
Efficient Storage Management for Large Dynamic Objects

Byungyeon Hwang

Department of Computer Science
Songsim University

Kyonggi, Puchon 422-743, Korea
b yhwang @ sic om. kaist . ac .kr

Abstract

In this paper, we propose U new databuse storage
manager, called Buddy-size Segment Storuge System
(BSSS), to handle large dynamic objects of any size and
then implement search, insertion, append, and deletion
algorithms used for the storage structure. The i n t e n d
nodes of the proposed storage manager arp identical to
the ones proposed in Exodus. However, unlike Exodus
that has fined-size segments for leaf blocks, BSSS hac.
binary buddy-size leaf segments. The proposed storage
manager is compared with Exodus through performance
results from simulation approach. BSSS performs the
same as or better than the best case of Exodus for object
creation time, sequential scan time, and random search
time. However, the insertion performance of BSSS is the
same us or worse than the one of Exodus.

1: Introduction

The manipulation of large objects is an important issue
in many unconventional database applications such as
geographic information systems, computer-aided design.
office information systems, and multimedia presentation.
In particular, multimedia presentation requires displaying
images, showing movies, or playing digital sound
recordings in real time [2, 8, 143. Efficient manipulation
of large objects is also important in any object-oriented
and extended relational database management system to
support advanced data modelling constructs like long list.

Several storage systems to manage large complex
objects have been proposed 17, 12, 13, 151. The problems
in the existing storage managers for large objects are
briefly discussed here. The data Structure of WiSS [4] and
Starburst [111 consists of data segments and a directory
for the data segments. Since the directory is a set 01’
sequential entries pointing to the data segments, dynamic
insertion and deletion operations of large objects require
the reorganization of the directory; the corresponding

0-8186-6430-4/94 $4.00 0 1994 IEEE
37

Inhwan Jung and Songchun Moon

Department of Information and
Communications Engineering, KAIST
207-43, Cheongryangni, Dongdaemun

Seoul 130-012, Korea

partial insertion and deletion algorithms are inefficient.
Furthermore, the long field of WiSS has a size limit of 1.6
megabytes. In case of Starburst, it is 448 megabytes.
Therefore, they cannot store larger data objects than their
own limited size.

In general, the pages organizing an extent give good
search performance since they are allocated to physically
contiguous disk blocks. In WiSS, when a volume is
created, the size of an extent, in pages, organizing the file
is fixed. Therefore, if the size of a data object is larger
than that of the fixed extent, the data object is separately
allocated in several extents. Obviously, this implies that
the search performance of WiSS is poor when the size of‘
a data object is larger than that of the fixed extent.
Exodus [3] can set tbe size of data pages of all large
objects to be some fixed number of disk blocks. However,
this mechanism is not suitable to applications that want to
simultaneously optimize both search time and storage
utilization. Large pages waste too much space at the end
of partially full pages but offer good search time, and
small pages offer good storage utilization but require
doing many disk I/O for read operations.

To solve the problems described above, we propose a
new storage manager, Buddy-size Segment Storage
System (BSSS), which stores data objects of any size.
BSSS has binary buddy-size leaf segments, whereas
Exodus has fixed-size leaf segments. The proposed
storage manager handles large objects by storing them on
data pages that are indexed by the B+-tree [6] structure,
where the key is the maximum byte position stored in a
leaf data page. Therefore, the partial insertion and
deletion algorithms of our storage manager for large
dynamic objects are more efficient than those of WiSS
and Starburst which use a sequential directory structure.

We believe that most applications handling large
complex objects such as voice, image, sound, or video
will read and write whole large objects and not perform
update operations that affect only parts of large objects.
However, some applications using large objects may want
t.o access only a portion of a large object at a time. That

is, to retrieve an object, one would rather sequentially
scan through the object in smaller portions, rather than
access the whole chunk in one step. For instance, playing
of digital sound recordings or frame-to-frame accessing
of a movie is required to access only a portion of a large
object at a time. Similarly, for the insertion and deletion
operations for a large object, elements may be inserted or
deleted at any place within the large object, In multimedia
applications, pictures may be annotated and movie spots
may be edited to remove or add frames of the movie.

Our storage manager is based on the binary buddy
system [lo] to manage disk space. The buddy system is
known for fast allocation and automatic coalescing of
blocks on deallocation, but it has also been reported to
suffer from poor space utilization due to fragmentation
[5] . Many of the negative reports about the buddy system
come from those trying to use the buddy system to
allocate a single block of storage rather than a set of
blocks. However, when multiple blocks are used, both
internal and external fragmentation can be reduced
greatly. Since our storage system can supply buddy
segment sizes in 2" units (the units typically being disk
pages) and the last allocated segment is trimmed, it is
possible to allocate the correct sizes of buddy segments so
that the unused w o n of an allocated segment is always
less than a page.

The remainder of this paper is organized as follows.
Section 2 describes the related work. Section 3 presents a
new storage manager to manage large dynamic objects,
and then describes search, insertion, append, and deletion
algorithms used for the storage manager. The
performance results for the proposed storage manager and
Exodus are shown in Section 4. Finally, conclusions
appear in Section 5.

2: Related work

The relational DBMS lacks the efficient support of
large complex data types and spatial searches. These new
requirements produce a need to redesign the storage
manager. A number of researchers have addressed the
storage management problems for new applications [3,9,
161. Because we are interested in spatial applications
particularly, in this section, we briefly describe some
storage managers that are related to our work.

2.1: WiSS

The WiSS consists of four distinct layers. The lowest
level handles physical I/O and space allocation. The
buffer manager is designed to accept user hints. Above

this is the storage structure level which includes records,
files, and indices. Finally, there is an interface layer that
supports scans and large storage objects. A feature of
WiSS is that it supports large storage objects which
exceed a page in size. This is in contrast to earlier
systems that forced the user to implement these structures
on top of page sized records. However, the storage
manager differentiates long items from small items, so it
is not possible to build an index on a file of long data
item. A WiSS Long Datu Item consists of a directory and
a set of small records less than one page long. To avoid
fragmentation on the last page, the last record used is
stored on a page that is shared with other records. There
is a limit of 1.6 megabytes on the length of a long data
item, which makes it unsuitable for storing huge images.
WiSS provides dense B'-tree indices and hashing as
access methods. However, there is no provision made for
adding new access methods to the system. The buffer
manager uses a least recently used (LRU) replacement
strategy with hints consisting of three priority levels. The
physical IIO management level improves on the standard
UNIX file system by allocating space for files in extents.
However, the size of an extent, in page, organizing the
file is fixed when a volume is created. Therefore, if the
size of a data object is larger than that of the fvred extent,
the data object must be separately allocated in several
extents and cannot be clustered.

2.2: Exodus

The Exodus storage manager is a part of the Exodus
extensible DBMS project. In order to enhance
extensibility at the persistent programming level (E
language), the emphasis was on minimizing semantics in
the storage manager. Conceptually, all data handled by
the Exodus storage manager are viewed as variable length
byte sequences or stomge objects that can be arbitrarily
long, and are uniquely identified by Object Identifiers
(OIDs). The choice of physical surrogates over logical
surrogates avoids a table lookup for each reference, but
can cause storage fragmentation in the long run. Long
data items are managed by a B'-tree like structure based
on byte offset. Objects smaller than a page are stored as
single records. With a uniform interface to large and
small storage objects, it is possible to index files
containing both types of objects. However, indices are not
provided in the storage manager. Files in Exodus are
collections of storage Objects which are managed by
using B'-tree structure based on disk page number.
Exodus comes close to meeting our storage management
requirements. However, under the circumstance the size

38

of an object increases dynamically, search performance
becomes poor since Exodus sets the size of an extent to
be some fixed number of disk blocks. Also, the storage
manager does riot support indices.

2.3: Starburst

The Starburst long field manager was designed to
manage large database objects such as voice, image, and
video. The long field manager uses the buddy system to
manage disk space. Because it is not practical to store a
long field directly in the relation, the long field descriptor
is stored in the relation. The long field descriptor is a
single level directory of disk extents. The variable disk
extents, called buddy segments, are taken from buddy
spuce which are large fixed-size sections of disk that are
reserved for long field. Buddy spaces are taken from an
even larger portion of disk, labeled DB spuce. A buddy
space comprises an allocation page and a data page. The
allocation page describes the state size of the individual
buddy segments in the buddy space data area. Buddy
segments contain only data. The maximum le gth of a
long field varies with the maximum buddy segment size
since the maximum length of the long field descriptor is
l'ixed. The current design of Starburst, based on a 4
kilobyte allocation page, does not support buddy
segments larger than X megabytes. Therefore, the
Starburst long fields have a size limit of448 megabytes.

3: New storage manager for large objects

In this section, we present a new storage manager,
Buddy-size Segment Storage System (BSSS), to handle
large dynamic objects. Also, the search, insertion,
append, and deletion algorithms for the proposed storage
manager are described in this section.

3.1: Structure of a large object

In this section, we propose a new data tyiie called
Buddy-Object to manage large objects of any size. The
proposed Buddy-Object data is represented on disk as ;i
B'-tree index and a collection of leaf blocks with binary
buddy-size leaf segments. An example of a Buddy-Object
data is shown in Fig. 1. In Fig. 1, the size of a page is
assumed to be 100 bytes. The root of the tree contains ;i
number of (count, page number) pairs, one for each child
of the root. The count value associated with each child
pointer gives tbe maximum number of bytes stored in the
subuee rooted at that child. Therefore, the count for the
rightmost child pointer is the size of the object. Intemal

nodes are recursively defined as the root of another object
contained within its parent node; thus, an absolute offset
within a child is translated to a relative offset within its
parent node. The leaf segments in a Buddy-Objecr data
contain pure data. The left child of the root in Fig. I
contains bytes 1-471, and the right child contains the rest
of the object (bytes 472-736). The rightmost leaf segment
in Fig. 1 contains 144 bytes of data. Byte 100 within this
leaf node is 121+100=221 within the right child of the
root, and it is 471+221=692 within the object as a whole.

Fig. 1. An example of a Buddy-Object data

3.2: Search

The search algorithm supports the retrieval of a
sequence of N bytes starting at byte position S in a
Buddy-Objecr data. Only minor modifications need to be
made to the algorithm proposed in Exodus so that buddy
size leaf segments can be supported.

Search (S: byte position, N: number of bytes)

S 1. [Search the Root Page]
Let start = S, and read the root page and call it page
R. The count[i] and pid[i] represent (count, pointer)
pairs, and let couM-l]= 0 by convention.

While R is not a leaf page, do the following: Save the
address of R on the stack and binary search R to find
the smallest count[i] such that srurf I count[i]. Set
start = srurt - count[i - I], and read the page
associated with pid[i] as the new page R.

Let a page size be P-S. R is now a leaf segment. Once
at a leaf, the fust desired byte is on the leaf segment R
at location srurt. Byte start within R is in page P = R
+ Lstart/PSJ at byte B = star? mod P-S within P. If
N is less than the number of bytes in R after B, read

pages from P up to R + L(srurt + N)/P-sJ. I fN is
greater than the number of bytes in R after B, read P
and all pages of R on the right of P. Use the stack to
obtain the rest of the bytes.

S2. [Search Intemal Pages]

S3. [Search Leafpaget,]

39

Suppose we want to read 360 bytes starting from byte
170 of the Buay-ObjecZ data shown in Fig. 1. To locate
byte start = 170, we find that count[O] = 471 is the
smallest count of the root that is greater than 170. Now
we have to locate byte start = 170 - count[-11 = 170 in the
child node pointed by yid[O]. We repeat the same process
in the child. That is, we find that count[l] = 471 is the
hmallest count greater than 170, and thus, we set R =
pid[l], and sfart = 170 - count[O] = 20. Byte 20 is in page
K + L20/1001= R + 0, at byte 20 within that page. We
read pages R through R + 3 to retrieve the first (count[l] -
tount[O]) - 19 = (471-150) - 19 = 302 of the desired
bytes. Then, the next leaf segment needs to be retrieved
tor the remaining 58 bytes. The search algorithm CXUI also
he used for the byte range replace operation to locate and
modify a given byte range within the large object.

3.3: Insertion

The insertion algorithm supports the insertion of a
sequence of N bytes after the byte at position S . An
example of N bytes insertion in segment L is shown in
Fig. 2. In Fig. 2, B represents the byte position within P
where the fist byte of N should be placed. Let M he the
left or right neighbor of I, with the most free space which
can be determined by examining the count information in
I , '$ parent node, and let L-S he the number of bytev of the
largest buddy segment that is smaller than or equal to IN,'
t' .Sl.

cL3zzl N - L-S

Fig. 2. An example of N bytes insertion in segment L

Insert (5': byte position, N: number of bytes)

11. [Search the Buddy-Object Tree]
Traverse the Buddy-Object tree until the leal
containing byte S is reached, as in the Search
Algorithm. As the tree is traversed, update the counth
in the nodes to reflect the nuniber of bytes to bc
inserted, and save the search path on the stack.

Call the leaf segmcnl into which bytes are being
inserted L. When 1 is reached. try to insert the N

12. [Insert N Bytes into the Leaf Node I

bytes there. If no overflow occurs, then the insert is
done, as the internal node counts will have been
updated in step 11.

If an overflow occurs, proceed as follows: If L and M
together have a suftlcient amount of free space to
accommodate N - L-S bytes of data, then evenly
distribute the new data plus the old contents of L and
M between these two nodes and the largest buddy
segment that is smaller than or equal to LN / P - S ~
Otherwise, simply allocate the smallest buddy
segment that is larger thiin or equal to rN/P-S l , and
evenly distribute L's bytes and the bytes being
inserted among L and the newly allocated leaf
segment.

Propagate the counts and pointers for the new leaf
segment upward in the free, using the stack built in
step 11. If an internal node overflows, handle it in the
same way that leaf overflows are handled.

13. [Process Overflows]

14. [Propagate Upward1

3.4: Append

The append algorithm supports the addihon of N bytes
to the end of a Buddy-Object data. In most case, the last
segment of a Buddy-Object data will be trimmed to some
fraction of its original size to reduce international
fragmentation.

Append (N : number of bytes)

Al. [Traverse Rightmost]
Make a rightmost traversal of the Buddy-Object tree.
As the tree is being traversed, update the counts in the
intemal nodes to reflect the effect of the append. Save
the search path on the st; tck.

The final size of a Budd +-Object data may or may not
be known i n advance. When the size of a
Buddv-Object data is known a priori, a segment just
large enough to hold the entire object is allocated.
Then, each chunk of bytes is appended at the end of
the previous one with no holes in between them.
This is shown in Fig. 3. When the eventual size of a
Buddy-Object data is not known a priori, we follow
the growth scheme used in 1111; successive segments
allocated for storage double in w e until the
maximum segment size is reached. Then, a sequence
of maximum siLe segnients is used until the entire
object IS stored. For example, the object shown in

A2. [Append to the Rightmost Leat Segment]

40

Eig. 4 IS created by successively appending each
chunk of bytes with hinaty buddy-size leaf segment$.

To reduce internal frugmenfarion, the last allocatcd
segment is trimmed. Consider how a segment of 16
pages would be trimmed to hold a stnng of bytes that
occupy 11 pages. The sequence of segment sizes
needed is the binary representation of the number of
pages needed to hold the Buddy-Object data. For
instance, ll,, is 101 l,, thus there is a segment of siLe
eight, a segment of size two, and a segment of size
one. The remaining segments (size one and four) are
given back to the free space.

A3. [Trim the Last Allocated Segment]

100 300 700 03 JcJvm
4

Back to the free space
1

Back to the free spa'e

Fig. 3. N bytes append
when object size is
known a priori

Fig. 4. N bytes append
when object size is
not known a priori

3.5: Deletion

The deletion algorithm supports the deletion of IV
bytes starting at a specified byte position S . This
operation can result in either deletion of entire subtrees or
partial deletion of leaf segments. Deletion of entirr:
subtrees is performed first. They can be completed
without touching a single leaf segment because thc
address and size of' each segment are stored in thc
corresponding parent index nodes. Then, the deletion
algorithm proceeds to the second phase to perfonn partial
deletion. For a segment A , A , is used to denote the total
number of bytes kept in A and A, is used to denote thc
number of bytes in the last page of A . An example of N
bytes deletion is shown in Fig. 5.

R

c

Fig. 5. An example of N bytes deletion

In Fig. 5, D, in page Y of segment R and De in page P

of segment R' are used to denote the first byte and the last
byte to be deleted, respectively. Let L B and R B be the
size of the smallest binary buddy segment larger than or
equal to S-Lf and S-R,, respectively. To delete all bytes of
R on the right of D,, we simply decrement the counts in
the parent of R and free all pages of R on the right of P,
which are R - L-B. Then, we proceed by freeing all pages
of R' on the left of P', which are R' - R B . Now, the bytes
of P' on the right of De must he shifted to the left. The
deletion algorithm is as follows.

Delete (S: byte position, N. number of bytes)

D1. [Delete N Bytes]
Traverse the Buddy-Object tree to h e leit and right
limits of the delmon, and save each path lo a stack.
All subtrees completely enclosed by the traversal are
deleted.

Compute the number of bytes P, and the byte D , of
page P within R where deletion starts. Similarly,
compute P', and De of page Y' within R' where
deletion ends. Set S-L = R and S-L, = P x P-S + D, -
1. Set S-R = R ' + P' and !-RI = R If - (P ' x P-S + De -
1 j .

When L-R is the sise ot the smallest binary buddy
segment larger than or equal to S-L,, free all pages of
R on the right of P, which are R - L B . When R-3 is
the size of the smallest binary buddy segment larger
than or equal to S-R,, free all pages of R' on the right
of P', which are R' - R B .

Propagate the new counts and pointers up to the root
of the tree, using the stacks built in step 131. If an
intemal node has less than the allowed number of
pairs, merge or reshuffle it with a sibling.

If the root ha,, only one child. make this child the new
root and go to step D5.

D2. [Prepare Deletion Operation)

D3. [Trim the Partially Deleted Segments1

D4. [Propagate Upward]

D5. [Fix Root]

4: Performance of storage managers

We present the performance evaluahon results for two
managers which use a B-tree like directory structure -
Exodus [3] and our storage manager, BSSS. The
objective of our experiments is to demonstrate the
effectiveness of clustenng in our storage system which is
based on the binary buddy system to manage disk space.
We choose a simulation modeling as the approach of the

41

performance evaluation since an analytical modeling can
not consider a dynamic behavior of the storage managers.

4.1: Environment

The experiments are performed on 4 Kbyte &sk pages.
For I/O cost, we separate disk seek time including
rotation time and data transfer time so we can model
sequential disk accesses. We assume disk seek time of 33
milliseconds and a transfer rate of 1 Kbyte per
millisecond. We count a disk seek every time the disk is
accessed to fetch or write a segment on disk. For
example, the I/O cost of reading a 3 block (12 Kbytes)
segment is 33+4x3=45 milliseconds; the cost of reading
the same number of blocks with 3 I/O calls is
t33+4)x3=lll milliseconds. The size of the buffer pool
was set to 12 pages.

The simulations run on a 10 Mbyte object. The root of
the object is placed in a page with no other objects in it
When pointer and count values of an index page require 4
bytes each, we may store up to 507 pairs in the root anti
.5 11 pairs in internal pages with 4 Kbyte pages. For BSSS,
we used maximum segment size of 64 pages. For Exodus,
leaf segment size 0 1 1,4, 16, and 64 pages were used.

4.2: Object creation time

This section presents the time needed to built a 10
Mbyte object by successively appending fixed-size
chunks of bytes. We start with 1 Kbyte and go up to 512
Kbyte chunks.

In Exodus, with 1 page leaves, a 10 Mbyte object turns
out to be of level 2 - the root, the one level of 6 internal
nodes, and then 2560 leaves. With 4 page leaves, the
object is again of level 2 - the root, 2 internal nodes, and
640 leaves. For BSSS, the tree level is always 1. Fig. 6
shows the time required to build a 10 Mbyte object. The
exact append sizes in the horizontal axts of the graph are
the following (in kilobytes): 3,4, 5, 6, 7, 8, 10, 12, 14, 16,
20, 24, 28, 32,48,64, 90, 128, 192,256, and.512.

- 400 .
5
!2 9 3CO
B 8
E

1 G O

0
1 2 4 8 16 31 64 128256 5 1 2

-c EXcdus(l page)
.--c lixcdus(4 pages) - 6xodus(l6 pages) - Bxodus(C1 pages)
.f- BSSS

append size (kiobytai)

Fig. 6. 10 Mbyte object creation time

In two algorithms of Fig. 6, object creation time
depends on the append size by a few kilobytes. For
Exodus, the object build cost for 1 page leaves and for 3
Kbyte appends is approximately 292 seconds; it drops to
134 secoi ds for 4 Kbyte appends and rises up again to
265 secoiids for 5 Kbyte appends. This is due to the
change of the number of disk accesses by means of the
mismatch of the block boundaries and append size. For
instance, the number of disk accesses for 3 Kbyte
appends is 9387; it drops to 3628 for 4 Kbyte appends
and rises up again to 7902 for 5 Kbyte appends.
Furthermore, the object creation time depends on the way
appends are performed. When an overflow occurs on the
rightmost leaf because of an append, the new bytes being
appended, the bytes of the rightmost leaf, and the bytes of
its left neighbor (if it has free space) are redistributed in
such a way that all but the (WO rightmost leaves are full.
The remaining bytes are evenly dislributed in the last two
leaves, leaving eacb of them at least 1/2 full. In general,
when the append size is not precisely a multiple of the
leaf block size, reshuffling as described above is
performed, which increases the cost of appends.

The block boundary mismatch problem affects also the
BSSS algorithm but to a lesser degree. In BSSS, the new
bytes are simply appended at the end of the rightmost
page with no reshuffling. Thus, the cost of an append
operation is the one of readmg the rightmost page (if it is
not full) and flushing to disk the pages containing the new
bytes. Also, there are no index pages to write; the tree
level is always of level 1. (In BSSS, to come up with a
tree of level greater than 1, the size of the object being
created must be larger than 16 Ggabytes.)

For Exodus, we can not select a particular leaf block
size as the winner. Referring to Fig. 6, for appends of 4,
16,64, and 256 Kbytes, the best performance is achieved
when the leaf block size is 1, 4, 16, and 64 pages,
respectively; i.e., precisely when there is exact match
between append and leaf block size. For appends larger
than 256 Kbytes, larger leaf blocks have better
performance.

4.3: Seqiwntial scan time

This section shows the time required to sequentially
retrieve the entire large object from the database. After
the 10 Mbyte object was built in the experiment of
Section 4.2, it was scanned from the beginning to the end
in fixed-size chunks of bytes. The n-byte scan was
performed on the object created by n-byte appends since
the resulting structure of BSSS depends on the size of the
first append. For sequential scan time of BSSS, the best

42

performance that can be achieved is approximately 12
seconds with a transfer rate of 1 Kbytes per millisecond.
Fig. 7 shows the time required to scan a 10 Mbyte object
sequentially.

Fig. 7. 10 Mbyte object sequential scan time

As shown in Fig. 7, for scans shorter than the page
size two techniques produce the same results; the page
being scanned is buffered and all its bytes are read. The
differences appear for scans larger than the page size. In
Exodus, the cost for the 1 page segments case is the worst
and is independent of the scan size; all leaf pages of the
object are read one by one. Larger segments produce
much better results and their performance gives the best
result when the scan size exceeds the segment size. The
performance of BSSS follows the expected pattern; larger
scans produce better response time.

4.4: Storage utilization cost

Storage utilization compares the object size w ~ t h the
actual space required to store the object including
possible index pages. The average operation sizes are 100
bytes and 10 Kbytes.

In Exodus of 100 byte operations, 1 page leaf blocks
provide slightly better storage utilization over 4 page leaf
blocks for the small operations since a larger fraction of
the leaf blocks are split for a given number of random
update operations in the 4 page case and each one leaves
more empty space as a fraction of the overall object size.
It stabilizes at the same level of the low 80 percent.
However, as larger operations (10 kbytes) are performed
on the object, 1 page leaf blocks have a large storage
utilization advantage over 4 page leaf blocks. This is due
to the average operation size being large - the average
insertion adds 10 Kbytes, or 2.5 pages of data. Thc
inserted data is distributed over as few newly allocated 1
page leaf blocks as well as one or two existing partially
filled leaf blocks, leading to 3-4 nearly full leaf blocks.

However, with 4 page leaf blocks, the average insert is
sure to split a leaf block, creating two relatively empty
blocks as a result. In comparing Exodus and BSSS, we
can see that their performance is approximately the same.

4.5: Random search cost

As random insertions and deletions degrade the large
object structure, the search U 0 cost for Exodus and BSSS
is shown in Fig. 8. Each mark in the graph represents the
average cost of the search operations performed since the
previous mark. For example, the mark at the 10,000
operations indicates the average cost of the searches
performed within the last 2,000 operations.

" 5 200

2
0 100

U \
0 1 2 4 6 E 10 12 14

numb of operations 1 * 1 003)

Fig. 8. Search I/O cost for 10 Kbyte operations

In Exodus of Fig. 8, which shows the cost of 10 Kbyte
searches, it is evident that the 4 page leaves have a
definite advantage over 1 page leaves. This is due to the
fact that much less random 110 is needed to read 2.5
pages of data when each leaf block contains 2 to 4
sequential pages of data.

4.6: Insert 110 cost

In Exodus of 10 Kbyte operations, 4 page leaves have
about 10-13 percent performance advantage over 1 page
leaves since fewer leaves need to be touched on the
average when leaf blocks are 4 page leaves. Thus, the
resulting decrease in random I/O outweighs the increase
in sequential 110. For 100 byte inserts, the performance of
the 4 page and 1 page cases converge, with the 16 page
case being slightly more costly. The 64 page case gives
the most expensive cost for insertion 1 to 3 pages of data
since large portions of the segment must be written to
disk. Thus, the decrease in the amount of random U 0 can
not offset the increase in sequential writing.

In comparing BSSS and Exodus, the performance of
BSSS is the same as or worse than the corresponding
performance of Exodus since large portions of the

43

segment must be written to disk. and byte range replace results of Starburst are similar to
those of BSSS.

5: Conclusions
References

In this paper, we have presented a new database
storage structure, called BSSS, to manage large dynamic
objects of any size. BSSS has binary buddy-size leaf
segments, whereas Exodus has fixed- size leaf segments.
The new storage manager has been compared with
Exodus which has the same directory structure as our
storage manager, through the performance results from
sunulation approach. For Exodus, large leaf blocks have a
definite advantage for multi-page searches, but they also
increase the cost for updates and leiad to lower storage
utilizations. Thus, in general, storagc utilization and
m r c h time can not be optimized at the same time. RSSS
performs the same as or better than Exodus for object
creauon time and sequential scan time. For the same
search size, BSSS performs the better random scarchi
performance than Exodu!l.

We experimented with object sizes of 10 Mbytes and
i 00 Mbytes, running a query IIUX consistmg of 40 percenc
\earches, 30 percent inserts, and 30 percent deletes. This
I \ a small percenkge for searches of real application
However, the results do not depend on the query mix
rather on the operahon size. A large search percentage
will sunply require more runs to stabilize the perfomiancr
cwves. Equal percentages of inserts and deletes were
used in order to ensure that the ol)ject size remained
\table. Furthermore, these update operations were
~iiiiformly distributed throughout €he body of the object
'This uniform distrihutmn assumption is a pessirnistk
.issumption, as i l produces worsl-case average storage
urilizations. For more \&tic object\, or objects wherc
updates tend to be clustered in lust ,i few regions of tht:
object, storage efficiency will improve up to 'SO-Yc)
percent. Also, our insert U 0 cost results are sllghtly
pessimistic because our prototype does not handle that
mtire leaf blocks are read and written, or only the last
pige of a block is affectrd by an operation.

The Starburst long ficld manager uses the same binary
buddy system as HSSS. However, Starburst has d
\rxpential directory stnicture, whereds BSSS has a B-uee
like structure. Theretore, Starburst does not nicely handle
byte inserts and de1etc.s on large objects since thesc
operations require all segments to the right of the segment
o n which the update i s performed to be reoryanizetl. The
original bytes together with the new ones are placed into
a new sei of segments. Thus, for insertion and deletion,
Starburst produces the worse results than HSSS.
However, the (sequential and random) searches, appendh,

[l] M. M. Astrahan, et. al, "System R Relational Approach to
Database Management," ACM Trans. on Database
Systems, Vol. 1, No. 2, 1976, 97-137.

[2] A. Biliris, "An Efficient Database Storage Structure for
Large Dynamic Objects." Proc. of 8th Int. Conf. on Data
Engineering, 1992,301-308.

[3] M. J. Carey, D. J. Dewitt, J. E. Richardson, and E. J .
Shekita. "Object and File Management in the EXODUS
Extensible Database System," Proc. of 12th Int. Conf. on
Very Large Data Bases, Aug. 1986,91-100.

[4] H. T. Chou, D. J. Dewitt, R. H. Katz, and A. C. Klug,
"Design and Implementation of the Wisconsin Storage
System," Software Practice and Experience, Vol. 15, No.
10, Oct. 1985,943-962.

[SI S . K. Chowdhury and P. K. Srmani, "Worst Case
Performance of Weighted Buddy Systems," Acta
Informatica, Vol. 24, 1987.555-564.

[h] D. Comer, "The Ubiquitous B-Tree," ACM Computing
Surveys, Vol. 11, No. 2, Jun. 1979, 121-137.

[T7] 0. Deux. et. al. "The Story of O,," IEEE Trans. on
Knowledge and Data Engineering, Vol. 2, No. 1, 1990,

[XI M. J. Egenhofer, "What's Special about Spatial? Database
Requirements for Vehicle Navigation in Geographic
Space," Proc. of ACM SIGMOD, 1993,398-402.

[9] S. Khoshafian, M. J. Franklin, and M. J. Carey, "Storage
Management for Persistent Complex Objects," Information
Systems, Vol. 1.5, No. 3, 1990, 303-320.

[LO] D. E. Knuth, The Art of Cumputer P r o g r m n g , Addisson-
Wesley, 1973.

[i l l T. J. Lehman and B. G. Lindsay, "The Starburst Long Field
Manager," Proc. of 15th Int. Conf on Very Large Data
Bases. 1989,375-383.

[12]G. M. Lohman, B. Lindsay, H. Pirahesh, and K. B.
Schiefer, "Extensions to Starburst: Objects, Types,
Functions, and Rules," Communications of the ACM, Vol.

(131 H. Lu, B C. Ooi, A. Souza, and C. C. Low, "Storage
Management in Geographic Information Systems," Proc. of
2nd Symposium on Large Spatial Databases, 1991, 451-
470.

[141 M. Stonebraker, J. Frew, K. Gardels, and J Meredith, "The
Sequoia 2000 Storage Benchmark," Proc. of ACM

1151 M. Sullivan and M. Olson, "An Index Implementation
Supporting Fast Recovery for the POSTGRES Storage
System," Proc. of 8th Int. Conf. on Data Engineering, 1992,

1161 F. Velez, G. Bernard, and V. Darnis, "The 0, Object
Manager: An Overview," Proc of 15th Int. Conf. on Very
Large Data Bases, 1989,357-366.

9 1-1 08.

34, NO. LO, 1991,94-109.

SIGMOD, 1993,2-11.

293-300.

44

