
Transaction Scheduling in Multi-Level Secure Database Systems

Y onglak Sohn Songchun Moon

Dept. of Information and Communication Engineering
Korea Advanced Instilute of Science and Technology (KAIST)

207-43 Cheongryangni Dongdaemun Seoul 130-01 2, Republic of Korea
E-mail: syl @siconi.kaist.ac.kr

Abstract

Trunsuctions are vitu1 .for multi-level secure dutubase
munugement systems(MLSh7BMSs) because concurrent
e.recution of trunsuctions potentiullv has conflicrs among
their uccessing to shured ciutu. Wlea conflict occurs, only
one trunsuction i,c. grunted to u c ~ e s s the shared data,
olhrr transactions should be delayed until they can sufely
use the datu. ‘T7m.w conjlicts may leud to the security
problems in MLS/L)BMS. conspi rutors produce those
conflicts intentionullv, they can establish the unexpectpd
comm.unicafion path ccnll~d covert chunnel between high
security level users and !ow set:uriI?, level usem This
paper proposes U trunsuction scheduling scheme culled
Conflict-lnsen,vible Scheduling (C1,V) lhat hdes conflicts
from low security lwei trunsuctions to prevent thc covtv?
rhunnels.

1: Introduction

In tight e u r i t y systems, all database users and dnta
items are assigned security levels and it is the
responsibility of the \ystem to aswre that all users (ire
allowed to have accesses to only those data for which they
have been granted To assure this, SI) called multi-level
secure database mmngement system(MLS/DBMS) is the
key. Most commercid DBMSs provide some Corm of
database security hased on so callcd discrehonary acccss
control(DAC)[7] 111 which they siniply control the modes
of privileges 01 users to data. They could be called single-
level security schemt.. In the single-level security, iI a
process 1s atfected b) a malicious piece of code such as
computer virus, the access to data made by one user could
pass the data 10 clther users, becaube a process usuLilly
inherits all rights ot user who invoked it. In this respect,
more sophisticated Anti strong security policies u e
necessary. Enforcing multi-level security, one approach to
realize this idea, can he found in the mandatory access
control(MAC)[71. I t i b important to note thdt security

could be harmed either through data .accesses or through
unexpected communication paths. MAC is sufficient
against data accesses, but not against unexpected
communication channels.

When the unexpected communication channel leads to
violate a security policy, it is called covert channel[3].
Communication through covert channel is possible
whenever resources, such as CPU time, memory blocks,
disk sectors, or data items in database, are shared. Any
way of changing the states of the shared resources is a
candidate for the covert chmnel. A user who can change
the state of the shared resource can send signal to others.
Accesses to the shared resources, of course, are under the
control of system software, e.g., operating system or
DBMS. The system software, however, is capable of
controlling only the usage of the shared resources, such as
memory allocation, competition for disk sectors, or
consistency of the data.

It is really hard to grasp the intents of users in
accessing shared resources. It should be noted that covert
channels arc solely created by malicious intent of users.
For instance, in some DBMSs a user is allowed to retrieve
the system catalogs to see how many users are given
permission to read or update the files that have been
created by him. This sort of system information can be
made open to users. In this respect, it is almost impossible
to block all ways of touching system information from
users. For another instance, one can control the access to a
shared data item in the database as ‘1’ for hold, ‘ 0 for
release. Other user who shares the data item can
distinguish the states of data into held and released. In this
way, only one bit of meaningful information can play a
decisive role in extracting a very important fact. For one
more example, the fact that the president of a republic had
an accident can be represented by only one bit. If this bit
of information can be manipulated by unauthorized users,
it could really be a threat to the design o f securs systems.

Since the database is composed of very large number
of shared data items, the covert channel tising the shared

0-8186-6430-4194 $4.00 D 1994 IEEE
216

data items in the database can convey a large number of
bits, and as a result increases the bandwidth of the covert
channel. Moreover, compared to the other shared
resources such as a CPU or a tape driver, competition for
each data item is loose, thus only a small number of
noisy bits can exist in the covert channel. As tlie
bandwidth of covert channel is increased and the noisy
bits in the covert channel are decreased, the covert
channel can deliver many correct bit streams for a fixed
interval of time.

In MLSDBMSs, there are two types of covert
channels; namely storage channel and timing channel[3].
The storage channel is established when a low security
level transaction learns of the existence of data classified
at high security level. For instance, consider that a unique
data named 'A exists and is classified at high security
level. Undoubtedly, low security level transactions cannot
see the value of .A.' However, if a low security level
transaction attempts to create a new data named 'A,' the
request will be denied. Through this denial, the low
security level transaction learns of the existence data A
that has been classified at high security level. In this
sense, a high security level transaction could signal
information to a low security level transaction by
removing and creating A. In contrast to the storage
channel, timing chatinel signals information by
controlling a delay that is observable in a low security
level transaction. The timing channel depends on the
delay of a low securit.y level transaction that shares a data
that the low security level transaction and the high
security level transaction are in cont-lict ovcr.

For the storage channel, perceiving the existence of
data can be obimined through a write operation to the data
classified at high security level. If a security policy forces
a restriction on the write which accesses a high securit.y
level data, the storage channel can be prevented since it is
impossible for a low security level transaclion to learn the
existence of high security level data. Most of past work
on the covert channel analysis adopted this sort of
restriction as their security policies. However, since read
attempt by a high security level transaction toward a low
security level data cannot be restricted by any security
policy, and write operation is essential to build a
database, conflict between read and write is unavoidable.
In this respect, a special idea for preventing timing
channels under the circumstances that high security level
transaction's read operattons conflict with low security
level transaction's write operations is necessary. This
paper deals with this issue.

Execution of concvrrent transactions may Lead to
create unexpected covert channels. In database systems,
any two operations issued by concurrent transactions may

conflict if they operate on the same data item and one or
both of them are write operations. A schedule is
concurrent if it is an interleaved sequence of operations
from more than one transaction. An interleaved sequence
of reads and writes potentially interferes with each other.
Transaction scheduler reorders those reads and writes in
order to maintain the correctness of the database and to
allow as much concurrency as possible. However,
considered from the MLS/DBMS point of view, there is a
problem of scheduling several concurrent. transactions
kcause the interference between reads and writes could
leiid to the delay of some operations; this delay could be
represented as one bit of information which could be
leaked to unauthorized persons through cover1 channel.
Example 1 shows this sort of covert channel due to
read/write or write/write conflicts.

Example 1 (Covert channel due to conflicting
operations) :

Suppose that two transactions, TI and T2, execute
concurrently and they access a shared data 'A' (Figure 1).
Suppose also that before their execution the last
committed value of A is 0. If the scheduler outputs the
sequence of reads and writes as they are arrived, T2 reads
0 fiom A at time to, T1 writes 10 to A at tl and commits at
t2, and T2 then commit at t3. At t2, the value of data A
stored in the database is changed from 0 to 10, and thus
the value of A read by T2 at to is inconsistent with the
value of A in the database. At tl, T2 may use the value of
A read at to. In case that A represents the human life, e.g.,
.O' means living and '10' means death, using the
inconsistent value of A may lead T2 to obtain undesired
result. To maintain the consistency of the value of A read
by T2 and the value of' A stored in database, the scheduler
should reorder the two conflicting operations, Tl's
Write(A) and T2's Read(A), and as a result produces either
one of schedule: output-I or output-2. In case of output-1,
T1 experiences a delay because T2 interferes with TI. In
case of output-2, T2 instead experiences a delay. In
output-I, TI can interpret its experience of delay as '1' or
'0' that could serve as one bit of unauthorized information
arrived from T2. If T1 and T2 do not conflict, i.e. neither
do they run concurrently nor do access a shared data, then
the scheduler would simply output the reads and the writes
in the exactly the same order as they are arrived; in this
case no covert channel arises, since TI and T2 do not
experience delay at all.

If TI and T2 are classified at different security levels
and scheduled according to the conventional scheduling
schemes, such as locking or timestamp ordering, the
higher security level transaction can leak bit stream to the
lower security level transaction by controlling the former's
operations that interfere with the latter's operations.

217

to
tl
t z
13

Commit

TI T:
Kead(A)

Write(A)
Commit

Commit

Write(A)
commit

Read(A)

Figure 1. Reordering the conflicted operations

m e elimination of interference between two
transactions, so called noninterference, is necessary to
make a system prevent covert ch;mnels. If a scheduler
does not control the two conflicting operations, the write
operation may lead to lost update and the read operation
may lead to dirty read. This then lorces rejection of one
of the conflicting operations. Therefore, conflicts between
two transactions always allow the outcome of transactions
to dishnguish into two different states, i.e., rejected form
or permitted to access to a shared data. The rejection
incurs a delay in the execution of the transaction whose
operation had been rejected. The low security level
transaction, then, is able to recognize the states from its

experience of delay incurred by ;in interference from a
high security level transaction. It then can interpret each
state as '1' or %O,' Therefore, a low security level
transaction can infer the high securily level information
by the contribution of the interference from a high
security level transaction. To prevent the interference
from a high security level transaction, the output schedule
of a low security level transaction must be unaffected by
the input schedule of high security level transaction. If the

interference &om a high security level lransaction has
been prevented, a low security level transaction cannot
distinguish between the different output schedules; one
has been scheduled in response to a sequence of inputs
including the high security level transactions' operations
and the other in response to an input sequence in which all
high security level operations have been removed.

Most of past works [8,9,10] on concurrency control in
MLSDBMSs have been concerned with the
noninterference to prevent the covert channels. They
realized the noninterference by giving a precedence to the
operations of low security level transactions. The idea of
their realization is to let low security level transactions
proceed without sensing the interference from high
security level transactions. Although they can prevent
covert channels, in this way, theirs delaying the execution
of high security level transactions brings about another
problem.

This paper proposes a cimcurrency control scheme in
MLSDBMS called conflict-insensible scheduling (CIS).
The CIS hides conflicts from low security level
transactions to prevent the covert channels. The CIS
allows a low security level transaction to run to
completion without an experience of delays. Therefore,
the transaction can run as if it has not been interleaved
with the operations of high security level transaction. To
avoid the conflicts, giving a precedence to low security
level transactions might be considered. However this is
not true in our CIS because it definitely creates unfairness
against high security level transactions.

The basic idea of the CIS is that when conflict occurs
between low security level transaction's write operation
m d high security level transaction's read operation, it
allows the low security level transaction to process the
conflicted write operation by recording the result of write
operation to a buffer. However, at the internal level, for
the atomicity of transactions, the results of the low
security level transaction's conflicted write operations are
observable to other transactions only after the low security
level transaction has committed. Moreover, CIS does not
withdraw the access right that has been granted to the read
operation of high security level transaction by allowing
the high security level transaction to read the data resided
in database. The fact that CIS does not violate the
serializability is proved at section 5 . CIS is applicable to
the locking scheme and assumes that a transaction tries at
most one write operation to the same data. This is
reasonable because if a transaction writes to the same data
twice, it itself imposes the lost update.

The rest of this paper is organized as follows. Section 2
describes the related works and their problems. Section 3
introduces the security model and transaction model. In

218

section 4, the conflict-insensible scheduling is proposed
and shows how it conceals the abort and the delays of a
transaction to prevent the covert channels. Section 5
shows the correctness of conflict-insensible scheme.
Conclusion is given in section 6.

2: Related Work

Most of the past work on concurrency control in
MLSDBMS realize the noninterference bel ween the high
and the low security level transactions by avoiding the
conflicts [8,9,10]. To avoid the conflicts, when conflicts
occur, they give a precedence to the operations of low
security level transaction, so that the low security level
transaction can proceed its execution without interference
of high security level transaction.

In [81, they simply let the high security level
transaction set read locks on low security level data items
as in a conventional, untrusted database system. If a low
security level transaction tries a write lock on one of the
same data items, they immediately grant low security
level transaction's write lock and change the high security
level transaction's read lock to an orange lock, indicating
the possibility of an incorrect read. If high security level
transactions read set includes orange locks, it should he
aborted.

In [9], they forces high security level transactions to
wait to start until theirs read set has a null intersection
with the write sets of all low security level transactions
that are active. Therefore the low security level
transactions can proceed their executions without
interference of high security level transactions.

In [lo], timestamp ordering scheme is applied to the
concurrency control and presents two soliltions for the
problem of what to do about high security level
transaction's read operation for low security level data
item. The first solution forces high security level
transactions to wait until it is safe to execute read
operations. In the second solution, high security level
transactions do not wait to read low security level data,
but do delay their commitments until timestamp ordering
with respect to conflicting operations are guaranteed. If a
conflicting operation occurs, the high security level
transaction is aborted.

Although these works allow low security level
transaction to achieve noninterference from high securil y
level transactions, the starvation of high security level
Wansaction is inevitable. Consequently, the result of their
scheduling is unfair. If the write operations of a low
security level transaction or the read operations of a high
security level transaction occur very frequently, the high

security level transaction will run into a starvation.
Example shows the starvation of high security level
transaction.
Example 2 (Starvation of high security level
transaction due to the precedence):

T(H) is classified at high security level. Tl(L), Tz(L),
T3(L), and T4(L) are classified at low security level, and
data A is a high security level data (Figure 2) . Although
T(H) gets the read lock to A earlier than other
transactions, T,(L)'s write lock is granted at tz. Therefore,
T(H) relinquishes the value read at tl. T1(L) commits at t3,
nevertheless, T(H) cannot read because T2(L) requests
write lock at t3. To achieve the noninterference from high
security level transactions, T(H)'s R(A) cannot be
executed until all the write locks of low security level
transactions are released at k.

Time T(H) T,(L) T,(L) T3(L) T ~ (L)

tiR(A) B-Tx

t3 Cmt W(A) B-Tx

to B-Tx

........................ t2 W(A) B-Tx

t... Cmt W(A) B-Tx
tS ... Cmt W(A)
t6 .. .Cmt
t7.. R(A)

. ts Cmt
Figure 2. Starvation of high security level transactions

Starvation of T(H) lasts for 5 clocks, i.e., from tz to t6.
Let us assume that the scheme that gives precedence to
low security level transactions has been applied to a
DBMS running at missile site. Imagine that an enemy
launched a missile and A is the path of the missile that
decides headquarters to launch a missile killer. However,
T(H), the transaction of headquarters, cannot monitor the
path of the missile at proper since A is held by low
security level transactions for updating. At t7, T(H) can
read the last path of the missile that may be the target of
the enemy's missile.
End of Example 2.

3: The Models

In this section, we present the models for security and
transaction

3.1: Security Model

The security model used in this paper is that of Bell
and LaPadula [6,7]. The database system consists of a

219

finite set D of data items and a set T of transachonh.
There is a lattice of S of security levels with ordering
relahon <. There is a labeling funcaon L that maps data
items and transactions into a security level:

L : D u T + S
Definition 1:

Security level U dominates v in a lattice if U v and
there is no security level w for which U > w > v. 0

This paper considers two mandatory access cuontrol
requirements :

(Simple Security Property)
If transaction T, reads data item x then L(TJ 2 L(x).
(Restricted *-Property)
If transaction TJ writes data item x then L(T,) = L(x).
According to the simple security property, a data item

is allowed a read access to a transaction only if the
Cormer's security level is identical or higher than the
latter's security level. 'The restricted *-property allows a
transaction to write data item only i f the former's security
level is identical to the latter's security level
Definition 2:

Read-down, read-equal, and read-up are the
operations that transaction T, reads data item x if its
labeling functlons are L(TJ > L(x), L(TJ = L(x), and
L(T,) < L(x) respectively. n
Definition 3:

Write-down, write-equal, and write-up are the
operations that transaction T, writes data item Y if its
labeling functions a e L(T,) > L(x), L(T,) = L(u), and
L(TJ < L(x) respectively. 7

The security model in this paper allows a transaction
to issue read-down, read-equd, and write-equal
operations. This is sufficient to prove that securitv is not
violated through data access [6,71.

3.2: Transaction Model

A transaction is an abstract unit of coilcurrent
computation that executes atomicdlly. The effects of a
transaction do not interfere with each other transaction
that accesses the smie data. Also, a transaction either
happens with all of its effects made permanent or it
doesn't happen and none of its effects are permanent. This
paper models traiisactions as definiliori 5.
Definition 4:

Transaction is a finite sequence of database
operations, such as read, write, commit, abort operations.
The sequence models the order m which database
operations are send to the transaction management
algorithm. After the DBMS executes a transaction's
commit (or abort) operation, the transaction is said to be

committed (or aborted). A transaction that has started but
is not committed or aborted is called active. A transaction
is uncommitted if it is aborted or active. 0
Defmition 5:

All transactions are single-level. That is, every action
in a transaction has the same security level, and thus
transaction's security level is assigned only once at the
transaction starts. 0

As two or more transactions can access the same data
concurrently, these concurrent accesses must be controlled
for the correctness of both data and transactions. The
schedulers appear in this paper is based on the locking
scheme. Locking is a mechanism commonly used to solve
the problem of synchronizing access to shared data. Each
data item has a lock associated with it. Before a
transaction TI may access a data item, the scheduler f i s t
examines the associated lock. If no transaction holds the
lock, then the scheduler obtains the lock on behalf of TI.
If T2 does hold the incompatible lock, then TI has to wait
until T2 releases it. The locking rule adopted in this paper
is strict two phase locking (strict 2PL).
Definition 6

The strict 2PL requires the scheduler to release all of a
transaction's locks together, when the transaction
terminates, i.e., after the data manager acknowledges the
processing of commit or abort. Cl
Definition 7:
T(H) denotes the high security level transaction and

T(L) denotes the low security level transaction, i.e.,
IO(H)) > L(T(L)).

4: Conflict-Insensible Scheduling

4.1: Features of Conflict-Insensible Scheduling

Conflict-Insensible Scheduling (CIS), this paper
proposes, is a new concurrency control scheme for
preventing covert channels. CIS allows T(L) to run to
completion without an exposure of delays. Most of the
past work attempted to prevent covert channels by giving
precedence to the operations of T(L) which conflict with
the operations of T(H). Thus, they definitely create
unfairness against T(H).

In contrast to the past works, CIS does not give
precedence to the operations T(L), so that T(H) does not
need to suffer ftom unfairness. When conflict occurs
between T(H)'s read and T(L)'s write, CIS allows T(L)
to process it's write operation immediately on the buffer
instead of delaying or giving precedence to the write
operation. Thus, a conspirator who has been monitored
the actions of colleague's transachon (classified at low

220

security level) cannot perceive the conflicts, so that the
conspirator infers that there is no information leaking
from high security level conspirator even lhough he had
tried to send an information.

CIS is based on the strict 2PL scheme. CIS does not
suspend the execution of T(L)’s conflicting operation
untd the conflicted T(L) can obtam its requested lock, but
goes on the conflicting operation and proceeds to execute
ne,xt operations. When T(L) meets a commit operation,
CIS announce& T(L)’s commitment and allows the effects
of T(L)’s write operations to be observable to other
transactions. For the durability of transaction, CIS records
the etfect of T(L)’s write operations to the database after
CIS announced T(L)’s commitment. When every
transaction requests to abort, CIS immediately executes
the rollback procedure.

From now on, every case of conflict thal occurs in the
input to CIS is considered and the processing of CIS on
each case is shown.
Case 1: T(H) reads before T(L) writes.

T(H) : R(X)
T(L) : WCXj
CIS allows T(H) to redd X from database and T(L) lo

wtite X at write-buffer.
Case 2: T(H) reads the same data I wice and T(L) writes

and reads the same datd.
T(H) : R(X) R(X)
T(L) : W(X) R(X)
CIS allows T(H) to read X from databaye and T(L)‘s

W(X) to wnte X at write-buffer. T(L)’s R(X) reads X
krom write-buffer instead of database, i.e., it reads the
effect of T(L)’s W(X). Since T(L)’s W(X) writes X at a
different place from the place T(H) accessed, T(L)‘s
W(X) can be executed immediately. Moreover, since
T(L)’\ R(X) reads X from wnte-buffer, the conflict
between the first R(X) of T(H) and T(L)’s W(X) is not
observable to T(L)’s R(X). Therefore, T(L) cannot
perceive the conflict between the T(H)’s R(L) and T(L)’s
W(X)

As a result of case 1 dnd case 2, T,L) does not
experience any delay and CIS does not withdraw the
access right that had been granted to T(H)’s R(X) while
T(L) and T(H) are executing concurrently and both of
them access the same data. Consequently, the covert
channel between T(Hj and T(L) has not been established
and T(H) does not need to be suffered from unfauness.
The effects of T(L) in write-buffer are written into
database only after there is no transaction that has
conflicted with T(L) and has not been committed yet.
When T(H) tries to read operation and other transactions
had conflicted with T(H)’f previous read operations, T(H)
is prohibited from reading the value in write-buffer.

Case 3: T(H) reads X after T(L) tried W(X).
T(H) :
T(L) : W(X) commit
According to the strict 2PL scheme, T(H)’s R(X)

should be delayed until T(L) releases write-lock on X.
The delay of T(H)’s R(X) is natural in the view of locking
scheme and it does not bring about the information flow
with the violation of security policy.
Case 4: Conflict between R(X) and W(X) that are issued

R(X) delay R(X)

by the transaction classified at the same security level.
TI(L) :
T2(L> : W(X) commit
Analogously to the case 3 , T1(L)’s R(X) should be

delayed until T2(L) releases the write-lock on X.
The R(X)s appeared at both case 3 and case 4 can be

executed more efficiently in case that they can read X
from write-buffer instead of database. For achieving this
efficiency, CIS announces T(L)’s or T,(L)’s commitment
when CIS serves the commit operation.
Case 5: Conflict between R(X) and W(X); both of them

are issued by the transactions that are classified at the
same security level and R(X) appears before W(X).
TI&) : R e) commit
Tz(L) :
Although R(X) conflicts with W(X) and R(X) issued

before W(X), if they are issued by the transactions
classified at the same security level, they are scheduled
according to the strict 2PL scheme. Notwithstanding the
delay of W(X), since T,(L) and T2(L) are classified at the
same security level, there is no information flow with the
violation of security policy.
Case 6: Conflict between two W(X)s.

W(X) delay W(X)

R(X) delay R(X)

W(X) delay ... W(X)

TI : W(X) commit
Tz :
According to the restricted *-property, a transaction

can write data that are classified at the same security level
of the transaction. Therefore, TI and T2 should be
classified at the same security level. Analogously to the
case 5 . the delay of W(X) does not bring about the illegal
information flow.

4.2: Algorithm for CIS

In this section, a concurrency control algorithm for CIS
is presented. In this algorithm, T, and T, are transactions
that are competing for access shared data. The write-
buffer copes with the write operations that have conflicted
with other transaction’s read operations. Moreover, we
assume that all the database operations handled by this
algorithm have already been validated according to the
security policy, so that the database operations are never
rejected with the violation of security of the system. The

221

conflicts between the database operations are detected
and informed by the lock manager.

[l] If a transaction aborts, spaces in write-buffer that
have held the effect of the transactions write operation
is given back.

[2] If a transaction tries to commit, announce the
commitment immediately. The effects of the
transaction’s write operations that have been held
within the write-bufker are written into the database.

[3] Whenever a transaction tries to read on the shared
data and the transaction’s attempt does not produce a
conflict and moreover, the trarisaction has not
conflicted with others, the transaction accesses the
data residing in database.

[4] When T,’s write Operation conflicts with Ti's read
operation and L(TJ) < L(T,), TJ records the effect of
the write operahon into the write-buffer.

IS] Although a transaction can try wtlte operation without
a conflict with other transactions, it records the effect
of the write operation into the write-buffer instead of
the database.

161 In case that T,’s operation and T,’s operation conflict
with each other and L(TJ = L(TJ the conflict is
handled according to the strict 2PL scheme.

171 When T,’s read operation has been delayed due to the
conflict with TJ’s write operation, T, executes the
delayed read operdtion when TJ commits without
distinction of security levels. In this case, T, reads
from write-buffer instead of database.

181 The repeatable read operation gets the data from the
same place that has been accessed by its previous read
or write operations. For instance, if a transaction wrote
data into write-buffer, it’s repeatable read gets the data
lrom write-buffer .

thm CIS:

End of Algorithm.

5: Proof of Correctness

In this section, corrcctness of algorithm CIS is proved
with the lact that once transactions are scheduled by CIS,
they are serializable. For the convenient description,
following definitions are needed.
Definition 8

A history H indicates the order in which the
operations of the transactions were executed relative to
each other. If transactlon TI specifies the order of two of
its operations, these two operations must appear in that
order in any history that include T,. C’J
Definition 9:

A history H is serializable if its committed projection
is equivalent to a serial history H. Committed projection is
a history over the set of committed transactions in H. I7
Definition 10:

Let T = (Ti, ..., T,) . The serialization graph (SG) for
H, denoted SG(H), is a directed graph whose nodes are
the transactions in T that are committed in H and whose
edge are all T, +T, (i # j)such that one of Tj’s operations
precedes and conflicts with one of T,‘s operations in H. Cl

Theorem 1:

Proof:
A history H is serializable if SG(H) is acyclic.

Proved in [l]. CI

Theorem 2
History of transactions that have been scheduled by
CIS is serializable.

Proof:
We will prove the correctness of CIS by showing that

scheduling the transactions with the features presented in
section 4.1 does not lead to cycle in SG(H). For case 1,
according to the definition 10, an edge T(H) +T(L) is
added into SG(H). When T(H) tries to read, since it
always gets the value from database and the effects of
T(L) in write-buffer are neier written into database until
T(H) commits, T(H) never reads the value written by
T(L). Therefore, T(L) -+T(H) cannot be added into
SG(H). Consequently, there is no cycle for case 1.

For case 2, since T(L)’s W(X) is executed after T(H)’s
R(X), T(H) +T(L) is added into SG(H). However the
second read operation of T(H) gets the value that has
already been got by the first read operation of T(H), so
that T(L) +T(H) cannot be added into SG(H).
Consequently, there is no cycle for case 2.

For case 3,4,5,6, they obey the strict 2PL scheme.
When SG(H) contains the edges that have been produced
by the strict 2PL scheme, there is no cycle in SG(H). This
is proved in [l].

Therefore, SG(H) that contains the edges produced by
CIS is acyclic. According to the theorem 1, the history of
transactions that are scheduled by CIS is serializable. 0

6: Conclusions

In this paper, a concurrency control scheme in
MLSDBMS called conflict-insensible scheduling (CIS)
has been proposed. Covert channel analysis is one of the
most difficult challenges in MLSDBMS. CIS prevents
covert channels by hiding the conflicts that occurred
between high security level transactions and low security

222

level transactions.
The major contribution of CIS is that it does not give

precedence to low security level transactions, and thus
high security level transaction does not suffer from
unfrumess. Most of the past works prevent the covert
chnnel by giving precedence to low security level
transactions. Therefore, CIS is expected to get a better
performance than past works.

The covert channels appeared in this paper are
restricted within the covert channels that occur due to the
data conflicts. Further research on preventing covert
channels will deal with the covert channels that occur in
data security violation. The conventional security models,
such as Bell-LaPadula model, are sufficient to prove that
security will not be violated through data accesses.
However, when the security models are correlated with
the conflicts of concurrent transachons, data security
violation may easily occur. Therefore, reconsideration of
the Bell-LaPadula model will be included in future
researches.

Works on the performance evaluation for CIS will be
continued. In addition, recovery management for CIS and
the extended CIS that will be applicable to multiversion
concurrency control scheme are remained for further
work..

References

[1]P. A. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

[2] Boris Kogan and Sushil Jajodia, "Concurrency
Control in Multilevel Secure Databases based on
Replicated Architecture, " Proceedings of the
International Conference on Management of Data,

131 T. F. Keefe, W. T. Tsai and Srivastava, "Multilevel
Secure Database Cuncurrency Control," Proceedings
of IEEE Symposium on Security and Privacy, 1990,

141 Iwen E. Kang and Thomas F. Keefe, "Recovery
Management for Multilevel Secure Database System,"
DATABASE SECURITY, VI : Status and Prospects,
ed. Bhavani M.Thuraisingham, Carle. Landwehr,
Elsevier Science Publishers B.V., 1993, pp. 225 - 247.

[5JSimon R. Wiseman, "On the Problem of Security in
Databases," DATABASE SECURITY, 111 : Status and
Prospects, ed. David L. Spooner, Carl Landwehr,
Elsevier Science Publishers B.V., 1990, pp. 301 - 310.

[6]Marshal D. Abram and Gray W. Smith, "A
Generalized Framework for Database Access

AGM SIGMOD, 1990, pp. 153 - 162.

pp. 337 - 344.

Controls," DATABASE SECURITY, IV : Status and
Prospects, ed. Sushil Jajodia, Carl E. Landwehr,
Elsevier SciencePublisher B.V. 1991, pp. 171 - 177.

[7] Ravi Sandhu, "Mandatory Controls for Database
Integrity," DATABASE SECURITY, 111 : Status and
Prospects, ed. David L. Spooner, Carl Landwehr,
Elsevier Science Publishers B.V., 1990, pp. 143 - 150.

[8] John McDermott and Sushil Jajodia, "Orange Locking
: Channel-Free Database Concurrency Control via
Locking," DATABASE SECURITY, VI : Status and
Prospects, ed. Bhavani M.Thuraisingham, Carle.
Landwehr, Elsevier Science Publishers B.V., 1993, pp.

[9] Oliver Costich and Sushil Jajodia, "Maintaining
267 - 284.

Transaction Atomicity in MLS Database Systems with
Kernalized Architecture," DATABASE SECURITY,
VI : Status and Prospects, ed. Bhavani M.
Thuraisingham, Carle. Landwehr, Elsevier Science
Publishers B.V., 1993, pp. 249 - 265.

01 P. Ammann and S. Jajodia, "A Timestamp Ordering
Algorithm for Secure, Single-Version, Multi-Level
Databases," DATABASE SECURITY, V : Status and
Prospects, ed. Carl E. Landwehr, Sushil Jajodia,
Elsevier Science Publishers B.V., 1992, pp. 191 - 202

13 Myong H. Kang, Oliver Costich, and Judith N,
Froscher, "A Practical Transaction Model and
Untrusted Transaction Manager for a Multilevel-
Secure Database System," DATABASE SECURITY,
VI : Status and Prospects, ed. Bhavani M.
Thuraisingham, Carl E. Landwehr, Elsevier Science
Publishers B.V., 1993, pp. 285 - 300.

223

