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Abstract

Image labeling is a process of recognizing each seg-
mented region properly ezploiting the properties of the
regions and the spatial relaiionships between regions.
In some sense, image labeling is an optimization pro-
cess of indezing regions using the consiraints as to the
scene knowledge. In this paper, we further investi-
gate a method of efficiently labeling imagcs using the
Markov Random Field(MRF). MRF model is defined
on the region adjacency graph and the labeling is then
optimally determined using the stmulated annealing.
The MRF model parameters are automatically esti-
mated using the error backpropagation network. We
analyze the proposed method through ezperiments us-
ing the real natural scene images.

1 Introduction

Image understanding consists of image segmenta-
tion and image labeling in large. Image segmenta-
tion is a process of segmenting an image into a group
of homogeneous regions whose characteristics such as
graylevel, color, texture, range, etc. are similar while
image labeling is a process of recognizing each seg-
mented region exploiting the properties of the regions,
spatial relatiohships between regions, knowledge as to
the object models and the scene. In general, under-
standing images on 3-D scene is difficult because of
the complexity and variability of the scene. There-
fore, for reliable understanding of such an image, one
must effectively exploit a set of knowledge as to the
scene.

Among those various types of knowledge required
for 3-D scene understanding, domain specific semantic
knowledge is most frequently used for image labeling.
Since semantic knowledge provides some constraints
on labeling, the properties of the objects(or regions)
are termed as unary constraints whereas the spatial re-
lationships between objects(or regions) are termed as
binary constraints. Thus, image labeling is a process
of indexing images comprising many objects using the
unary constraints on object properties and the binary
constraints on the relationships between objects.

Markov Random Field(MRF) model provides a
powerful mechanism for incorporating the spatial de-
pendence of objects in the relative proximity of each
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other. And there is a very useful theorem that makes
an explicit connection between the probabilities in the
MRF formulation and the Gibbs distribution, which
characterizes systems with energies and temparatures.
So far, MRF model has been widely used to solve so
called ill-posed problems in the computer vision areas
such as image restoration [1], segmentation [2], 3], [4]
and interpretation [5].

For the MRF-based image labeling, an image is first
segmented into a set of disjoint regions and MRF is
defined on the corresponding region adjacency graph.
Figure 1 shows a synthetically generated segmented
image and corresponding region adjacency graph.

®
o O

® ®
oIB\oe L
Q@ sw @ Folisge GS o‘o
@ Grass (@) Road
® o (O cns ©

(a)

Figure 1: (a) Typical example of segmented image (b)
corresponding region adjacency graph

Image labeling is then achieved through assigning
object labels to the segmented regions, or nodes of
the adjacency graph, using feature measurements and
the domain knowledge such as unary and binary con-
straints. The labels are modeled as a MRF on the
adjacency graph and image interpretation is then for-
mulated as an optimization problem of maximizing the
a posteriori probability of labeling given the feature
measurements and the domain knowledge. Thus, by
formulating image labeling problem as MRF model,
the domain knowledge can be systematically repre-
sented in terms of the clique functions associated with
cliques on the corresponding adjacency graph. Image
labeling can then be achieved by a relatively efficient



optimization algorithm, simulated annealing,.

In general, parameters of MRF models are assumed
to be known. But the values of these parameters de-
termine both the distribution over the configuration
sapce to which the system converges and the speed
of convergence. Thus, estimating these parameters
is very crucial in practice for the successful labeling.
One way to estimate parameter values is using a set
of examples in which data and desired solutions are
given.

In this paper, we further investigate the MRF-based
image labeling method. For estimating the parame-
ters associated with the single-node clique functions,
we implement the clique function as a neural network
whose weights are learned from examples by error
backpropagation method [6]. The best labeling that
minimizes the MRF-based energy function is then ob-
tained by simulated annealing algorithm (7.

2 MRF-based image labeling
2.1 Image labeling formulation
Now we briefly describe the underlying concepts as-
sociated with the MRF defined on the region adja-
cency graph and show how this can be applied to the
image labeling problem. The MRF-based image label-
ing is previously formulated by Zhang, et.al. 5], and
we will follow their formulation in basic scheme. But
in designing clique functions we redefine a single-node
clique function as a single parameter value, which is
estimated by a multilayer neural network using error
backpropagation algorithm.
Let G={R,E } be a graph, where
R={R:1<i<N} (1)
is a set of disjoint regions; and E is a set of edges
connecting them. Suppose that there exist a neigh-
borhood system on G, denoted by
N={n(R):1<i< N}, (2)
where n(R;) is a set of regions in R that are neighbors
of R;. Let X = {Xg, R € R} denote any family of
random variables indexed by R, and A be a set of
possible labels so that Xp € A for all R. Let Q be the
set of all possible configurations:

Q={w=(Ar, - ARy) : Ar; €A, 1< i< N} (3)

As usual, the event {Xg, = Ap,,..., Xg, = Ag,} is
abbreviated {X = w}. Then Xis an MRF with respect
to Nif
PX=w)>0VYweq;
P(XR; = Ar;|Xr; = Ag;, R; # R;)
= P(Xr; = Ar;|XR, = Jg;, B; € n(R;))

(4)

for every R; € R and (Ag,,...,Ar,) € Q. And P[]
and P[. | .] are the joint and conditional pdf’s, re-
spectively. An important characteristics of the MRF
model defined above is that its joint pdf has a gen-
eral functional form, known as the Gibbs distribution,
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which is defined on the concept of cliques. So P(X =
w) can be written as

P(X =w)=Z e VW (5)

where U(w) = Y .o Ve(w). Here, U(w) is called
Gibb’s energy function, V(w) is called clique func-
tion defined on the corresponding clique ¢, and Z is
the normalization constant.

Image interpretation problem is to find maximum a
posteriori (MAP) estimate of X corresponding to the
maximum of P(X = w), and P(X = w) can be max-
imized by minimizing Gibb’s energy function, U(w),
which is the summation of V.(w)’s. Therefore we
should first define clique functions, Ve(w) for the cor-
responding clique c.

2.2 Designing clique functions

A clique is a subset of R which contains either a sin-
gle node or several nodes that are all neighbors of each
other. In general, the optimal interpretation should be
the one that is most consistent with the feature mea-
surements and the domain knowledge. So a general
principle for designing clique functions can be stated
as follows; If the interpretation of the regions in a
clique tends to be consistent with the feature measure-
ments and the domain knowledge, the clique function
decreases, resulting in a decrease in the energy func-
tion; otherwise, the clique function increase, resulting
in an increase in the energy function.

We first consider the clique functions for single-
node cliques. Let ¢ be an arbitrary single-node clique
with one region R. Let the corresponding clique func-
tion be defined by

Ve(w) = Vo(Xg = A) = ay, (6)
where A is a label for R and «, is a parameter associ-
ated with w. Usually, c,,’s are assumed known or es-
timated by some parametric functions. But this is not
appropriate for the interpretation of the complex real
natural scenes because there are so much variations on
the input images and so it is difficult to pre-determine
the parameter values or define estimation functions
without invoking any other parameters. To overcome
this, we implemented clique functions as multi-layer
neural networks. The network produces the param-
eter values as its output and these parameter values
are learned from examples by error backpropagation
algorithm, detailed description of which will be found
in the next section.

The clique functions for the two-node cliques can
then be defined as follows. Let ¢ be an arbitrary two-
node clique with two adjacent regions, R; and R; in
R. Then the clique function for the clique ¢ can be
defined as

Vcl(“’) = V::I(XRi = Ai!XRj =) =B, (7
where A; and A; are labels for R; and R;, respectively.
We set 3, to 01f A; and A; pair is a valid combination;
otherwise, 1. Table 1 shows the example of the pairs of
the labeled regions and their corresponding parameter
values.



Table 1: Example of the pairs of two adjacent labeled
regions and their corresponding parameter values

Pairs of the labeled regions
sky, road

sky, centerline

sky, window

foliage, centerline

foliage, window

road, window

wall, centerline

centerline, window

the rest

s

[ = e

3 Parameter estimation by error back-
propagation
As discussed in the previous section, there are some
parameters in the MRF model. These parameters are,
in general, assumed to be known or determined heuris-
tically. One way to estimate these parameter values is
using a set of examples in which data and desired solu-
tions are given. We exploit the error backpropagation
network to estimate these parameters from examples.
Let W be a set of networks:
W ={Wi, . Wi,: M EALLiL<m}, (8)
where m is the number of possible labels. Then we
define again the single-node clique functions as

Vow) = Vo(Xr=2) = O(Wx; F(R))  (9)

where WS, is a network for the object label X, F(R) is
the feature measurements of the region R; e.g. aver-
age intensity, color, texture, aspect ratio, etc., and O
means the output of the network for the input, F(R).
The network W operates as follows; If the region R
labeled with )\ exactly corresponds to that label, the
network produces the lowest value; otherwise, it pro-
duces rather high values close to 1. Thus the domain
knowledge about the object A is implicitly stored in
the connection weights of Wy and W, plays a role as
unary constraints for the object A.

We construct and train the network independently
for each label in A. In Figure 2 is shown the network
for a certain object label. The network consists of
input, output and one hidden layer. The number of
input node is same as that of feature measurements
and the number of output node is one.

F;(R) denotes the ith feature measurements for the
region R and fis the sigmoid function.

We trained the network so that it produce the low-
est value close to 0 only if features are measured from
the region whose exact object label is A. Figure 3
shows the parameter values produced by the network,
Wi,oad given the feature measurements of the regions
which are not included in the training examples. As
you see in the figure, the network does not always pro-
duce the desired values for the “road” regions because
there are so much variations on the input images due
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Figure 2: Error backpropagation network model for
the single-node clique functions

to the lighting conditions, illuminations, etc. But we
could get the correct labeling results for all the regions
in experiments by exploiting the binary constraints
based on the MRF model.

4 TImage labeling by simulated anneal-
ing

After the region adjacency graph is formed, we as-
sign randomly certain labels to every node on the
graph and estimate the value of energy function
through summatioin of all clique functions. The opti-
mal interpretation that minimizes the energy function
is then achieved by iterative operations until the en-
ergy function becomes stable. One iteration is defined
as one visit to all the nodes in the graph, assigning new
object label to the visited node and accepting the new
label only if e=2B/T > u, where T is a temparature
and p is an random number between 0 and 1.

5 Experimental results

We applied the proposed method to the real-world
images. In experiments, we used 6 object labels, 6
spectral and 2 geometric features for the unary con-
straints and one binary constraints as described in Sec-
tion 2. Figure 4 shows the experimental results on
a sample color image describing outdoor scene. Fig-
ure 4(b) shows the segmented regions generated by us-
ing the segmentation algorithm proposed by Suk et.al.
[S]g, and Figure 4(d) shows the labeling results. Among
segmented regions we ignored in labeling rather small
and meaningless ones due to the complexity of the im-
age, and which are remained as white regions in the
labeling results. As depicted in Figure 4(e), from the
beginning to about 20 iterations new labeling has been
accepted although it resulted in a significant increase
in energy function value. But after then, only a small
increase in energy has been allowed and eventually,
energy function reached the minimum and stabilized.
Figure 4(f) shows the number of iterations to reach
the minimum energy state in several experiments.
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Figure 3: Parameter values produced by the net-

work, W;.oqq4 for the untrained regions:horizontal axes
= number of sample regions, vertical axes = network
output(e,,)

6 Concluding remarks

In this paper, we have presented an efficient image
labeling method based on the Markov Random Field.
To endow the adaptability to the MRF-based image
labeling, we have proposed a parameter estimation
technique on error backpropagation. Through experi-
ments on real natural scene images, we have confirmed
the proposed method performs image labeling very
effectively. In the future, in addition to the spatial
adjacency, we would like to exploit more sturctured
spatial relationships between regions to improve the
performance.
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