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Abstract 

In this paper, we propose U new databuse storage 
manager, called Buddy-size Segment Storuge System 
(BSSS), to handle large dynamic objects of any size and 
then implement search, insertion, append, and deletion 
algorithms used for the storage structure. The i n t e n d  
nodes of the proposed storage manager arp identical to 
the ones proposed in Exodus. However, unlike Exodus 
that has fined-size segments for leaf blocks, BSSS hac. 
binary buddy-size leaf segments. The proposed storage 
manager is compared with Exodus through performance 
results from simulation approach. BSSS performs the 
same as or better than the best case of Exodus for object 
creation time, sequential scan time, and random search 
time. However, the insertion performance of BSSS is the 
same us or worse than the one of Exodus. 

1: Introduction 

The manipulation of large objects is an important issue 
in many unconventional database applications such as 
geographic information systems, computer-aided design. 
office information systems, and multimedia presentation. 
In particular, multimedia presentation requires displaying 
images, showing movies, or playing digital sound 
recordings in real time [2, 8, 143. Efficient manipulation 
of large objects is also important in any object-oriented 
and extended relational database management system to 
support advanced data modelling constructs like long list. 

Several storage systems to manage large complex 
objects have been proposed 17, 12, 13, 151. The problems 
in the existing storage managers for large objects are 
briefly discussed here. The data Structure of WiSS [4] and 
Starburst [ 111 consists of data segments and a directory 
for the data segments. Since the directory is a set 01’ 
sequential entries pointing to the data segments, dynamic 
insertion and deletion operations of large objects require 
the reorganization of the directory; the corresponding 
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partial insertion and deletion algorithms are inefficient. 
Furthermore, the long field of WiSS has a size limit of 1.6 
megabytes. In case of Starburst, it is 448 megabytes. 
Therefore, they cannot store larger data objects than their 
own limited size. 

In general, the pages organizing an extent give good 
search performance since they are allocated to physically 
contiguous disk blocks. In WiSS, when a volume is 
created, the size of an extent, in pages, organizing the file 
is fixed. Therefore, if the size of a data object is larger 
than that of the fixed extent, the data object is separately 
allocated in several extents. Obviously, this implies that 
the search performance of WiSS is poor when the size of‘ 
a data object is larger than that of the fixed extent. 
Exodus [3] can set tbe size of data pages of all large 
objects to be some fixed number of disk blocks. However, 
this mechanism is not suitable to applications that want to 
simultaneously optimize both search time and storage 
utilization. Large pages waste too much space at the end 
of partially full pages but offer good search time, and 
small pages offer good storage utilization but require 
doing many disk I/O for read operations. 

To solve the problems described above, we propose a 
new storage manager, Buddy-size Segment Storage 
System (BSSS), which stores data objects of any size. 
BSSS has binary buddy-size leaf segments, whereas 
Exodus has fixed-size leaf segments. The proposed 
storage manager handles large objects by storing them on 
data pages that are indexed by the B+-tree [6] structure, 
where the key is the maximum byte position stored in a 
leaf data page. Therefore, the partial insertion and 
deletion algorithms of our storage manager for large 
dynamic objects are more efficient than those of WiSS 
and Starburst which use a sequential directory structure. 

We believe that most applications handling large 
complex objects such as voice, image, sound, or video 
will read and write whole large objects and not perform 
update operations that affect only parts of large objects. 
However, some applications using large objects may want 
t.o access only a portion of a large object at a time. That 



is, to retrieve an object, one would rather sequentially 
scan through the object in smaller portions, rather than 
access the whole chunk in one step. For instance, playing 
of digital sound recordings or frame-to-frame accessing 
of a movie is required to access only a portion of a large 
object at a time. Similarly, for the insertion and deletion 
operations for a large object, elements may be inserted or 
deleted at any place within the large object, In multimedia 
applications, pictures may be annotated and movie spots 
may be edited to remove or add frames of the movie. 

Our storage manager is based on the binary buddy 
system [lo] to manage disk space. The buddy system is 
known for fast allocation and automatic coalescing of 
blocks on deallocation, but it has also been reported to 
suffer from poor space utilization due to fragmentation 
[ 5 ] .  Many of the negative reports about the buddy system 
come from those trying to use the buddy system to 
allocate a single block of storage rather than a set of 
blocks. However, when multiple blocks are used, both 
internal and external fragmentation can be reduced 
greatly. Since our storage system can supply buddy 
segment sizes in 2" units (the units typically being disk 
pages) and the last allocated segment is trimmed, it is 
possible to allocate the correct sizes of buddy segments so 
that the unused w o n  of an allocated segment is always 
less than a page. 

The remainder of this paper is organized as follows. 
Section 2 describes the related work. Section 3 presents a 
new storage manager to manage large dynamic objects, 
and then describes search, insertion, append, and deletion 
algorithms used for the storage manager. The 
performance results for the proposed storage manager and 
Exodus are shown in Section 4. Finally, conclusions 
appear in Section 5.  

2: Related work 

The relational DBMS lacks the efficient support of 
large complex data types and spatial searches. These new 
requirements produce a need to redesign the storage 
manager. A number of researchers have addressed the 
storage management problems for new applications [3,9,  
161. Because we are interested in spatial applications 
particularly, in this section, we briefly describe some 
storage managers that are related to our work. 

2.1: WiSS 

The WiSS consists of four distinct layers. The lowest 
level handles physical I/O and space allocation. The 
buffer manager is designed to accept user hints. Above 

this is the storage structure level which includes records, 
files, and indices. Finally, there is an interface layer that 
supports scans and large storage objects. A feature of 
WiSS is that it supports large storage objects which 
exceed a page in size. This is in contrast to earlier 
systems that forced the user to implement these structures 
on top of page sized records. However, the storage 
manager differentiates long items from small items, so it 
is not possible to build an index on a file of long data 
item. A WiSS Long Datu Item consists of a directory and 
a set of small records less than one page long. To avoid 
fragmentation on the last page, the last record used is 
stored on a page that is shared with other records. There 
is a limit of 1.6 megabytes on the length of a long data 
item, which makes it unsuitable for storing huge images. 
WiSS provides dense B'-tree indices and hashing as 
access methods. However, there is no provision made for 
adding new access methods to the system. The buffer 
manager uses a least recently used (LRU) replacement 
strategy with hints consisting of three priority levels. The 
physical IIO management level improves on the standard 
UNIX file system by allocating space for files in extents. 
However, the size of an extent, in page, organizing the 
file is fixed when a volume is created. Therefore, if the 
size of a data object is larger than that of the fvred extent, 
the data object must be separately allocated in several 
extents and cannot be clustered. 

2.2: Exodus 

The Exodus storage manager is a part of the Exodus 
extensible DBMS project. In order to enhance 
extensibility at the persistent programming level (E 
language), the emphasis was on minimizing semantics in 
the storage manager. Conceptually, all data handled by 
the Exodus storage manager are viewed as variable length 
byte sequences or stomge objects that can be arbitrarily 
long, and are uniquely identified by Object Identifiers 
(OIDs). The choice of physical surrogates over logical 
surrogates avoids a table lookup for each reference, but 
can cause storage fragmentation in the long run. Long 
data items are managed by a B'-tree like structure based 
on byte offset. Objects smaller than a page are stored as 
single records. With a uniform interface to large and 
small storage objects, it is possible to index files 
containing both types of objects. However, indices are not 
provided in the storage manager. Files in Exodus are 
collections of storage Objects which are managed by 
using B'-tree structure based on disk page number. 
Exodus comes close to meeting our storage management 
requirements. However, under the circumstance the size 
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of an object increases dynamically, search performance 
becomes poor since Exodus sets the size of an extent to 
be some fixed number of disk blocks. Also, the storage 
manager does riot support indices. 

2.3: Starburst 

The Starburst long field manager was designed to 
manage large database objects such as voice, image, and 
video. The long field manager uses the buddy system to 
manage disk space. Because it is not practical to store a 
long field directly in the relation, the long field descriptor 
is stored in the relation. The long field descriptor is a 
single level directory of disk extents. The variable disk 
extents, called buddy segments, are taken from buddy 
spuce which are large fixed-size sections of disk that are 
reserved for long field. Buddy spaces are taken from an 
even larger portion of disk, labeled DB spuce. A buddy 
space comprises an allocation page and a data page. The 
allocation page describes the state size of the individual 
buddy segments in the buddy space data area. Buddy 
segments contain only data. The maximum le gth of a 
long field varies with the maximum buddy segment size 
since the maximum length of the long field descriptor is 
l'ixed. The current design of Starburst, based on a 4 
kilobyte allocation page, does not support buddy 
segments larger than X megabytes. Therefore, the 
Starburst long fields have a size limit of448 megabytes. 

3: New storage manager for large objects 

In this section, we present a new storage manager, 
Buddy-size Segment Storage System (BSSS), to handle 
large dynamic objects. Also, the search, insertion, 
append, and deletion algorithms for the proposed storage 
manager are described in this section. 

3.1: Structure of a large object 

In this section, we propose a new data tyiie called 
Buddy-Object to manage large objects of any size. The 
proposed Buddy-Object data is represented on disk as ;i 
B'-tree index and a collection of leaf blocks with binary 
buddy-size leaf segments. An example of a Buddy-Object 
data is shown in Fig. 1. In Fig. 1, the size of a page is 
assumed to be 100 bytes. The root of the tree contains ;i 
number of (count, page number) pairs, one for each child 
of the root. The count value associated with each child 
pointer gives tbe maximum number of bytes stored in the 
subuee rooted at that child. Therefore, the count for the 
rightmost child pointer is the size of the object. Intemal 

nodes are recursively defined as the root of another object 
contained within its parent node; thus, an absolute offset 
within a child is translated to a relative offset within its 
parent node. The leaf segments in a Buddy-Objecr data 
contain pure data. The left child of the root in Fig. I 
contains bytes 1-471, and the right child contains the rest 
of the object (bytes 472-736). The rightmost leaf segment 
in Fig. 1 contains 144 bytes of data. Byte 100 within this 
leaf node is 121+100=221 within the right child of the 
root, and it is 471+221=692 within the object as a whole. 

Fig. 1. An example of a Buddy-Object data 

3.2: Search 

The search algorithm supports the retrieval of a 
sequence of N bytes starting at byte position S in a 
Buddy-Objecr data. Only minor modifications need to be 
made to the algorithm proposed in Exodus so that buddy 
size leaf segments can be supported. 

Search (S: byte position, N: number of bytes) 

S 1. [Search the Root Page] 
Let start = S, and read the root page and call it page 
R. The count[i] and pid[i] represent (count, pointer) 
pairs, and let couM-l]= 0 by convention. 

While R is not a leaf page, do the following: Save the 
address of R on the stack and binary search R to find 
the smallest count[i] such that srurf I count[i]. Set 
start = srurt - count[i - I], and read the page 
associated with pid[i] as the new page R. 

Let a page size be P-S. R is now a leaf segment. Once 
at a leaf, the fust desired byte is on the leaf segment R 
at location srurt. Byte start within R is in page P = R 
+ Lstart/PSJ at byte B = star? mod P-S within P. If 
N is less than the number of bytes in R after B,  read 

pages from P up to R + L(srurt + N)/P-sJ. I fN is 
greater than the number of bytes in R after B, read P 
and all pages of R on the right of P. Use the stack to 
obtain the rest of the bytes. 

S2. [Search Intemal Pages] 

S3. [Search Leafpaget,] 
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Suppose we want to read 360 bytes starting from byte 
170 of the Buay-ObjecZ data shown in Fig. 1. To locate 
byte start = 170, we find that count[O] = 471 is the 
smallest count of the root that is greater than 170. Now 
we have to locate byte start = 170 - count[-11 = 170 in the 
child node pointed by yid[O]. We repeat the same process 
in the child. That is, we find that count[l] = 471 is the 
hmallest count greater than 170, and thus, we set R = 
pid[l], and sfart = 170 - count[O] = 20. Byte 20 is in page 
K + L20/1001= R + 0, at byte 20 within that page. We 
read pages R through R + 3 to retrieve the first (count[l] - 
tount[O]) - 19 = (471-150) - 19 = 302 of the desired 
bytes. Then, the next leaf segment needs to be retrieved 
tor the remaining 58 bytes. The search algorithm CXUI also 
he used for the byte range replace operation to locate and 
modify a given byte range within the large object. 

3.3: Insertion 

The insertion algorithm supports the insertion of a 
sequence of N bytes after the byte at position S .  An 
example of N bytes insertion in segment L is shown in 
Fig. 2. In Fig. 2, B represents the byte position within P 
where the fist  byte of N should be placed. Let M he the 
left or right neighbor of I, with the most free space which 
can be determined by examining the count information in 
I , '$  parent node, and let L-S he the number of bytev of the 
largest buddy segment that is smaller than or equal to IN,' 
t' .Sl. 

cL3zzl N - L-S 

Fig. 2. An example of N bytes insertion in segment L 

Insert (5': byte position, N: number of bytes) 

11. [Search the Buddy-Object Tree] 
Traverse the Buddy-Object tree until the leal 
containing byte S is reached, as in the Search 
Algorithm. As the tree is traversed, update the counth 
in the nodes to reflect the nuniber of bytes to bc 
inserted, and save the search path on the stack. 

Call the leaf segmcnl into which bytes are being 
inserted L. When 1 is reached. try to insert the N 

12. [Insert N Bytes into the Leaf Node I 

bytes there. If no overflow occurs, then the insert is 
done, as the internal node counts will have been 
updated in step 11. 

If an overflow occurs, proceed as follows: If L and M 
together have a suftlcient amount of free space to 
accommodate N - L-S bytes of data, then evenly 
distribute the new data plus the old contents of L and 
M between these two nodes and the largest buddy 
segment that is smaller than or equal to LN / P - S ~  
Otherwise, simply allocate the smallest buddy 
segment that is larger thiin or equal to rN/P-S l ,  and 
evenly distribute L's bytes and the bytes being 
inserted among L and the newly allocated leaf 
segment. 

Propagate the counts and pointers for the new leaf 
segment upward in the free, using the stack built in 
step 11. If an internal node overflows, handle it in the 
same way that leaf overflows are handled. 

13. [Process Overflows] 

14. [Propagate Upward1 

3.4: Append 

The append algorithm supports the addihon of N bytes 
to the end of a Buddy-Object data. In most case, the last 
segment of a Buddy-Object data will be trimmed to some 
fraction of its original size to reduce international 
fragmentation. 

Append ( N :  number of bytes) 

Al. [Traverse Rightmost] 
Make a rightmost traversal of the Buddy-Object tree. 
As the tree is being traversed, update the counts in the 
intemal nodes to reflect the effect of the append. Save 
the search path on the st; tck. 

The final size of a Budd +-Object data may or may not 
be known i n  advance. When the size of a 
Buddv-Object data is known a priori, a segment just 
large enough to hold the entire object is allocated. 
Then, each chunk of bytes is appended at the end of 
the previous one with no holes in between them. 
This is shown in Fig. 3. When the eventual size of a 
Buddy-Object data is not known a priori, we follow 
the growth scheme used in 1111; successive segments 
allocated for storage double in w e  until the 
maximum segment size is reached. Then, a sequence 
of maximum siLe segnients is used until the entire 
object IS stored. For example, the object shown in 

A2. [Append to the Rightmost Leat Segment] 
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Eig. 4 IS created by successively appending each 
chunk of bytes with hinaty buddy-size leaf segment$. 

To reduce internal frugmenfarion, the last allocatcd 
segment is trimmed. Consider how a segment of 16 
pages would be trimmed to hold a stnng of bytes that 
occupy 11 pages. The sequence of segment sizes 
needed is the binary representation of the number of 
pages needed to hold the Buddy-Object data. For 
instance, ll,, is 101 l,, thus there is a segment of siLe 
eight, a segment of size two, and a segment of size 
one. The remaining segments (size one and four) are 
given back to the free space. 

A3. [Trim the Last Allocated Segment] 

100 300 700 03 JcJvm 
4 

Back to the free space 
1 

Back to the free spa'e 

Fig. 3. N bytes append 
when object size is 
known a priori 

Fig. 4. N bytes append 
when object size is 
not known a priori 

3.5: Deletion 

The deletion algorithm supports the deletion of IV 
bytes starting at a specified byte position S .  This 
operation can result in either deletion of entire subtrees or 
partial deletion of leaf segments. Deletion of entirr: 
subtrees is performed first. They can be completed 
without touching a single leaf segment because thc 
address and size of' each segment are stored in thc 
corresponding parent index nodes. Then, the deletion 
algorithm proceeds to the second phase to perfonn partial 
deletion. For a segment A ,  A ,  is used to denote the total 
number of bytes kept in A and A, is used to denote thc 
number of bytes in the last page of A .  An example of N 
bytes deletion is shown in Fig. 5. 

R 

c 

Fig. 5. An example of N bytes deletion 

In Fig. 5, D, in page Y of segment R and De in page P 

of segment R' are used to denote the first byte and the last 
byte to be deleted, respectively. Let L B  and R B  be the 
size of the smallest binary buddy segment larger than or 
equal to S-Lf and S-R,, respectively. To delete all bytes of 
R on the right of D,, we simply decrement the counts in 
the parent of R and free all pages of R on the right of P, 
which are R - L-B. Then, we proceed by freeing all pages 
of R' on the left of P', which are R' - R B .  Now, the bytes 
of P' on the right of De must he shifted to the left. The 
deletion algorithm is as follows. 

Delete (S: byte position, N. number of bytes) 

D1. [Delete N Bytes] 
Traverse the Buddy-Object tree to h e  leit and right 
limits of the delmon, and save each path lo a stack. 
All subtrees completely enclosed by the traversal are 
deleted. 

Compute the number of bytes P, and the byte D ,  of 
page P within R where deletion starts. Similarly, 
compute P', and De of page Y' within R' where 
deletion ends. Set S-L = R and S-L, = P x P-S + D, - 
1. Set S-R = R ' + P' and !-RI = R If - ( P  ' x P-S + De - 
1 j .  

When L-R is the sise ot the smallest binary buddy 
segment larger than or equal to S-L,, free all pages of 
R on the right of P, which are R - L B .  When R-3 is 
the size of the smallest binary buddy segment larger 
than or equal to S-R,, free all pages of R' on the right 
of P', which are R' - R B .  

Propagate the new counts and pointers up to the root 
of the tree, using the stacks built in step 131. If an 
intemal node has less than the allowed number of 
pairs, merge or reshuffle it with a sibling. 

If the root ha,, only one child. make this child the new 
root and go to step D5. 

D2. [Prepare Deletion Operation) 

D3. [Trim the Partially Deleted Segments1 

D4. [Propagate Upward] 

D5. [Fix Root] 

4: Performance of storage managers 

We present the performance evaluahon results for two 
managers which use a B-tree like directory structure - 
Exodus [3] and our storage manager, BSSS. The 
objective of our experiments is to demonstrate the 
effectiveness of clustenng in our storage system which is 
based on the binary buddy system to manage disk space. 
We choose a simulation modeling as the approach of the 
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performance evaluation since an analytical modeling can 
not consider a dynamic behavior of the storage managers. 

4.1: Environment 

The experiments are performed on 4 Kbyte &sk pages. 
For I/O cost, we separate disk seek time including 
rotation time and data transfer time so we can model 
sequential disk accesses. We assume disk seek time of 33 
milliseconds and a transfer rate of 1 Kbyte per 
millisecond. We count a disk seek every time the disk is 
accessed to fetch or write a segment on disk. For 
example, the I/O cost of reading a 3 block (12 Kbytes) 
segment is 33+4x3=45 milliseconds; the cost of reading 
the same number of blocks with 3 I/O calls is 
t33+4)x3=lll milliseconds. The size of the buffer pool 
was set to 12 pages. 

The simulations run on a 10 Mbyte object. The root of 
the object is placed in a page with no other objects in it 
When pointer and count values of an index page require 4 
bytes each, we may store up to 507 pairs in the root anti 
.5 11 pairs in internal pages with 4 Kbyte pages. For BSSS, 
we used maximum segment size of 64 pages. For Exodus, 
leaf segment size 0 1  1,4, 16, and 64 pages were used. 

4.2: Object creation time 

This section presents the time needed to built a 10 
Mbyte object by successively appending fixed-size 
chunks of bytes. We start with 1 Kbyte and go up to 512 
Kbyte chunks. 

In Exodus, with 1 page leaves, a 10 Mbyte object turns 
out to be of level 2 - the root, the one level of 6 internal 
nodes, and then 2560 leaves. With 4 page leaves, the 
object is again of level 2 - the root, 2 internal nodes, and 
640 leaves. For BSSS, the tree level is always 1. Fig. 6 
shows the time required to build a 10 Mbyte object. The 
exact append sizes in the horizontal axts of the graph are 
the following (in kilobytes): 3,4, 5, 6,  7, 8, 10, 12, 14, 16, 
20, 24, 28, 32,48,64, 90, 128, 192,256, and.512. 

- 400 . 
5 
!2 9 3CO 
B 8 
E 

1 G O  

0 
1 2 4 8 16 31 64 128256 5 1 2  

-c EXcdus(l page) 
.--c lixcdus(4 pages) - 6xodus(l6 pages) - Bxodus(C1 pages) 
.f- BSSS 

append size (kiobytai) 

Fig. 6. 10 Mbyte object creation time 

In two algorithms of Fig. 6, object creation time 
depends on the append size by a few kilobytes. For 
Exodus, the object build cost for 1 page leaves and for 3 
Kbyte appends is approximately 292 seconds; it drops to 
134 secoi ds for 4 Kbyte appends and rises up again to 
265 secoiids for 5 Kbyte appends. This is due to the 
change of the number of disk accesses by means of the 
mismatch of the block boundaries and append size. For 
instance, the number of disk accesses for 3 Kbyte 
appends is 9387; it drops to 3628 for 4 Kbyte appends 
and rises up again to 7902 for 5 Kbyte appends. 
Furthermore, the object creation time depends on the way 
appends are performed. When an overflow occurs on the 
rightmost leaf because of an append, the new bytes being 
appended, the bytes of the rightmost leaf, and the bytes of 
its left neighbor (if it has free space) are redistributed in 
such a way that all but the (WO rightmost leaves are full. 
The remaining bytes are evenly dislributed in the last two 
leaves, leaving eacb of them at least 1/2 full. In general, 
when the append size is not precisely a multiple of the 
leaf block size, reshuffling as described above is 
performed, which increases the cost of appends. 

The block boundary mismatch problem affects also the 
BSSS algorithm but to a lesser degree. In BSSS, the new 
bytes are simply appended at the end of the rightmost 
page with no reshuffling. Thus, the cost of an append 
operation is the one of readmg the rightmost page (if it is 
not full) and flushing to disk the pages containing the new 
bytes. Also, there are no index pages to write; the tree 
level is always of level 1. (In BSSS, to come up with a 
tree of level greater than 1, the size of the object being 
created must be larger than 16 Ggabytes.) 

For Exodus, we can not select a particular leaf block 
size as the winner. Referring to Fig. 6, for appends of 4, 
16,64, and 256 Kbytes, the best performance is achieved 
when the leaf block size is 1, 4, 16, and 64 pages, 
respectively; i.e., precisely when there is exact match 
between append and leaf block size. For appends larger 
than 256 Kbytes, larger leaf blocks have better 
performance. 

4.3: Seqiwntial scan time 

This section shows the time required to sequentially 
retrieve the entire large object from the database. After 
the 10 Mbyte object was built in the experiment of 
Section 4.2, it was scanned from the beginning to the end 
in fixed-size chunks of bytes. The n-byte scan was 
performed on the object created by n-byte appends since 
the resulting structure of BSSS depends on the size of the 
first append. For sequential scan time of BSSS, the best 
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performance that can be achieved is approximately 12 
seconds with a transfer rate of 1 Kbytes per millisecond. 
Fig. 7 shows the time required to scan a 10 Mbyte object 
sequentially. 

Fig. 7. 10 Mbyte object sequential scan time 

As shown in Fig. 7, for scans shorter than the page 
size two techniques produce the same results; the page 
being scanned is buffered and all its bytes are read. The 
differences appear for scans larger than the page size. In 
Exodus, the cost for the 1 page segments case is the worst 
and is independent of the scan size; all leaf pages of the 
object are read one by one. Larger segments produce 
much better results and their performance gives the best 
result when the scan size exceeds the segment size. The 
performance of BSSS follows the expected pattern; larger 
scans produce better response time. 

4.4: Storage utilization cost 

Storage utilization compares the object size w ~ t h  the 
actual space required to store the object including 
possible index pages. The average operation sizes are 100 
bytes and 10 Kbytes. 

In Exodus of 100 byte operations, 1 page leaf blocks 
provide slightly better storage utilization over 4 page leaf 
blocks for the small operations since a larger fraction of 
the leaf blocks are split for a given number of random 
update operations in the 4 page case and each one leaves 
more empty space as a fraction of the overall object size. 
It stabilizes at the same level of the low 80 percent. 
However, as larger operations (10 kbytes) are performed 
on the object, 1 page leaf blocks have a large storage 
utilization advantage over 4 page leaf blocks. This is due 
to the average operation size being large - the average 
insertion adds 10 Kbytes, or 2.5 pages of data. Thc 
inserted data is distributed over as few newly allocated 1 
page leaf blocks as well as one or two existing partially 
filled leaf blocks, leading to 3-4 nearly full leaf blocks. 

However, with 4 page leaf blocks, the average insert is 
sure to split a leaf block, creating two relatively empty 
blocks as a result. In comparing Exodus and BSSS, we 
can see that their performance is approximately the same. 

4.5: Random search cost 

As random insertions and deletions degrade the large 
object structure, the search U 0  cost for Exodus and BSSS 
is shown in Fig. 8. Each mark in the graph represents the 
average cost of the search operations performed since the 
previous mark. For example, the mark at the 10,000 
operations indicates the average cost of the searches 
performed within the last 2,000 operations. 

" 5 200 

2 
0 100 

U \ 
0 1 2  4 6 E 10 12 14 

numb of operations 1 * 1 003) 

Fig. 8. Search I/O cost for 10 Kbyte operations 

In Exodus of Fig. 8, which shows the cost of 10 Kbyte 
searches, it is evident that the 4 page leaves have a 
definite advantage over 1 page leaves. This is due to the 
fact that much less random 110 is needed to read 2.5 
pages of data when each leaf block contains 2 to 4 
sequential pages of data. 

4.6: Insert 110 cost 

In Exodus of 10 Kbyte operations, 4 page leaves have 
about 10-13 percent performance advantage over 1 page 
leaves since fewer leaves need to be touched on the 
average when leaf blocks are 4 page leaves. Thus, the 
resulting decrease in random I/O outweighs the increase 
in sequential 110. For 100 byte inserts, the performance of 
the 4 page and 1 page cases converge, with the 16 page 
case being slightly more costly. The 64 page case gives 
the most expensive cost for insertion 1 to 3 pages of data 
since large portions of the segment must be written to 
disk. Thus, the decrease in the amount of random U 0  can 
not offset the increase in sequential writing. 

In comparing BSSS and Exodus, the performance of 
BSSS is the same as or worse than the corresponding 
performance of Exodus since large portions of the 
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segment must be written to disk. and byte range replace results of Starburst are similar to 
those of BSSS. 

5: Conclusions 
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