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Abstract 

Trunsuctions are vitu1 .for multi-level secure dutubase 
munugement systems(MLSh7BMSs) because concurrent 
e.recution of trunsuctions potentiullv has conflicrs among 
their uccessing to shured ciutu. Wlea conflict occurs, only 
one trunsuction i,c. grunted to u c ~ e s s  the shared data, 
olhrr transactions should be delayed until they can sufely 
use the datu. ‘T7m.w conjlicts may leud to the security 
problems in MLS/L)BMS. conspi rutors produce those 
conflicts intentionullv, they can establish the unexpectpd 
comm.unicafion path ccnll~d covert chunnel between high 
security level users and !ow set:uriI?, level usem This 
paper proposes U trunsuction scheduling scheme culled 
Conflict-lnsen,vible Scheduling (C1,V) lhat hdes  conflicts 
from low security lwei  trunsuctions to prevent thc covtv? 
rhunnels. 

1: Introduction 

In tight e u r i t y  systems, all database users and dnta 
items are assigned security levels and it is the 
responsibility of the \ystem to aswre that all users (ire 
allowed to have accesses to only those data for which they 
have been granted To assure this, SI) called multi-level 
secure database mmngement system(MLS/DBMS) is the 
key. Most commercid DBMSs provide some Corm of 
database security hased on so callcd discrehonary acccss 
control(DAC)[7] 111 which they siniply control the modes 
of privileges 01 users to data. They could be called single- 
level security schemt.. In the single-level security, iI a 
process 1s atfected b) a malicious piece of code such as 
computer virus, the access to data made by one user could 
pass the data 10 clther users, becaube a process usuLilly 
inherits all rights ot user who invoked it. In this respect, 
more sophisticated Anti strong security policies u e  
necessary. Enforcing multi-level security, one approach to 
realize this idea, can he found in  the mandatory access 
control(MAC)[71. I t  i b  important to note thdt security 

could be harmed either through data .accesses or through 
unexpected communication paths. MAC is sufficient 
against data accesses, but not against unexpected 
communication channels. 

When the unexpected communication channel leads to 
violate a security policy, it is called covert channel[3]. 
Communication through covert channel is possible 
whenever resources, such as CPU time, memory blocks, 
disk sectors, or data items in database, are shared. Any 
way of changing the states of the shared resources is a 
candidate for the covert chmnel. A user who can change 
the state of the shared resource can send signal to others. 
Accesses to the shared resources, of course, are under the 
control of system software, e.g., operating system or 
DBMS. The system software, however, is capable of 
controlling only the usage of the shared resources, such as 
memory allocation, competition for disk sectors, or 
consistency of the data. 

It is really hard to grasp the intents of users in 
accessing shared resources. It should be noted that covert 
channels arc solely created by malicious intent of users. 
For instance, in some DBMSs a user is allowed to retrieve 
the system catalogs to see how many users are given 
permission to read or update the files that have been 
created by him. This sort of system information can be 
made open to users. In this respect, it is almost impossible 
to block all ways of touching system information from 
users. For another instance, one can control the access to a 
shared data item in the database as ‘1’ for hold, ‘ 0  for 
release. Other user who shares the data item can 
distinguish the states of data into held and released. In this 
way, only one bit of  meaningful information can play a 
decisive role in extracting a very important fact. For one 
more example, the fact that the president of a republic had 
an accident can be represented by only one bit. If this bit 
of information can be manipulated by unauthorized users, 
it could really be a threat to the design o f  securs systems. 

Since the database is composed of very large number 
of shared data items, the covert channel tising the shared 
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data items in the database can convey a large number of 
bits, and as a result increases the bandwidth of the covert 
channel. Moreover, compared to the other shared 
resources such as a CPU or a tape driver, competition for 
each data item is loose, thus only a small number of 
noisy bits can exist in the covert channel. As tlie 
bandwidth of covert channel is increased and the noisy 
bits in the covert channel are decreased, the covert 
channel can deliver many correct bit streams for a fixed 
interval of time. 

In MLSDBMSs, there are two types of covert 
channels; namely storage channel and timing channel[3]. 
The storage channel is established when a low security 
level transaction learns of the existence of data classified 
at high security level. For instance, consider that a unique 
data named 'A exists and is classified at high security 
level. Undoubtedly, low security level transactions cannot 
see the value of .A.' However, if a low security level 
transaction attempts to create a new data named 'A,' the 
request will be denied. Through this denial, the low 
security level transaction learns of the existence data A 
that has been classified at high security level. In this 
sense, a high security level transaction could signal 
information to a low security level transaction by 
removing and creating A. In contrast to the storage 
channel, timing chatinel signals information by 
controlling a delay that is observable in a low security 
level transaction. The timing channel depends on the 
delay of a low securit.y level transaction that shares a data 
that the low security level transaction and the high 
security level transaction are in cont-lict ovcr. 

For the storage channel, perceiving the existence of  
data can be obimined through a write operation to the data 
classified at high security level. If a security policy forces 
a restriction on the write which accesses a high securit.y 
level data, the storage channel can be prevented since it is 
impossible for a low security level transaclion to learn the 
existence of high security level data. Most of past work 
on the covert channel analysis adopted this sort of 
restriction as their security policies. However, since read 
attempt by a high security level transaction toward a low 
security level data cannot be restricted by any security 
policy, and write operation is essential to build a 
database, conflict between read and write is unavoidable. 
In this respect, a special idea for preventing timing 
channels under the circumstances that high security level 
transaction's read operattons conflict with low security 
level transaction's write operations is necessary. This 
paper deals with this issue. 

Execution of concvrrent transactions may Lead to 
create unexpected covert channels. In database systems, 
any two operations issued by concurrent transactions may 

conflict if they operate on the same data item and one or 
both of them are write operations. A schedule is 
concurrent if it is an interleaved sequence of operations 
from more than one transaction. An interleaved sequence 
of reads and writes potentially interferes with each other. 
Transaction scheduler reorders those reads and writes in 
order to maintain the correctness of the database and to 
allow as much concurrency as possible. However, 
considered from the MLS/DBMS point of view, there is a 
problem of scheduling several concurrent. transactions 
kcause the interference between reads and writes could 
leiid to the delay of some operations; this delay could be 
represented as one bit of information which could be 
leaked to unauthorized persons through cover1 channel. 
Example 1 shows this sort of covert channel due to 
read/write or write/write conflicts. 

Example 1 (Covert channel due to conflicting 
operations) : 

Suppose that two transactions, TI and T2, execute 
concurrently and they access a shared data 'A' (Figure 1 ). 
Suppose also that before their execution the last 
committed value of A is 0. If the scheduler outputs the 
sequence of reads and writes as they are arrived, T2 reads 
0 fiom A at time to, T1 writes 10 to A at tl and commits at 
t2, and T2 then commit at t3. At t2, the value of data A 
stored in the database is changed from 0 to 10, and thus 
the value of A read by T2 at to is inconsistent with the 
value of A in the database. At tl, T2 may use the value of 
A read at to. In case that A represents the human life, e.g., 
.O' means living and '10' means death, using the 
inconsistent value of A may lead T2 to obtain undesired 
result. To maintain the consistency of the value of A read 
by T2 and the value of' A stored in database, the scheduler 
should reorder the two conflicting operations, Tl's 
Write(A) and T2's Read(A), and as a result produces either 
one of schedule: output-I or output-2. In case of output-1, 
T1 experiences a delay because T2 interferes with TI. In 
case of output-2, T2 instead experiences a delay. In 
output-I, TI can interpret its experience of delay as '1' or 
'0' that could serve as one bit of unauthorized information 
arrived from T2. If T1 and T2 do not conflict, i.e. neither 
do they run concurrently nor do access a shared data, then 
the scheduler would simply output the reads and the writes 
in the exactly the same order as they are arrived; in this 
case no covert channel arises, since TI and T2 do not 
experience delay at all. 

If TI and T2 are classified at different security levels 
and scheduled according to the conventional scheduling 
schemes, such as locking or timestamp ordering, the 
higher security level transaction can leak bit stream to the 
lower security level transaction by controlling the former's 
operations that interfere with the latter's operations. 
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Figure 1. Reordering the conflicted operations 

m e  elimination of interference between two 
transactions, so called noninterference, is necessary to 
make a system prevent covert ch;mnels. If a scheduler 
does not control the two conflicting operations, the write 
operation may lead to lost update and the read operation 
may lead to dirty read. This then lorces rejection of one 
of the conflicting operations. Therefore, conflicts between 
two transactions always allow the outcome of transactions 
to dishnguish into two different states, i.e., rejected form 
or permitted to access to a shared data. The rejection 
incurs a delay in the execution of the transaction whose 
operation had been rejected. The low security level 
transaction, then, is able to recognize the states from its 

experience of delay incurred by ;in interference from a 
high security level transaction. It then can interpret each 
state as '1' or %O,' Therefore, a low security level 
transaction can infer the high securily level information 
by the contribution of the interference from a high 
security level transaction. To prevent the interference 
from a high security level transaction, the output schedule 
of a low security level transaction must be unaffected by 
the input schedule of high security level transaction. If the 

interference &om a high security level lransaction has 
been prevented, a low security level transaction cannot 
distinguish between the different output schedules; one 
has been scheduled in response to a sequence of inputs 
including the high security level transactions' operations 
and the other in response to an input sequence in which all 
high security level operations have been removed. 

Most of past works [8,9,10] on concurrency control in 
MLSDBMSs have been concerned with the 
noninterference to prevent the covert channels. They 
realized the noninterference by giving a precedence to the 
operations of low security level transactions. The idea of 
their realization is to let low security level transactions 
proceed without sensing the interference from high 
security level transactions. Although they can prevent 
covert channels, in this way, theirs delaying the execution 
of high security level transactions brings about another 
problem. 

This paper proposes a cimcurrency control scheme in 
MLSDBMS called conflict-insensible scheduling (CIS). 
The CIS hides conflicts from low security level 
transactions to prevent the covert channels. The CIS 
allows a low security level transaction to run to 
completion without an experience of delays. Therefore, 
the transaction can run as if it has not been interleaved 
with the operations of high security level transaction. To 
avoid the conflicts, giving a precedence to low security 
level transactions might be considered. However this is 
not true in our CIS because it definitely creates unfairness 
against high security level transactions. 

The basic idea of the CIS is that when conflict occurs 
between low security level transaction's write operation 
m d  high security level transaction's read operation, it 
allows the low security level transaction to process the 
conflicted write operation by recording the result of write 
operation to a buffer. However, at the internal level, for 
the atomicity of transactions, the results of the low 
security level transaction's conflicted write operations are 
observable to other transactions only after the low security 
level transaction has committed. Moreover, CIS does not 
withdraw the access right that has been granted to the read 
operation of high security level transaction by allowing 
the high security level transaction to read the data resided 
in database. The fact that CIS does not violate the 
serializability is proved at section 5 .  CIS is applicable to 
the locking scheme and assumes that a transaction tries at 
most one write operation to the same data. This is 
reasonable because if a transaction writes to the same data 
twice, it itself imposes the lost update. 

The rest of this paper is organized as follows. Section 2 
describes the related works and their problems. Section 3 
introduces the security model and transaction model. In 
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section 4, the conflict-insensible scheduling is proposed 
and shows how it conceals the abort and the delays of a 
transaction to prevent the covert channels. Section 5 
shows the correctness of conflict-insensible scheme. 
Conclusion is given in section 6. 

2: Related Work 

Most of the past work on concurrency control in 
MLSDBMS realize the noninterference bel ween the high 
and the low security level transactions by avoiding the 
conflicts [8,9,10]. To avoid the conflicts, when conflicts 
occur, they give a precedence to the operations of low 
security level transaction, so that the low security level 
transaction can proceed its execution without interference 
of high security level transaction. 

In [81, they simply let the high security level 
transaction set read locks on low security level data items 
as in a conventional, untrusted database system. If a low 
security level transaction tries a write lock on one of the 
same data items, they immediately grant low security 
level transaction's write lock and change the high security 
level transaction's read lock to an orange lock, indicating 
the possibility of an incorrect read. If high security level 
transactions read set includes orange locks, it should he 
aborted. 

In [9], they forces high security level transactions to 
wait to start until theirs read set has a null intersection 
with the write sets of all low security level transactions 
that are active. Therefore the low security level 
transactions can proceed their executions without 
interference of high security level transactions. 

In [lo], timestamp ordering scheme is applied to the 
concurrency control and presents two soliltions for the 
problem of what to do about high security level 
transaction's read operation for low security level data 
item. The first solution forces high security level 
transactions to wait until it is safe to execute read 
operations. In the second solution, high security level 
transactions do not wait to read low security level data, 
but do delay their commitments until timestamp ordering 
with respect to conflicting operations are guaranteed. If a 
conflicting operation occurs, the high security level 
transaction is aborted. 

Although these works allow low security level 
transaction to achieve noninterference from high securil y 
level transactions, the starvation of high security level 
Wansaction is inevitable. Consequently, the result of their 
scheduling is unfair. If the write operations of a low 
security level transaction or the read operations of a high 
security level transaction occur very frequently, the high 

security level transaction will run into a starvation. 
Example shows the starvation of high security level 
transaction. 
Example 2 (Starvation of high security level 
transaction due to the precedence): 

T(H) is classified at high security level. Tl(L), Tz(L), 
T3(L), and T4(L) are classified at low security level, and 
data A is a high security level data (Figure 2) .  Although 
T(H) gets the read lock to A earlier than other 
transactions, T,(L)'s write lock is granted at tz. Therefore, 
T(H) relinquishes the value read at tl. T1(L) commits at t3, 
nevertheless, T(H) cannot read because T2(L) requests 
write lock at t3. To achieve the noninterference from high 
security level transactions, T(H)'s R(A) cannot be 
executed until all the write locks of low security level 
transactions are released at k. 

Time .... T(H) ..... T,(L) ..... T,(L) ..... T3(L) ..... T ~ ( L )  

ti .......... .R(A) .... B-Tx 

t3 ......................... Cmt ...... W(A) ..... B-Tx 

to ........... B-Tx 

........................ ..... t2 W(A) B-Tx 

t... ................................... Cmt ....... W(A) ..... B-Tx 
tS ..................................................... Cmt ...... W(A) 
t6 .................................................................. .Cmt 
t7.. .......... R(A) 

. ts ............ Cmt 
Figure 2. Starvation of high security level transactions 

Starvation of T(H) lasts for 5 clocks, i.e., from tz to t6. 
Let us assume that the scheme that gives precedence to 
low security level transactions has been applied to a 
DBMS running at missile site. Imagine that an enemy 
launched a missile and A is the path of the missile that 
decides headquarters to launch a missile killer. However, 
T( H), the transaction of headquarters, cannot monitor the 
path of the missile at proper since A is held by low 
security level transactions for updating. At t7, T(H) can 
read the last path of the missile that may be the target of 
the enemy's missile. 
End of Example 2. 

3: The Models 

In this section, we present the models for security and 
transaction 

3.1: Security Model 

The security model used in this paper is that of Bell 
and LaPadula [6,7]. The database system consists of a 
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finite set D of data items and a set T of transachonh. 
There is a lattice of S of security levels with ordering 
relahon <. There is a labeling funcaon L that maps data 
items and transactions into a security level: 

L : D u T + S  
Definition 1: 

Security level U dominates v in a lattice if U v and 
there is no security level w for which U > w > v. 0 

This paper considers two mandatory access cuontrol 
requirements : 

(Simple Security Property) 
If transaction T, reads data item x then L(TJ 2 L(x). 
(Restricted *-Property) 
If transaction TJ writes data item x then L(T,) = L(x). 
According to the simple security property, a data item 

is allowed a read access to a transaction only if the 
Cormer's security level is identical or higher than the 
latter's security level. 'The restricted *-property allows a 
transaction to write data item only i f  the former's security 
level is identical to the latter's security level 
Definition 2: 

Read-down, read-equal, and read-up are the 
operations that transaction T, reads data item x if its 
labeling functlons are L(TJ > L(x), L(TJ = L(x), and 
L(T,) < L(x) respectively. n 
Definition 3: 

Write-down, write-equal, and write-up are the 
operations that transaction T, writes data item Y if its 
labeling functions a e  L(T,) > L(x), L(T,) = L(u), and 
L(TJ < L(x) respectively. 7 

The security model in this paper allows a transaction 
to issue read-down, read-equd, and write-equal 
operations. This is sufficient to prove that securitv is not 
violated through data access [6,71. 

3.2: Transaction Model 

A transaction is an abstract unit of coilcurrent 
computation that executes atomicdlly. The effects of a 
transaction do not interfere with each other transaction 
that accesses the smie data. Also, a transaction either 
happens with all of its effects made permanent or it 
doesn't happen and none of its effects are permanent. This 
paper models traiisactions as definiliori 5. 
Definition 4: 

Transaction is a finite sequence of database 
operations, such as read, write, commit, abort operations. 
The sequence models the order m which database 
operations are send to the transaction management 
algorithm. After the DBMS executes a transaction's 
commit (or abort) operation, the transaction is said to be 

committed (or aborted). A transaction that has started but 
is not committed or aborted is called active. A transaction 
is uncommitted if it is aborted or active. 0 
Defmition 5: 

All transactions are single-level. That is, every action 
in a transaction has the same security level, and thus 
transaction's security level is assigned only once at the 
transaction starts. 0 

As two or more transactions can access the same data 
concurrently, these concurrent accesses must be controlled 
for the correctness of both data and transactions. The 
schedulers appear in this paper is based on the locking 
scheme. Locking is a mechanism commonly used to solve 
the problem of synchronizing access to shared data. Each 
data item has a lock associated with it. Before a 
transaction TI may access a data item, the scheduler f i s t  
examines the associated lock. If no transaction holds the 
lock, then the scheduler obtains the lock on behalf of TI. 
If T2 does hold the incompatible lock, then TI has to wait 
until T2 releases it. The locking rule adopted in this paper 
is strict two phase locking (strict 2PL). 
Definition 6 

The strict 2PL requires the scheduler to release all of a 
transaction's locks together, when the transaction 
terminates, i.e., after the data manager acknowledges the 
processing of commit or abort. Cl 
Definition 7: 
T(H) denotes the high security level transaction and 

T(L) denotes the low security level transaction, i.e., 
IO(H))  > L(T(L)). 

4: Conflict-Insensible Scheduling 

4.1: Features of Conflict-Insensible Scheduling 

Conflict-Insensible Scheduling (CIS), this paper 
proposes, is a new concurrency control scheme for 
preventing covert channels. CIS allows T(L) to run to 
completion without an exposure of delays. Most of the 
past work attempted to prevent covert channels by giving 
precedence to the operations of T(L) which conflict with 
the operations of T(H). Thus, they definitely create 
unfairness against T(H). 

In contrast to the past works, CIS does not give 
precedence to the operations T(L), so that T(H) does not 
need to suffer ftom unfairness. When conflict occurs 
between T(H)'s read and T(L)'s write, CIS allows T(L) 
to process it's write operation immediately on the buffer 
instead of delaying or giving precedence to the write 
operation. Thus, a conspirator who has been monitored 
the actions of colleague's transachon (classified at low 
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security level) cannot perceive the conflicts, so that the 
conspirator infers that there is no information leaking 
from high security level conspirator even lhough he had 
tried to send an information. 

CIS is based on the strict 2PL scheme. CIS does not 
suspend the execution of T(L)’s conflicting operation 
untd the conflicted T(L) can obtam its requested lock, but 
goes on the conflicting operation and proceeds to execute 
ne,xt operations. When T(L) meets a commit operation, 
CIS announce& T(L)’s commitment and allows the effects 
of T(L)’s write operations to be observable to other 
transactions. For the durability of transaction, CIS records 
the etfect of T(L)’s write operations to the database after 
CIS announced T(L)’s commitment. When every 
transaction requests to abort, CIS immediately executes 
the rollback procedure. 

From now on, every case of conflict thal occurs in the 
input to CIS is considered and the processing of CIS on 
each case is shown. 
Case 1: T(H) reads before T(L) writes. 

T(H) : R(X) 
T(L) : WCXj 
CIS allows T(H) to redd X from database and T(L) lo 

wtite X at write-buffer. 
Case 2: T(H) reads the same data I wice and T(L) writes 

and reads the same datd. 
T(H) : R(X) R(X) 
T(L) : W(X) R(X) 
CIS allows T(H) to read X from databaye and T(L)‘s 

W(X) to wnte X at write-buffer. T(L)’s R(X) reads X 
krom write-buffer instead of database, i.e., it reads the 
effect of T(L)’s W(X). Since T(L)’s W(X) writes X at a 
different place from the place T(H) accessed, T(L)‘s 
W(X) can be executed immediately. Moreover, since 
T(L)’\ R(X) reads X from wnte-buffer, the conflict 
between the first R(X) of T(H) and T(L)’s W(X) is not 
observable to T(L)’s R(X). Therefore, T(L) cannot 
perceive the conflict between the T(H)’s R(L) and T(L)’s 
W(X) 

As a result of case 1 dnd case 2,  T,L) does not 
experience any delay and CIS does not withdraw the 
access right that had been granted to T(H)’s R(X) while 
T(L) and T(H) are executing concurrently and both of 
them access the same data. Consequently, the covert 
channel between T(Hj and T(L) has not been established 
and T(H) does not need to be suffered from unfauness. 
The effects of T(L) in write-buffer are written into 
database only after there is no transaction that has 
conflicted with T(L) and has not been committed yet. 
When T(H) tries to read operation and other transactions 
had conflicted with T(H)’f previous read operations, T(H) 
is prohibited from reading the value in write-buffer. 

Case 3: T(H) reads X after T(L) tried W(X). 
T(H) : 
T(L) : W(X) commit 
According to the strict 2PL scheme, T(H)’s R(X) 

should be delayed until T(L) releases write-lock on X. 
The delay of T(H)’s R(X) is natural in the view of locking 
scheme and it does not bring about the information flow 
with the violation of security policy. 
Case 4: Conflict between R(X) and W(X) that are issued 

R(X) ..... delay ...... R(X) 

by the transaction classified at the same security level. 
TI(L) : 
T2(L> : W(X) commit 
Analogously to the case 3 ,  T1(L)’s R(X) should be 

delayed until T2(L) releases the write-lock on X. 
The R(X)s appeared at both case 3 and case 4 can be 

executed more efficiently in case that they can read X 
from write-buffer instead of database. For achieving this 
efficiency, CIS announces T(L)’s or T,(L)’s commitment 
when CIS serves the commit operation. 
Case 5: Conflict between R(X) and W(X); both of them 

are issued by the transactions that are classified at the 
same security level and R(X) appears before W(X). 
TI&) : R e )  commit 
Tz(L) : 
Although R(X) conflicts with W(X) and R(X) issued 

before W(X), if they are issued by the transactions 
classified at the same security level, they are scheduled 
according to the strict 2PL scheme. Notwithstanding the 
delay of W(X), since T,(L) and T2(L) are classified at the 
same security level, there is no information flow with the 
violation of security policy. 
Case 6: Conflict between two W(X)s. 

W(X) ...... delay ...... W(X) 

R(X) ...... delay ..... R(X) 

W(X) ...... delay ... W(X) 

TI : W(X) commit 
Tz : 
According to the restricted *-property, a transaction 

can write data that are classified at the same security level 
of the transaction. Therefore, TI and T2 should be 
classified at the same security level. Analogously to the 
case 5 .  the delay of W(X) does not bring about the illegal 
information flow. 

4.2: Algorithm for CIS 

In this section, a concurrency control algorithm for CIS 
is presented. In this algorithm, T, and T, are transactions 
that are competing for access shared data. The write- 
buffer copes with the write operations that have conflicted 
with other transaction’s read operations. Moreover, we 
assume that all the database operations handled by this 
algorithm have already been validated according to the 
security policy, so that the database operations are never 
rejected with the violation of security of the system. The 

221 



conflicts between the database operations are detected 
and informed by the lock manager. 

[l] If a transaction aborts, spaces in write-buffer that 
have held the effect of the transactions write operation 
is given back. 

[ 2 ]  If a transaction tries to commit, announce the 
commitment immediately. The effects of the 
transaction’s write operations that have been held 
within the write-bufker are written into the database. 

[ 3 ]  Whenever a transaction tries to read on the shared 
data and the transaction’s attempt does not produce a 
conflict and moreover, the trarisaction has not 
conflicted with others, the transaction accesses the 
data residing in database. 

[4] When T,’s write Operation conflicts with Ti's read 
operation and L(TJ) < L(T,), TJ records the effect of 
the write operahon into the write-buffer. 

IS] Although a transaction can try wtlte operation without 
a conflict with other transactions, it records the effect 
of the write operation into the write-buffer instead of 
the database. 

161 In case that T,’s operation and T,’s operation conflict 
with each other and L(TJ = L(TJ the conflict is 
handled according to the strict 2PL scheme. 

171 When T,’s read operation has been delayed due to the 
conflict with TJ’s write operation, T, executes the 
delayed read operdtion when TJ commits without 
distinction of security levels. In this case, T, reads 
from write-buffer instead of database. 

181 The repeatable read operation gets the data from the 
same place that has been accessed by its previous read 
or write operations. For instance, if a transaction wrote 
data into write-buffer, it’s repeatable read gets the data 
lrom write-buffer . 

thm CIS: 

End of Algorithm. 

5: Proof of Correctness 

In this section, corrcctness of algorithm CIS is proved 
with the lact that once transactions are scheduled by CIS, 
they are serializable. For the convenient description, 
following definitions are needed. 
Definition 8 

A history H indicates the order in which the 
operations of  the transactions were executed relative to 
each other. If transactlon TI specifies the order of two of 
its operations, these two operations must appear in that 
order in any history that include T,. C’J 
Definition 9: 

A history H is serializable if its committed projection 
is equivalent to a serial history H. Committed projection is 
a history over the set of committed transactions in H. I7 
Definition 10: 

Let T = (Ti, ..., T,) . The serialization graph (SG) for 
H, denoted SG(H), is a directed graph whose nodes are 
the transactions in T that are committed in H and whose 
edge are all T, +T, (i # j)such that one of Tj’s operations 
precedes and conflicts with one of T,‘s operations in H. Cl 

Theorem 1: 

Proof: 
A history H is serializable if SG(H) is acyclic. 

Proved in [l]. CI 

Theorem 2 
History of transactions that have been scheduled by 
CIS is serializable. 

Proof: 
We will prove the correctness of CIS by showing that 

scheduling the transactions with the features presented in 
section 4.1 does not lead to cycle in SG(H). For case 1, 
according to the definition 10, an edge T(H) +T(L) is 
added into SG(H). When T(H) tries to read, since it 
always gets the value from database and the effects of 
T(L) in write-buffer are neier written into database until 
T(H) commits, T(H) never reads the value written by 
T(L). Therefore, T(L) -+T(H) cannot be added into 
SG(H). Consequently, there is no cycle for case 1. 

For case 2, since T(L)’s W(X) is executed after T(H)’s 
R(X), T(H) +T(L) is added into SG(H). However the 
second read operation of T(H) gets the value that has 
already been got by the first read operation of T(H), so 
that T(L) +T(H) cannot be added into SG(H). 
Consequently, there is no cycle for case 2. 

For case 3,4,5,6, they obey the strict 2PL scheme. 
When SG(H) contains the edges that have been produced 
by the strict 2PL scheme, there is no cycle in SG(H). This 
is proved in [l]. 

Therefore, SG(H) that contains the edges produced by 
CIS is acyclic. According to the theorem 1, the history of 
transactions that are scheduled by CIS is serializable. 0 

6: Conclusions 

In this paper, a concurrency control scheme in 
MLSDBMS called conflict-insensible scheduling (CIS) 
has been proposed. Covert channel analysis is one of the 
most difficult challenges in MLSDBMS. CIS prevents 
covert channels by hiding the conflicts that occurred 
between high security level transactions and low security 
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level transactions. 
The major contribution of CIS is that it does not give 

precedence to low security level transactions, and thus 
high security level transaction does not suffer from 
unfrumess. Most of the past works prevent the covert 
chnnel  by giving precedence to low security level 
transactions. Therefore, CIS is expected to get a better 
performance than past works. 

The covert channels appeared in this paper are 
restricted within the covert channels that occur due to the 
data conflicts. Further research on preventing covert 
channels will deal with the covert channels that occur in 
data security violation. The conventional security models, 
such as Bell-LaPadula model, are sufficient to prove that 
security will not be violated through data accesses. 
However, when the security models are correlated with 
the conflicts of concurrent transachons, data security 
violation may easily occur. Therefore, reconsideration of 
the Bell-LaPadula model will be included in future 
researches. 

Works on the performance evaluation for CIS will be 
continued. In addition, recovery management for CIS and 
the extended CIS that will be applicable to multiversion 
concurrency control scheme are remained for further 
work.. 
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