the feedback utilities at the three
links, min[u® (), u?(t), u3(t)].

Four intervals are readily distinguishable; [—o0, 10 s], [10 s,
20 s], [20 s, 40 s], and [40 s, oo]. From —oco to t = 10 s, Sy is
bottlenecked at all three links. As new elastic flows, S5 and Sg
destined for Sinkl begin transmission at ¢t = 10 s, S; becomes
bottlenecked only at link 1. Thus from ¢ = 10 sto ¢ = 20 s,
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flows S3 and S, can send data at higher rates, and S can send
data at a lower rate compared with the previous time interval, as
shown in Fig. 7(b). As five real-time flows, S7 ~ Si; destined
for Sink2 begin transmission at ¢ = 20 s, S is now bottlenecked
atlink 2. Fromt¢ =20stot =40s, Ss, S5, and Sg can send data
at higher rates, and S3 can send data at a lower rate compared
with the previous time interval. Similarly, when three stepwise
flows (S12 ~ S14) destined for Sink3 begin transmission at ¢ =
40 s, S; becomes bottlenecked at link 3 and flows are allocated
bandwidth according to utility max-min fairness. From¢ =40 s
tot = 60 s, link 1 becomes lightly congested compared with
link 3. Thus two elastic flows traversing link 1, S5 ~ Sg, can
send data at higher rates than three stepwise flows traversing
link 3, S12 ~ Si4 can. We can verify that our proposed al-
gorithms work well in multiple-bottleneck networks, where the
bottleneck link of a flow can change dynamically as the network
situation changes.

The estimated numbers of flows bottlenecked at links, Ql|,
nicely trace the exact numbers of flows bottlenecked at links,
|Ql |, in steady states. For example, the flows bottlenecked at link
3are {S1,S4}, {Sa}, and { Sy, S4, S12, S13, S14}, respectively,
in the intervals [—o0, 10 s], [10 s, 40 s], and [40 s, oo]. Thus,
|Q3| becomes 2, 1, and 5, respectively, as shown in Fig. 7(a). If
|Q"| underestimates |Q!| for a short time of transient periods as
shown in Fig. 7(a), the effective gains become |Q!|/|Q'| times
the original values and become larger than the original gains.
These enlarged gains can cause an adverse effect to the stability
of the network when the number of flows in the network is rela-
tively small, whereas reduced gains only slow down the conver-
gence of the network. Thus, one can intentionally lower-bound
|Q"| by a positive integer value to cope with this situation.

VI. CONCLUDING REMARKS

We have proposed a control-theoretic framework for appli-
cation performance-oriented flow control. Our contribution is
three-fold. First, we have found a distributed-link algorithm that
attains utility max-min bandwidth sharing while controlling link
buffer occupancy to either zero or a target value. Moreover, the
link algorithm does not require any per-flow information and
processing, so it is scalable. Second, our algorithm is shown to
be asymptotically stable in the presence of round-trip delays for
arbitrary forms of utility function, as long as they are contin-
uous and their slopes are larger than a certain positive constant.
Third, our framework lends itself to a single unified flow-control
scheme that can simultaneously serve not only elastic flows, but
also nonelastic flows such as voice, video, and layered video.

APPENDIX I
PROOF OF THEOREM 1

If all links in the network perform the same operation as that
described in Section II, each flow has its own bottleneck link
(which can be more than one), and the utility vector at steady
state is feasible in the sense that it satisfies (5) for all bottle-
neck links [ € L. If we increase the utility value of flow 7 which
is bottlenecked at some link [ while maintaining feasibility, we
should reduce the data rate of flow i’ (# 4) that traverses link [,
i.e., ' € N(I). Since U;/(-) is an increasing function by the
assumption A.l, the utility value of i’ is also reduced. Since

Ui (a})leqU;(af) for all ¥ € N(I) by the definition of bot-
tleneck link (see, e.g., [1]), we are reducing the utility value of
flow 4/, which is already less than or equal to the utility value
of flow 4. This complete the proof. To the PII> model, a similar
proof is applicable.

APPENDIX 11
PROOF OF THEOREM 2

For notational simplicity, we define two functions shown in
Fig. 3(b) as follows:

G(s)

G(s) = (1 + hG(s)

), UM (uw) =U(u) - hu.

By the assumption that (Gp,Gp,Gy) is contained in Fig. 4,
we can see that Gi(s) is asymptotically stable for any h € (0, 1]
from the arguments of [19, Sec. 3.3]. Then we can apply Dewey
and Jury’s criterion ([20, Corollary 5]) to our nonlinear mono-
tone feedback system, because G/(s) is asymptotically stable so
that g(¢) and ¢(¢) become elements of L;(0,00), i.e., the set
of absolutely integrable functions and Z/~*(0) = 0 by the as-
sumption A.2. Although the differentiability of feedback non-
linearities was also assumed, this assumption is used only for
the simplicity of their proof. If the feedback nonlinearities have
left-hand and right-hand derivatives at all points, Dewey and
Jury’s criterion still holds.

If there exist a finite number 7 and a finite number > 0 such
that the inequality (8) is satisfied for some small & > 0, then
the closed-loop system is asymptotically stable with /=1 (u)
satisfying the following equation by Dewey and Jury’s criterion:

d 1
0< @(u Y(u) — hu) < o
If this is satisfied for arbitrarily small A > 0, we have the fol-
lowing condition for U ~! (u):

dU ™" (u)
du

When each of the utility functions U;(a) satisfies &k <
dU;/da < oo, then it also satisfies 0 < dU; */du < 1/k and
their sum becomes as follows, due to the finitude of |Q|:

dU=(u)
du

1
< -
0< <7 (12)

1 AU (u) 1 1
1€Q

Therefore, we can conclude that the closed-loop system is
asymptotically stable if the minimum slope of the utility
functions is restricted by k, ie., k < dU;/da < oo for all
a € [0,00). For the PII? model, we can apply the same proce-
dure because G/(s) of the PII? model is identical to that of the
PID model.

APPENDIX III
PROOF OF COROLLARY 1

Let us assume p = 1. To apply Theorem 2, the condition
of (10) should be satisfied for h arbitrarily close to 0. When
we use a graphical technique with small h, §’ has an essen-
tial role in achieving a smaller k. The inequality (10) implies
that #’ has no significant effect when wy is small, and in that
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case, the (X (wy), Y (wy)) trajectories are nearly identical, in-
dependent of #’. However, when w1 is sufficiently large and 6’
is very small, Y (w; ) becomes very large, and the trajectories of
(X(w1),Y (w1)) prevents us from obtaining a smaller k value.
Using the graphical technique introduced in Section III, we can
show that the following k values satisfy X (w1)—7'Y (w1)+k >
0 Yw; > 0 for some 1/ £ n/Tand 8" > 0:

Gp

* o0 *
w7 sin wj

k=

where wj is the smallest wy > 0 satisfying (Gr —
wiGp/w?)S € (w1) — (Gp/wy) cos(wy) = 0 and € > 0 is any
finite number. For G2,y and G2, values of (Gp/w}) sin w}
are approximately 0.4798 and 0.3375, respectively. For the
proof of the case p # 1, refer to Remark 2. This completes the
proof.
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