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SUMMARY

While the secure concurrency controllers (SCCs) in multilevel secure database systems
(MLS/DBMSs) synchronize transactions cleared at different security levels, they must consider
the problem of covert channel. We propose a new SCC, named Verified Order-based secure
concurrency controller (VO) that founds on multiversion database.

VO maintains elaborated information about ordering relationships among transactions in a
way of actively investigating and renewing the ordering relationships whenever it receives
operations. With the elaborated information, it becomes capable of aborting transactions
selectively whose non-interfered executions definitely violate one-copy serializability and
providing more recent data versions to read requests than the other multiversion-based SCCs.
Therefore, it comes to reduce the abort ratio and provide data versions with improved
trustworthiness to transactions. By virtue of the elaborated information, moreover, VO is able to
distinguish worthy versions and worthy transactions from unworthy ones, so that it is able to
lighten the burdens of maintaining multiple versions and accumulated ordering relationships
among transactions. For the aborts that are inevitable for preserving one-copy serializability, VO
achieves security by deriving the conflicts to be occurred between transactions that have been
cleared at the same security level.
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1.  Introduction

Multilevel security, MLS for short, is a capability that allows data objects with different
security levels to be simultaneously stored and processed in an information system with users
having different security levels. Preventing users from accessing data objects for which they are
unauthorized is the absolute requirement in MLS. For building MLS information systems,
MLS/DBMSs become a reality and in use today. Accordingly, SCCs for synchronizing concurrent
transactions are receiving a lot of interest. They aim to preserve the correctness of database system
with regard to the notion of serializability as well as security.

While transactions execute concurrently and share data objects, conflicts among them are
often unavoidable. Conventional insecure concurrency controllers preserve correctness of
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database in a way of rejecting or delaying the conflicting operations [10]. Although these
conventional ones preserve correctness, they are definitely vulnerable to an infringement of
security. If such interference occurs from high transaction to low transaction, it opens an
unexpected communication channel, named covert channel, between the transactions.1 The
problem of covert channel compulsorily demands the attention to security along with the
serializability-related correctness. It therefore makes SCCs more complex than conventional
concurrency controllers.

Much work, such as [3], [5]-[9], [11, 12], and [17]-[23], has been devoted to develop SCCs.
While all the work achieve security successfully, some of them [3, 6, 7, 9, 17, 18, 20, 21, 23] argue
that the traditional notion of serializability-related correctness is too restrictive for MLS/DBMS
to achieve desirable performance. Thus, under certain circumstances, they willingly submit to
the weakened correctness of execution sequence. Although the SCCs are capable of balancing
security and performance to a certain extent, they cannot help infringing the correctness of
database without a complement of user program.

The other SCCs proposed by [5, 8, 11, 12, 22] achieve correctness and security at the cost of
declined performance of high transactions. For instance, whenever the SCC proposed by [5]
receives an operation from a low transaction that conflicts with a high transaction, it preserves
the correctness and security by aborting the high transaction unilaterally. Such a biased policy
infringes the fairness in processing transactions cleared at different security levels.

SCCs proposed by [19, 23] are founded on multiversion database (MVDB). They try
achieving security, correctness, and fairness in a way of disposing high transactions before active
low transactions. However, they do not consider prudently the factual ordering relationships
among transactions. Therefore, they are liable to dispose high transactions at excessively early
positions. Accordingly, high transactions are forced to read far outdated data versions. These
SCCs, moreover, have a burden of maintaining unbounded number of versions in a database and
thus lead to the increased disk I/O requests.

In this paper, we propose a new MVDB-based SCC, named Verified Order-based secure
concurrency controller, VO for short. It aims to achieve correctness and security at once without
provoking serious unfairness in response time, with improving the recentness of data versions
being read, and with reducing the number of versions in a database. The improved fairness
would play advantageous role for VO to be evaluated as highly available one since it is capable of
suppressing impure transactions that are to obstruct the legitimate executions of transactions by
generating intentional and intensive conflicts. The improved recentness would contribute to
providing more trustworthy data versions than the other MVDB-based SCCs. The reduced
number of data versions, moreover, results in the decreased cost for storage and thereby reduces
the number of disk I/O requests.

For these achievements, VO pays attention to the fact that non-interfered processing of
conflicting operations does not always violate correctness or security. In addition, it takes notice
of the fact that retaining sufficient trace of ordering relationships among transactions is very
much useful for perceiving justice or injustice of non-interfered execution of conflicting
operations. The strengthened capability for verifying ordering relationships among transactions
is advantageous for providing sufficiently recent data versions, pointing out unworthy

                                                          
1 In this paper, the terms high and low refer two security levels such that the former is strictly
higher than the latter.   
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transactions, and weeding out garbage versions from a database. VO achieves security in a way
of driving all the incorrectness provoking conflicts to occur among transactions cleared at the
same level.

The rest of this paper is organized as follows: Section 2 presents the models for transaction
and security. Section 3 describes the features and the rules of VO. In Section 4, we offer the rules
for weeding out unworthy versions and transactions. Section 5 provides correctness and secureness
proofs for VO. Section 6 presents the results of VO's performance evaluation that have been
compared with the other representative SCCs. Finally, this paper concludes in Section 7.

2. The Model

2.1 Transaction model

A transaction is an abstract unit of concurrent computation that executes with primitives:
begin, read, write, commit, and abort. Users interact with the database by invoking transactions.
History, H, is a set of totally ordered operations that have been synchronized by an SCC. It reflects
every state of SCC, such as correctness, security, recentness, and fairness. If H preserves
security all the time, for instance, security preservation of the SCC can be approved. If an
operation, opi, precedes the other operation, opj, in H, their ordering relationship is represented

by opi  opj.

A new SCC, VO, proposed in this paper founds on MVDB. In an MVDB, each write
operation on a data item ultimately produces a new version of the data item that is to be added
into a list of versions. Hence, the new version being created never overwrites its previous
versions but instead coexists with them. Such coexisting data versions are called sibling versions.
By virtue of the coexistence of sibling versions, almost all of the MVDB-based SCCs become
capable of processing tardy reads unhesitatingly in a way of providing the second best versions.
All the siblings of a data item, x, are totally ordered on purpose that a specific version, xi whose
creator is a transaction Ti, can be selected as an appropriate one for a read on x. A version order

operator, «, represents the ordering relationship between siblings. For instance, xi « xj says that

xi precedes xj in version order. For proving the correctness of MVDB-based history, the principle
of one-copy serializability, 1SR for short, is applied [10].

2.2 Security model

A security model provides a semantic representation in that it describes functional and
structural security properties of a system. In describing the security model, two different types of
entities, subjects and objects, are needed. Subjects represent the active entities, such as users,
processes, and transactions. Objects stands for the passive entities, such as files, relations, and
data objects at the level of tuples or attributes. Since we are particularly concerned with SCC,
however, we substitute subjects and objects with transactions and data objects for clarity.

To describe the security model definitely, we present several assumptions and definitions
that are inevitable for developing SCC.

Assumption 1(Untrustworthiness of transactions): All the transactions manipulated by
SCC are regarded as untrusted ones. ❑

Exceptionally, however, transactions invoked by security administrators are regarded as
trusted ones.
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Assumption 2(Trustworthiness of SCC): SCC by itself never infringes security. It is now
regarded as a trusted computing base (TCB). ❑

As SCC is TCB, it never contains any means, such as Trojan Horses or Trapdoors, that may
lead to security violation. In accordance with Assumption 1 and Assumption 2, we are now
allowed to confine the threats made against security to the only ones caused by untrusted
transactions.

For describing the relationships between the transactions and the data objects at the
standpoint of security, a means for labeling security level is necessary.

Definition 1(Security level labeling function): Security level labeling function, L, maps a
transaction and a data object to their specific security levels. It is represented by

L: T ∪  D → S,

where D is a set of data objects, T is a set of transactions, and S is a hierarchical set of levels. ❑

For two entities, Ei and Ej, if L(Ei) > L(Ej), Ei has been cleared at higher security level than Ej.

Assumption 3(Comparability of security levels): All the security levels are comparable each
other. ❑

We assume that every pair of terms, high and low, used hereafter is comparable from the
standpoint of compartments which implement the principle of least privilege [16]. In other words,
we assume that the comparison of entities' compartments has already been completed
successfully prior to the comparison of security levels.

In order to filter out unauthorized requests of transactions, an MLS information system
needs to define an access control policy. In this paper, we adopt the access control policy as
follows:

Definition 2(Access control policy): A transaction Ti is allowed to access a data dj if the
ordering relationship between L(Ti) and L(dj) obeys following two constraints:
1(Read-equal/Read-down): Ti is allowed to read from dj if and only if

L(Ti) ≥ L(dj).

2(Write-equal): Ti is allowed to write a new value to dj if and only if
  L(Ti) = L(dj). ❑

The access control policy is strictly founded on the Restricted Bell-LaPadula model [1]. We
do not allow write-up in that it is vulnerable to the attack of Trojan Horse.

The access control policy is able to cut off strictly any direct information flow from a
transaction, Ti, to the other transaction, Tj, with L(Ti) > L(Tj) via accessing the values of data

objects. Unfortunately, however, it is insufficient to close a covert channel. The covert channel
can be closed if and only if any execution of Ti never interferes that of Tj. If a concurrency
controller is to achieve correctness and secureness at once, it must be able to produce trustedly
serializable, TSR for short, histories all the time.

Definition 3(Trusted serializability): A history, H, is trustedly serializable if and only if it
satisfies following two requirements simultaneously:
1(Serializability preservation): H is serializable, and
2(Security preservation): For any pair of transactions, Ti and Tj with L(Ti) > L(Tj), in H, any

interference from Ti to Tj must have been eradicated. ❑
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Since VO founds on MVDB, the first requirement is specified to the notion of 1SR. By
accomplishing the second requirement, VO successfully closes the covert channel.

3. Verified Order-based Secure Concurrency Controller: VO

We propose, in this section, a new SCC that is capable of producing TSR histories all the
time. Achieving TSR is performed in ways of strictly preserving 1SR and forcing the transactions,
which are responsible for the unavoidable interference, to be cleared at the same level.

3.1 Verified transaction ordering relationship

For the purpose of producing TSR history, VO maintains information that is capable of
delineating obviously which transactions precede and which other transactions follow a specific
transaction. VO verifies such transaction ordering relationships, TORs for short, whenever it
receives an operation. TORs maintained by VO are now irrelevant to the transactions' beginning
points of times but instead they faithfully reflect the actual relationships among transactions via
information flows. Therefore, VO becomes capable of avoiding the hasty determination of TORs.
When VO detects a TSR violating operation, it decides to reject the operation or to map it with a
second-best data version. In this way, VO guards transactions against unnecessary interferences
or reading far outdated data versions. VO retains the verified TORs until it can convince that
deleting the TORs does not loss any information that is necessary for perceiving the occurrence of
TSR violating operation.

Previous SCCs, unlike VO, do not investigate TORs intensively but they vaguely estimate
coming TORs. Once a TOR between two transactions has been established, some of them are so
pessimistic that they hastily conclude the appearance of new TORs in opposite direction. On the
contrary, some others of them are so optimistic that they expect such oppositely directed TORs
would never come. Rests of them impatiently establish TORs at the transactions' beginning
points of times. These probability-based vague estimations of TORs lead to unnecessary
interference or provision of excessively outdated data versions.

The unnecessary interference or the provision of excessively outdated data versions stems
from the lack of elaborate information about the ordering relationships among transactions. For
overcoming such a lack of information, VO accumulates the transaction ordering relationships
that have been established in pursuance of following rules:

Rule 1(Transaction order verification):

1(Transaction order with regard to read-from): If wj[xj]  cj  ri[xj] exists in a history, VO
considers Tj to precede Ti.

2(Transaction order with regard to version order): If xi « xj, VO considers Ti to precede Tj.

3(Transaction order with regard to read-preceding): If ri[xj]  wk[xk] or wk[xk]  ri[xj] with

xj « xk in a history, VO considers Ti to follow Tj and to precede Tk. ❑

For determining ordering relationship between siblings, VO has following property:

Property 1(Commit order corresponding version order): If VO processes a commit of Ti

before that of Tj and versions, xi and xj, have already been created, the version order between xi

and xj becomes xi « xj. ❒

If there are wi[xi] and wj[xj] in a history and transactions, Ti and Tj, both are still active, in
accordance with Property 1, VO postpones the decision on TOR between Ti and Tj until it receives
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ci or cj. If VO receives ci earlier than cj, it decides on the version ordering relationship between xi

and xj to be xi « xj. By applying Rule 1 to this case, VO considers Ti to precede Tj. VO opens a

version only after its creator commits since it is confident of providing sufficiently recent data
versions. By providing committed versions, in addition, it is capable of avoiding cascaded aborts.

In order to utilize the verified TORs for perceiving the occurrences of TSR violating
operations, VO maintains following two sets of transactions for each individual transaction:
preceding set and following set.

Definition 4(Set of preceding transactions and set of following transactions): For a
transaction, Ti, there are two sets of transactions, PT(Ti) and FT(Ti), that are composed of
transactions which precede and which others follow Ti, respectively. ❑

On receiving a begin operation from a transaction, Ti, VO initializes PT(Ti) and FT(Ti) to ∅ .

If VO decides to abort Ti, it removes PT(Ti) and FT(Ti). Whenever VO receives an operation, opi, it
decides a TOR between Ti and any other transaction, Tj, as follows: If VO verifies that Ti precedes
Tj, it adds Ti to PT(Tj) and at the same time adds Tj to FT(Ti). On the contrary, if VO verifies that
Ti follows Tj, it adds Ti to FT(Tj) and Tj to PT(Ti). Otherwise, VO keeps PT(Ti), FT(Ti), PT(Tj) and
FT(Tj) intact.

Whenever VO is to add a transaction, Ti, to PT(Tj) or FT(Tj), it does not merely add Ti but also
adds all the transactions that precede or follow Ti, respectively. For three transactions, Ti, Tj and Tk,
let us assume that Ti precedes Tj and Tj precedes Tk. In this case, Ti precedes Tk and Tk follows Ti

naturally. In order to reflect such extended TORs, whenever VO adds Ti to PT(Tj), it sets PT(Tj) to
PT(Tj) ∪  {Ti} ∪  PT(Ti). As Ti ∈  PT(Tj), Tj becomes a transaction that follows Ti and thus all the
transactions in FT(Tj) also turn out to follow Ti. Accordingly, VO sets FT(Ti) to FT(Ti) ∪  {Tj} ∪  FT(Tj).

While positioning transactions, VO has following property.

Property 2(Non-intersection of preceding and following transactions sets): For a
transaction, Ti, VO maintains PT(Ti) ∩ FT(Ti) to be ∅  all the time. ❒

With Property 2, VO precludes a transaction, Ti, which has already been positioned prior to a
transaction, Tj, from being positioned posterior to Tj. By virtue of such a non-intersection in TOR
between Ti and Tj, we can educe a theorem with regard to the notion of 1SR as follows:

Theorem 1(Preservation of one-copy serializability with non-intersection of preceding
and following transactions sets): A history H is 1SR if and only if PT(Ti) ∩ FT(Ti) is ∅  for any

transaction, Ti, in H.
Proof: For an arbitrary set of three transactions, Ti, Tj, and Tk in a history, H, let us suppose
that Tj ∈  PT(Ti) and Tk ∈  FT(Ti). As long as PT(Ti) ∩ FT(Ti) is ∅ , Tk never precedes Tj and at the

same time Tj never follows Tk. Thus, the ordering relationships among them are as follows: Tj

precedes Ti, Ti precedes Tk, and Tk never precedes Tj. Accordingly, a partial history that is
composed of Ti, Tj, and Tk is now 1SR.

As Tj precedes Ti, all the transactions, that precede Tj, precede Ti as well. As Tk follows Ti,
moreover, all the transactions that follow Tk follow Ti as well. Accordingly, PT(Ti) ∪  FT(Ti) ∪  {Ti}

composes an extended partial history that covers all the transactions in H to which Ti is relevant.
As PT(Ti) ∩ FT(Ti) is ∅ , the extended partial history is now allowed to be 1SR. For any other
arbitrary transaction, Tl, if PT(Tl) ∩ FT(Tl) is ∅ , PT(Tl) ∪  FT(Tl) ∪  {Tl} is 1SR as well. As long as

Property 2 is preserved for every transaction in H, therefore, every corresponding partial history
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in H is 1SR. Consequently, H is 1SR. ❒

3.2 Visualization of transaction ordering relationship

For the purpose of visualizing TORs in a history, H, we use transaction ordering
relationship edge, path, and graph defined as follows:

Definition 5(Transaction ordering relationship edge): For two transactions, Ti and Tj, if Ti

∈  PT(Tj) and at the same time FT(Ti) ∩ PT(Tj) is ∅ , TOR between Ti and Tj is depicted in Ti → Tj

which is named TOR edge. ❒

Definition 6(Transaction ordering relationship path): TOR path is composed of one or
more TOR edges and two or more transactions as nodes. For two transactions, Ti and Tj, TOR
path from Ti to Tj is depicted in Ti ⇒  Tj. Within Ti ⇒  Tj, there are no ramified TOR edges. ❒

Definition 7(Transaction ordering relationship graph): For a history, H, a TOR graph,
denoted by TORG(H), is a directed graph that is composed of TOR edges, TOR paths, and all the
transactions in H as nodes. ❒

For an arbitrary transaction, Ti, that precedes Tj in a history, H, TORG(H) includes Ti ⇒  Tj. If
there are two TOR paths in TORG(H), such as Ti ⇒  Tj → Tk and Ti ⇒  Tj → Tl, two TOR edges, Tj →
Tk and Tj → Tl, have been ramified from Ti ⇒  Tj. In this case, Tk and Tl both are relevant to all the
transactions in Ti ⇒  Tj. However, they are irrelevant to each other as long as TORG(H) does not

have any TOR paths between Tk and Tl.

Definition 8(Dead-ended transaction ordering relationship path): If a transaction, Ti,
appears in a TOR path that flows into Tj also appears in the other TOR path that flows out from Tj,
the TOR path between Ti and Tj is said to be dead-ended. Such a dead-ended TOR path between Ti

and Tj is depicted in Ti ⇔ Tj. ❒

As long as TORG(H) does not include any dead-ended TOR paths, according to Theorem 1,
the history, H, assures the preservation of 1SR.

In TORG(H), all the TOR edges could be categorized into two categories, inflowing TOR
edges and outflowing TOR edges, defined as follows:

Definition 9(Inflowing and outflowing transaction ordering relationship edges): For

some sequences of operations in a history, such as wj[xj]  ri[xj], rj[xp]  wi[xi], or wj[xj]  cj  wi[xi],

TOR edge flows into Ti: Tj → Ti. For the other sequences of operations, wj[xj]  ri[xp] with xp « xj or

wj[xj]  wi[xi]  ci, on the contrary, the ordering edge flows out from Ti: Tj ← Ti. The operations

written in italic are the ones that arrive at the history just now. ❑

The directions of inflowing and outflowing TOR edges have been categorized from the
standpoint of a transaction whose operation is currently arriving at a history. From the directional
categorizations, we offer following lemma.

Lemma 1(Absence of write-originated outflowing transaction ordering relationship
edge): Whenever a write operation is scheduled, it is destined to form only inflowing TOR edges.
It never generates outflowing ones.

Proof: Let us assume that VO is to schedule a write of a transaction, Ti. While Ti is active, the
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version created by Ti is invisible. Therefore, a read of another active transaction, Tj, cannot
induce a TOR edge that flows out from the write of Ti. If the other transaction, Tk, creates a
version that is sibling with the version created by Ti, VO cannot generate TOR edge between Ti

and Tk until it receives ci or ck due to Property 1. If VO receives ck before ci, according to Rule 1, it
considers Tk to precede Ti. Otherwise, Ti no longer is an active one. VO, consequently, never
generates a TOR edge that flows out from a write of an active transaction. ❑

In accordance with Lemma 1, VO comes to convince that every TOR edge that flows out from an
active transaction must have been originated from a read.

3.3 Preclusion of trusted serializability violation

For serving a read on multiversion database, providing the latest data version is most
desirable. However, simple-minded adherence to this manner could lead a history to violate TSR.
Therefore, mapping the read to a second-best version becomes often inevitable. Fig. 1 and Fig. 2
illustrate such inevitabilities in situations of scheduling read and write, respectively.

               Tl:  wl[xl]wl[yl]     cl

               Tk:               wk[yk]            ck

               Tj:                          wj[xj]         rj[yk]         cj

                                   Ti:        ri[yl]                        ri[xl]
Fig. 1 Preclusion of read-triggered dead end

In Fig. 1, mapping ri[x] to ri[xj] provokes a dead end, Ti →→→→ Tk →→→→ Tj →→→→ Ti. By mapping ri[x] to a

second-best version, xl, instead of xj where xl « xj, VO comes to dispose Ti prior to Tj. It now,
therefore, substitutes Tj →→→→ Ti in the dead end by Ti →→→→ Tj and thus precludes the dead end among Ti,

Tj, and Tk.

For Fig. 2, although it includes ri[xl], let us assume tentatively that ri[x] has already been
mapped to xj. When wk[zk] appears, in this case, the history including ri[xj] cannot preserve 1SR
without aborting Tk. If L(Ti) > L(Tk), however, such an unavoidable abort of Tk opens a covert

channel between Tk and Ti. When wk[z] arrives, in the end, it is too late to preserve 1SR and
security at a time. Before wk[z] arrives, therefore, we cannot help eradicating any possibilities
that are suspected of provoking TSR violation. As depicted in Fig. 2, VO is capable of preserving
TSR successfully by mapping ri[x] to xl. Through such a mapping, VO replaces Tj → Ti with Ti →→→→
Tj and thereby eradicates the dead end without opening covert channel.    

                Tl: wl[xl] wl[yl] wl[zl]  cl

                                      Tk:rk[yl]                            wk[zk]
                                      Tj:    wj[yj] wj[xj]  cj

                                                         Ti: ri[xl] ri[zl]
Fig. 2 Preclusion of write-triggered dead end

Although VO preserves TSR at the cost of mitigating the requests of reading the latest
versions, it must be capable of serving a transaction to read a version that is the most recent one
among the candidates for being selected. When VO is to select such an appropriate version, it
observes following rule.

Rule 2(Trusted version selection):
1(One-copy serializability preserving version selection): When VO receives a read, it

searches for an appropriate data version until it can convince that providing the selected
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version never provokes a dead end.
2(Security preserving version selection): Suppose that VO is to select xj as the appropriate

version for ri[x] in accordance with the rule of 1SR preserving version selection. At this time, if
there is an active transaction, Tk, in PT(Tj) with L(Ti) > L(Tk), VO relinquishes selecting xj.

Instead, it selects the other version, xl with xl « xj and Tk ∉  PT(Tl). In this case, xl is naturally the

most recently committed version among its siblings that precede xj. In addition, Ti’s reading xl

must not violate the rule of 1SR preserving version selection. ❒

In case of the rule of security preserving version selection, VO relinquishes Ti's reading xj

since it becomes apprehensive of opening a covert channel between Ti and Tk. If xj is selected for
the appropriate version to ri[x], Tk ⇒  Ti appears to be established since Tk ∈  PT(Tj). If a new TOR

edge, Ti → Tk, is established due to ri[zl]  wk[zk] or wk[zk]  ri[zl] with zl « zk, the TOR path

between Ti and Tk turns out to be Ti ⇔ Tk. Since VO cannot assure that it will never receive such

a sequence of dead end provoking operations, it is obliged to cope with such a situation prudently
in a way of providing a second-best data version to read in advance. By selecting xl instead of xj

for the appropriate version to ri[x], VO becomes capable of avoiding Tk → Ti. After ri[xl], although
any writes of Tk may establish Ti → Tk, they never induce Ti ⇔ Tk. As a result, such a write is

allowed to be processed without being interfered by Ti. Accordingly, VO is now able to close any
possible covert channels between Ti and Tk. With the rules of trusted version selection,
consequently, VO is assured to produce TSR preserving histories for these situations.

For the histories depicted in Fig. 1 and Fig. 2, VO has preserved TSR without provoking any
interference. Unfortunately, however, there are many other situations in which such non-interfered
executions are destined to produce 1SR violating histories. In these situations, VO does not hesitate
to abort a transaction that currently issues a dead end provoking operation. Notwithstanding such
an abort, VO preserves TSR due to its capability of deriving the transactions in the dead-ended
TOR path to be cleared at the same security level. This will be proved at Section 5.

4. Secure Elimination of Unworthiness

Although we can expect that VO will improve the degree of concurrency due to the
elaborated information about TORs, it has intrinsic burdens, such as maintenance of multiple
versions and accumulated TORs. In order to lighten such burdens, we offer functions that are
capable of eradicating unworthy versions and unworthy TORs.

4.1 Secure elimination of unworthy versions

For eliminating unworthy versions, we focus on the fact that versions turn out to be
unworthy ones if they would never be read by transactions any more. Otherwise, the versions are
sufficiently worthy to be retained. By weeding out such unworthy versions, the size of database
appears to be reduced. A function of this nature in VO is called secure garbage collection and
invoked when VO receives a commit.

4.1.1 Selective elimination of unworthy versions

According to the access control policy, if L(Ti) ≥ L(x), a transaction, Ti, is authorized to read

from a data item, x. However, not all the siblings of x are readable to Ti. For a specific version, xj,
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it is readable to Ti if and only if Tj ∉  STT(Ti) and VO can convince that processing ri[xj] will never

induce an unavoidable violation of security. Otherwise, it is regarded as unreadable one to Ti.

Let us assume that there are two adjacent siblings, xj and xk, with xj « xk. If they both are

verified to be readable to a unique active transaction, Ti, VO maps ri[x] to ri[xk] instead of ri[xj].
Although xj is readable to Ti in this case, it has been shaded by xk and thus cannot be read by Ti any
more. For any coming transaction, Tl with L(Tl) ≥ L(x), moreover, Rule 2 forces Tl to read xk. VO is

now able to convince that deleting xj will never lead to an information loss. Consequently, it
regards xj as unworthy one. Example 1 shows this.

Example 1(Determination of worth and unworthy versions): Suppose that there are six
concurrent transactions, Ti, Tj, Tk, Tl, Tm, and Tn with L(Ti) = L(Tk) = L(Tm), and L(Tj) ≥ L(Ti), L(Tl)

≥ L(Ti), L(Tn) ≥ L(Ti) in Fig. 3. Owing to wi[ai], rj[ap], and ap « ai, VO adds Tj into PT(Ti) and thus

prohibits Tj from reading xi. When Ti commits, notwithstanding that xp has been shaded by xi

from the viewpoints of Tk, Tl, Tm, and Tn, it has not been shaded by xi yet from the viewpoint of Tj

since VO cannot assure that it will never receive rj[x] after that time. xp therefore is still worthy
to Tj. In the same way, xi is still worthy to Tl when Tk commits. For rn[x], although xk « xm, xk is

still worthy to Tn.

                     Ti:  wi[xi]  wi[ai]  ci

                     Tj:    rj[ap]          rj[x]
                     Tk:   wk[xk]  wk[bk]       ck

                     Tl:      rl[bp]              rl[x]  cl

                     Tm:    wm[xm]  wm[cm]               cm

                     Tn:        rn[cp]                       rn[x]
Fig. 3 Worthy and unworthy versions

On the other hand, when Tm commits, note that only Tj and Tn are active. At that time, xi and xk

both are readable to Tn and unreadable to Tj. Therefore, xi will never be read by both Tj and Tn, so that
VO is now allowed to regard xi as unworthy one. Although xp precedes the unworthy version, xi, in this
case, it is still worthy to Tj.
End of Example 1 ■■■■

Rule 3 provides formal determination rules for weeding out unworthy versions.

Rule 3(Determination of selective unworthy version): For two adjacent siblings, xi and xj

with xi « xj, and for two sets of active transactions, STa and STb, VO determines that xi is
unworthy version and xj is worthy version if STa ∪  STb covers all the active transactions and one

of following requirements is satisfied:
1(Readable shading): xi and xj are readable to all transactions in both STa and STb, or
2(Unreadable shading): xi and xj are unreadable to all transactions in both STa and STb, or
3(Complex shading): xi and xj are readable to all transactions in STa and they are unreadable to

all transactions in STb or vice versa. ❑

4.1.3 Multiple elimination of unworthy versions

When a new version, xi, is created, all the previous siblings of xi are sometimes turned out
to be unworthy ones. In this case, fortunately, maintaining only xi appears to be sufficient for x.
VO achieves such a drastic elimination of versions by applying following rule:
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Rule 4 (Determination of multiple unworthy versions): When VO receives a commit from a
transaction, Ti, if it meets one of following three cases, it is allowed to determine that xi is a
unique worthy version.
Case 1: There are no active transactions.
Case 2: For every active transaction, Tj, L(Ti) > L(Tj).

Case 3: All the transactions in PT(Ti) have already been committed. ❑

For Case 1, all the coming transactions will never read any versions that precede xi. For
Case 2, Tj has been prohibited from reading a version of x on account of L(Ti) = L(x) > L(Tj). Case

3 implies that any transactions in PT(Ti) will never issue any operations after Ti commits. For
the coming transactions, like Case 1, all the preceding siblings are shaded by xi. By applying
Rule 4, VO is now capable of eradicating the preceding siblings of xi entirely. If there is any
active transaction, Tk with L(Tk) > L(Ti), in PT(Ti), however, such a drastic eradication may lead

to an absence of version that must be read by Tk.

Unlike PT(Ti), any transactions in FT(Ti) do not distort the results of applying Rule 4. For
the committed transactions in FT(Ti), they will never issue any operations after Ti commits. If
there is an active transaction, Tl with L(Ti) > L(Tl), in FT(Ti), Tl is not authorized to read from x
since L(Ti) = L(x) > L(Tl). If L(Tl) ≥ L(Ti), on the contrary, all the preceding siblings are readably

shaded by xi from the viewpoint of Tl. In applying Rule 4, VO is now independent of all the
transactions that follow the committing transaction, Ti.

4.2 Secure elimination of unworthy transactions

While maintaining TORs, the accumulated TOR edges become gradually heavy burden for
verifying the preservation of TSR. VO lightens such a burden by weeding out unworthy TOR
edges. When VO is capable of assuring that a committed transaction will never be included in a
dead-ended TOR path, it is allowed to regard all the TOR edges that flow into or out from the
transaction as unworthy ones. Example 2 shows how VO discriminates between worthy
transactions and unworthy transactions.

Example 2(Perception of worthy and unworthy transactions): Suppose there are four

concurrent transactions, Ti, Tj, Tk, and Tl in Fig. 4. When Ti commits, although ck  cj  ci, Tk and
Tj cannot be regarded as unworthy ones. If one or both of them are regarded as unworthy ones, Tl

→ Tk → Tj, Tk → Tj → Ti, or both may be deleted. Without the information about TOR between Tl

and Ti, rl[x] would be mapped to rl[xi]. As shown in Fig. 4, such a mapping is destined to generate
a dead end, Tl → Tk → Tj → Ti → Tl. Owing to the existence of active preceding transaction, Tl,

therefore, the worthiness of Tk and Tj must be retained.
            Tl:   rl[ap]                                                  rl[xi]
            Tk:       wk[ak] rk[bp]            ck

            Tj:                 wj[bj]  wj[cj]    cj

            Ti:                                  ri[cj]   wi[xi]  ci

Fig. 4 Perception of worthiness

If Tl has already been committed when Ti commits, on the contrary, PT(Tk) and PT(Tj)
come to be composed of only committed transactions. In this case, any transaction in PT(Tk) or
PT(Tj) no longer can generate a dead end, Ti ⇔ Tk or Ti ⇔ Tj. Owing to the absence of active

preceding transaction in PT(Tk) and PT(Tj), in the end, VO is allowed to regard Tk and Tj as
unworthy ones.
End of Example 2 ■■■■



12

Example 2 focuses on a transaction that precedes committed transactions. Let us now
consider the other case that an active transaction exists as a following one. For instance, when a
transaction, Ti, commits, suppose that a committed transaction, Tm, and an active one, Tn, are
included in a history, H, and TORG(H) has Ti ⇒  Tm ⇒  Tn. In addition, let us assume that L(Tn) >
L(Tm) and Tn requests a read on x whose sibling has already been generated by Tm. As Tn follows
Tm and there are no active low transactions in PT(Tn), rn[x] will be mapped to rn[xm] or rn[xi]. Such
a mapping keeps Tm ⇒  Tn intact. For a write of Tn, owing to L(Tn) > L(Tm), it does not establish

any new TOR edge between Tm and Tn. If L(Tm) = L(Tn) and H includes wm[xm]  cm  wn[xn],
owing to Property 1 and Rule 1, Tn still follows Tm. As Tm has been committed while Tn is active,
H never includes wn[xn]  cn  wm[xm]. Any write of Tm, therefore, cannot add Tm ← Tn to TORG(H).
If L(Tm) > L(Tn) and Tn interleaves with Tm, Rule 2 prohibits Tn from preceding Tm. Accordingly,
any read or write of Tn will never generate Tm ← Tn. If L(Tm) > L(Tn) and Tn does not interleave

with Tm, any read of Tn does not add new TOR edge between Tm and Tn to TORG(H). For any
write of Tn, it keeps Tm ⇒  Tn intact as well. From all the possible cases considered, we come to

conclude that an active transaction, Tn, that follows a committed transaction, Tm, does not affect
the TOR between Tm and Tn. Consequently, deleting all the Tm related TOR edges does not make
VO to be insensible of TSR violation.

VO now comes to have rules for determining unworthy transaction:

Rule 5(Determination of unworthy transaction):
1(Absence of active transactions): When VO receives a commit, if there are no active
transactions, it decides that all the committed transactions are unworthy ones.
2(Absence of active preceding transactions): When VO receives a commit from a transaction, Ti,
if there are no active transactions in PT(Tj) of a committed transaction, Tj, that precedes Ti, VO
decides on Tj to be unworthy one. ❑

By applying Rule 5, VO becomes capable of reducing the overhead for maintaining TORs
drastically.

5. Proof of Trusted Serializability

In this section, we prove VO's preservation of TSR by showing that all the transactions in
a dead end have been cleared at the same level. Before getting down to proof, we will begin with
Lemma 2.

Lemma 2(Absence of high transaction penetrating read-originated TOR path): No
outflowing TOR paths that have originated from read operations of an active transaction, Ti, pass
through the other transaction whose security level is higher than L(Ti).

Proof: Let us assume that there is a pair of an active transaction, Ti, and the other active(or
committed) transaction, Tk, with L(Tk) > L(Ti) in a history, H. For any TOR path that flows out

from Ti, according to Lemma 1, it must have originated from Ti's read. In case that the TOR path
does not include any transactions that intermediate between Ti and Tk, it cannot connect Ti and
Tk since it is destined to flow into a write. We therefore have to consider the TOR paths that
indirectly connect Ti to Tk via a mediating transaction, Tj, i.e., TORG(H) includes Ti ⇒  Tj → Tk.
For Ti ⇒  Tj, its connection can be established in two different cases: (Case 1) without mediation

or (Case 2) with mediation.
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Case 1: The absence of mediation between Ti and Tj means that a TOR path that flows out from
a read of Ti directly flows into Tj's write. That is, H includes ri[xp] and wj[xj] with xp « xj and thus
PT(Tj) includes Ti. Such ri[x] and wj[x] imply L(Ti) ≥ L(Tj) and thereby L(Tk) > L(Tj). If VO is to
generate Tj → Tk, it must provide a version, yj, to Tk due to L(Tk) > L(Tj). At this time, however,
PT(Tj) has already included Ti. Owing to L(Tk) > L(Ti) and Rule 2, VO cannot help relinquishing

the provision of yj to Tk but instead is obliged to map rk[y] to rk[yp] with yp « yj. Therefore, it comes
to add Tk → Tj to TORG(H). In this case, consequently, a TOR path that has flown out from Ti's
read never flows into a transaction, Tk with L(Ti) > L(Tk).

Case 2: Let us assume that a transaction, Tl, mediates Ti and Tj. As Ti is still active, according to
Lemma 1, Ti ⇒  Tj originates from Ti's read. If Ti → Tl is to be generated, as described in Case 1, H

has to include operations, ri[xp] and wl[xl] with xp « xl. Such operations imply L(Ti) ≥ L(Tl). Like the
case of Ti and Tl, VO adds Tl → Tj into TORG(H) if L(Tl) ≥ L(Tj). Owing to L(Tk) > L(Ti), L(Tk) > L(Tj)
as well. If VO is to generate Tj → Tk, since L(Tk) > L(Tj), it has to provide a version, yj, to Tk. At this

time, Tl and Ti have been included in PT(Tj). In accordance with Rule 2, therefore, VO comes to map
rk[y] to rk[yp] with yp « yj instead of rk[yj]. Accordingly, it generates Tk → Tj instead of Tj → Tk. In this
case, a TOR path that originates from Ti's read never passes through Tk with L(Tk) > L(Ti).

According to Case 1 and Case 2, consequently, any TOR path that flows out from a read of
an active transaction never flows into high transactions but flows into low or equal security level
transactions. ❒

In accordance with Definition 9, all the possible TOR edges can be categorized into 5
categories from the viewpoint of an arbitrary transaction, Ti, such as (1) wj[xj] → ri[xj], (2) rj[xp] →
wi[xi] with xp « xi, (3) wj[xj] → wi[xi] with cj  ci, (4) wj[xj] ← ri[xp] with xp « xj, and (5) wj[xj] ← wi[xi]

with ci  cj. We prove TSR preservation of VO by showing that every Ti relevant TOR edge
produces TSR preserving history.

Lemma 3(TSR preservation of write-originated/read-pointing inflowing TOR edge (1)):
Every inflowing TOR edge that flows out from a write and flows into a read of an active
transaction preserves TSR.

Proof: For a history, H, let us assume that there has already been a TOR path, Ti ⇒  Tj, in

TORG(H). When VO receives ri[x], according to Rule 2, it never maps ri[x] to ri[xj] but instead
maps to ri[xp] with xp « xj. Such a mapping merely adds Tp → Ti and Ti → Tj into TORG(H) and
thus never provokes Ti ⇔ Tj. VO now can process ri[xp] immediately without an apprehension for

TSR violation. In case of (1), VO is capable of preserving TSR of H. ❒

Lemma 4(TSR preservation of read-originated/write-pointing inflowing TOR edge (2)):
Every inflowing TOR edge that flows out from a read and flows into a write of an active
transaction preserves TSR.

Proof: Let us assume that there is a TOR path, Ti ⇒  Tj, in TORG(H) of a history, H. According to
Lemma 2, any transactions included in Ti ⇒  Tj have been cleared at levels that are lower than or
equal to L(Ti) while Ti is active. The TOR edge, Tj → Ti, being considered has been generated by

rj[xp] and wi[xi] with xp « xi. Such read and write of Tj and Ti imply L(Tj) ≥ L(Ti). Owing to L(Ti) ≥
L(Tj) and L(Tj) ≥ L(Ti), L(Ti) and L(Tj) now must be the same. By aborting Ti, accordingly, VO

comes to preserve 1SR and such an abort does not infringe security of H. In case of (2),
consequently, VO is assured to produce TSR preserving histories. ❒
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Lemma 5(TSR preservation of write-originated/write-pointing inflowing TOR edge (3)):
Every inflowing TOR edge that flows out from a write and flows into the other write of an active
transaction preserves TSR.

Proof: For a history, H, suppose that TORG(H) has already included a TOR path, Ti ⇒  Tj. As

proved in Lemma 2, a TOR path that has flown out from an active transaction, Ti, is destined to
reach a transaction, Tj with L(Ti) ≥ L(Tj). Note that the TOR edge that is to provoke a dead end

between Ti and Tj has been generated due to the creation of sibling versions. Thus, L(Ti) = L(Tj).
The abort of Ti, therefore, is capable of preserving 1SR without loss of security. Consequently, the
write-originated/write-pointing TOR edge does not violate TSR of H. ❒

Lemma 6(TSR preservation of write-pointed/read-originating outflowing TOR edge (4)):
Every outflowing TOR edge that flows into a write and flows out from a read of an active
transaction preserves TSR.

Proof: For a history, H, suppose that there has already been an ordering path, Tj ⇒  Ti, in

TORG(H). Let us also suppose that Ti → Tj is to be generated due to wj[xj]  ri[xp] with xp « xj in

H. In case that Tj ⇒  Ti has been originated by Tj's read, according to Lemma 2, L(Tj) ≥ L(Ti).
Owing to wj[xj] and ri[xp], however, L(Ti) ≥ L(Tj). Therefore, Ti and Tj in this case have surely been

cleared at the same security level.

For the other case, suppose that Tj ⇒  Ti has been originated by Tj's write. According to
Lemma 1, in this case, Tj must have been committed. If Tj ⇒  Ti includes a TOR edge, Tj → Tk,

that flows into Tk's read, rk[yj], L(Tk) is higher than or equal to L(Tj). However, wj[xj]  cj  ri[xp]

with xp « xj implies that there is an active transaction, Tl with L(Ti) > L(Tl), in PT(Tj). When VO
attempts to process rk[yj], owing to the existence of Tl with L(Tk) > L(Tl), it is obliged to map rk[y]

to rk[yp] with yp « yj. While L(Ti) > L(Tj), therefore, a TOR path that has been extended from Tj → Tk

never arrives at Ti. However, Tj ⇒  Ti has already existed in TORG(H). L(Ti), therefore, cannot be

higher than L(Tj). Moreover, L(Tj) cannot be higher than L(Ti) as well since VO received the
legitimate operations, wj[x] and ri[x]. L(Ti) and L(Tj) in the end are the same.

On the other hand, if Tj ⇒  Ti includes a TOR edge, Tj → Tk, that flows out from Tj's write

and flows into Tk's write, L(Tj) and L(Tk) are the same. If VO attempts to add a TOR edge, which
flows into a read, to Tk ⇒  Ti, it disposes the read requesting transaction before any write
requesting transactions in Tk ⇒  Ti. While L(Ti) > L(Tj), in this case, a TOR path that has been

extended from Tj → Tk never arrives at Ti. Accordingly, wj[xj]  ri[xp] with xp « xj is to provoke a

dead end if and only if L(Ti) and L(Tj) are the same. Consequently, in case of (4), VO produces TSR
preserving history by aborting ri[x]. ❒

Lemma 7(TSR preservation of write-pointed/write-originating outflowing TOR edge (5)): Every
outflowing TOR edge that flows into a write and flows out from the other write of an active
transaction preserves TSR.

Proof: Let us assume that Tj ⇒  Ti has already been included in TORG(H) of a history, H. According

to Rule 1, VO generates write-pointed/write-originating TOR edge, Tj ← Ti, in case of xi « xj. As VO

establishes the version ordering relationship when one of the creators commits, Ti is committing
just now. Tj, therefore, is still an active transaction. As long as Tj is active, Tj ⇒  Ti implies L(Tj) ≥
L(Ti) in accordance with Lemma 2. On the other hand, sibling versions, xi and xj, imply L(Ti) = L(Tj).
Now that L(Tj) ≥ L(Ti) and L(Ti) = L(Tj), the security levels of Ti and Tj in the end are the same.

Consequently, TSR of H in this case is successfully preserved in a way of aborting Ti. ❒
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With the Lemmas proved above, we come to present Theorem 2.

Theorem 2(Preservation of trusted serializability): All the possible histories produced by VO
preserve TSR.

Proof: Lemma 3, 4, 5, 6, and 7 have completely considered all the possible TOR edges generated by
VO and proved that VO preserves TSR whenever it is to schedule newly arrived operations.
Consequently, all the histories produced by VO are definitely TSR. ❒

6. Performance Evaluation

We evaluate the performance of three SCCs by means of simulation approach. We have
excluded the SCCs that weaken the correctness from comparison since such SCCs are liable to
infringe integrity that is one of the major aspect of computer security. Among the SCCs that are
capable of preserving the correctness strictly, we choose Orange-Locking method [5] and Order-
Stamp method [19, 23] (hereafter OL and OS for short) to be compared with VO in that they are
representative SCCs in the environments of single version and multiversion database,
respectively. The simulation is implemented with the CSIM [4] discrete event simulation
language and much of its model has been borrowed from [15].

6.1 Assumptions

In our simulation model, we have adopted following assumptions in order to make the
performance evaluation process achievable.

Assumption 4(Closed queuing model): Our simulation employs a closed queuing model for
single-site database system. ❑

The simulation model is closed in the sense that the system keeps the number of active
transactions at the same all the time.

Assumption 5(Uniform workload): Every transaction accesses data items that are randomly
chosen from database. ❑

With Assumption 5, the probability of conflict for each data item becomes uniform as well.

Assumption 6(Version chaining): All the sibling versions are maintained in a way of linked
list in database. ❑

An appropriate version is searched from the most recent one to the less recent one.
Therefore, the number of disk I/Os appears to increase according as the recentness of an
appropriate version becomes degraded.

Assumption 7(Disk resident lock table): The lock table of a database is located in a disk. ❑

By locating the lock table in disk, the access patterns of OL, VO, and OS become fair since
Assumption 6 has been adopted. If the lock table locates in main memory, the time for accessing
data object turns out to be unilaterally favorable to OL.

6.2 Parameter settings

The input parameters with their brief description and setting values are listed in Table 1.

Table 1 Simulation parameter settings
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Parameter Parameter description Parameter setting

num_cpus Number of CPUs 2 CPUs

num_disks Number of disks 4 disks

cpu_delay CPU time for accessing an object 12 milliseconds

io_delay I/O time for accessing an object 35 milliseconds

cc_delay CPU time for scheduling an operation 3 milliseconds

num_data_item Number of data items in database 1000 data items

tr_size Size of transaction 8 ~ 12 operations

mpl Multiprogramming level
10, 20 ~ 200 transactions in
steps of 20

ext_think_time External think time 5 seconds

fake_restart_pct Percent of fake restarted transactions 20%

write_pct Percent of write operations 10%, 20%, 30%

num_sec_level Number of security levels 1, 2, 4, 8, 12

The computing resource environment is limited with 2 CPUs and 4 disks. Reading an
object takes io_delay followed by cpu_delay. Writing an object, on the other hand, takes CPU
resource before I/O resource. For each operation, every SCC spends cc_delay. The settings on
num_data_item and tr_size would allow the interesting performance effects to be observed
without requiring impossibly long simulation time [15]. mpl says the number of transactions that
are concurrently synchronized. Whenever a transaction terminates at a specific terminal, a new
transaction begins at that terminal after ext_think_time. However, ext_think_time does not
distort the number of concurrent transactions at any time. For restarting an aborted transaction,
there are basically two kinds of policy: real restart and fake restart. The policy of real restart
assures the restarted transaction of accessing the set of data items that might have been
accessed by the aborted transaction. Fake restart means that the restarted transaction is
regenerated as a new independent transaction. The policy of real restart generally dominates
that of fake restart in actual circumstances. We therefore set fake_restart_pct to 20%. write_pct is
set to 10%, 20%, and 30% for observing the sensitivities founded on it. num_sec_level is ranged
from 1 to 12. It covers from insecure DBMSs to multilevel secure DBMSs that are capable of
handling sufficiently classified entities.

6.3 Performance indices

Average response time and throughput are the major performance indices in our
simulation experiments. According to the assumption of closed queuing model and Little's law [2,
14], however, throughput can be inferred from response time. As long as response time is
presented, hence, we omit the presentation of throughput due to the limitation on space.

In addition to the major indices, the other ones, such as abort ratio, recentness, version
ratio, and differences between the indices, are utilized for comparing simulation results. By
observing abort ratio, we are able to investigate the synchronizing patterns of SCCs. Recentness
is an important index for comparing VO and OS since it shows which one is capable of providing
more trustworthy data values to read requests. The size of database is indicated through version
ratio. From the differences in these results, we are able to evaluate the fairness of SCCs. For
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instance, an SCC with less difference in response time becomes fairer one with respect to
response time. In this case, its degree of availability is allowed to be highly evaluated.

We have verified the sensitivities of these indices through sensitivity analysis. The results
of the indices have been compared from the viewpoints of mpls, write_pcts, num_sec_levels, and
different security levels.

6.4 Validation of simulation results

Simulation-based performance analysis requires estimates of average value and variance of a
performance index for validating the performance results statistically. Firstly, it is generally
considered important to discard statistic data collected during the initial transient phase of a
simulation run. We estimate the extent of the initial transient phase through graphical procedure
and use the response time of each transaction as a random variable for this procedure [13].

Secondly, the determination of run length and number of replications is important
experimental design decision as well. For each run, it has the length of 2000 committed
transactions after discarding first 800 ones with regard to the initial transient phase. The number of
replications is set to 10 runs. Correspondingly, all the statistical data reported in this paper have
95% confidence level with the absolute error of 3%.

6.5 Simulation results and their interpretations

We now present and interpret the results of simulation experiments performed to VO, OS,
and OL.

6.5.1 Effect of multiprogramming levels and write percentages

The effects of mpls and write_pcts are evaluated in this section. Fig. 5, 6, and 7 depict the
average results of SCCs with num_sec_levels: 1, 2, 4, 8, and 12. VO_10 in the figures indicates
the average results of transactions with write_pct = 10% that have been synchronized by VO.

As shown in Fig. 5, all the abort ratios of SCCs go high in proportion to the increment in
mpls. For the most part of mpls and write_pcts, the abort ratio of VO is lower than those of OS's
and OL's since VO decides to abort a transaction if and only if it can assure that non-interfered
execution of the selected transaction definitely violates 1SR.

As expected, the response times of all the SCCs increase according as mpls or write_pcts
increase (Fig. 6). Unlike abort ratios, however, response times appear to be grouped distinctly.
VO outperforms explicitly OS and OL. OS outperforms OL. For the case of OL_10, its abort ratio
is less than OS_20 and OS_30. However, its response time is longer than OS_20 and OS_30 since
orange-lock generally forces OL to abort transactions at later points of time than OS.
Accordingly, the number of operations cancelled by OL_10 becomes larger than OS_20 and OS_30.

Fig. 5 Abort ratio (num_sec_level = 1, 2, 4, 8, 12)
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Fig. 6 Response time (num_sec_level = 1, 2, 4, 8, 12)

Fig. 7 illustrates that recentness becomes poor as write_pct increases in that the increased
write_pct draws up the probability of TSR violation. In case of VO, however, such probability-
based synchronization is restricted to the situation of security infringement. VO is now capable
of providing more recent versions than OS.

Fig. 7 Recentness (num_sec_level = 1, 2, 3, 4, 8, 12)

6.5.2 Effect of number of security levels

Investigating the effects of different numbers of security levels is important in that it is
desirable for a security policy of an MLS information system to be enforced independently to the
properties of MLS/DBMS. If enforcing an elaborate security policy conspicuously degrades the
performance of an MLS information system managed by a specific MLS/DBMS, adopting such an
MLS/DBMS will be hesitated.

NL4 depicted in Fig. 8 indicates that the result has been obtained from transactions with
four different security levels and write_pct = 10%, 20%, 30%. In cases of VO and OS, all the
transactions, which are responsible for aborts, have been cleared at the same security level, and
besides, the number of transactions for each level decreases as num_sec_level increases.
Accordingly, the abort ratios of VO and OS decrease as num_sec_level increases. Grounded on the
results illustrated in Fig. 5, the abort ratio of VO is always lower than that of OS. In case of OL,
on the contrary, the number of aborts provoked by orange-locks appears to increase as
num_sec_level increases. Although the number of deadlocks decreases as num_sec_level
increases, it is overwhelmed by that of orange-locks.
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Fig. 8 Abort ratio (write_pct = 10%, 20%, 30%, mpl = 10 ~ 200)
Fig. 9 Response time (write_pct = 10%, 20%, 30%, mpl = 10 ~ 200)

For the response times of VO and OS, Fig. 9 says that they almost do not be affected by
num_sec_level. Note that the number of transactions cleared at each security level increases in
proportion to the decrement of num_sec_level. In cases of VO and OS, therefore, transactions
cleared at small num_sec_level are liable to be aborted earlier than the ones cleared at large
num_sec_level. Such early aborts reduce the number of operations cancelled and thereby
counterbalance the increased abort ratios of VO and OS. Accordingly, the response times of VO
and OS come to be almost invariant. On the other hand, in case of OL with two or more security
levels, although deadlocks decrease as num_sec_level increases, the increment in orange-locks
overwhelms the decrement of deadlocks. For OL in insecure DBMS, notwithstanding the absence
of orange lock, owing to the absence of access control policy, the number of blocked operations
and the possibility of deadlock increase. Therefore, OL in insecure DBMS reveals increased

response time.

The recentness depicted in Fig. 10 indicates that VO almost provides the most recent data
versions independent of num_sec_level. In fact, the recentness of VO is affected only by mpl. In
case of OS, on the contrary, the declined recentness becomes serious as num_sec_level increases.
The rationale is that OS unilaterally forces high transactions to read outdated versions whenever
there are active low transactions.

Fig. 10 Recentness (write_pct = 10%, 20%, 30%, mpl = 10 ~ 200)

6.5.3 Effect of different security levels
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In this section, we evaluate the effects of 12 different security levels on the performance of
SCCs. In following figures, L12 is the lowest and L1 is the highest security level. Fig. 11
illustrates that the abort ratios of VO and OS decrease as security levels are inclined to be high
in that transactions in low security levels are destined to conflict each other intensively. Owing
to the probability-based 1SR preservation, moreover, the conflicts of OS lead to more intensive
aborts than those of VO. Transactions cleared at L12 and scheduled by OS suffer from especially
serious aborts. On the contrary, the abort ratio of OL increases as the security levels of
transactions become high due to the corresponding increment in orange-locks.

Fig. 11 Abort ratio (write_pct = 10%, 20%, 30%, mpl = 10 ~ 200)

In case of VO in Fig. 12, the differences in security levels almost do not affect the response
time of VO. For OS, compared to the case of abort ratio in Fig. 11, the pattern of response time has
been seriously distorted because OS has left alone unworthy versions in storage. On the contrary,
although the response time of OL comprehends the effect of blocked operations, owing to the
overwhelming of orange-locks, it reflects the change of abort ratio faithfully to a certain extent.

Fig. 12 Response time (write_pct = 10%, 20%, 30%, mpl = 10 ~ 200)
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The recentness of VO, illustrated in Fig. 13, becomes poor as the security levels of
transactions become high. Such changes, however, are very slight. In case of OS, on the contrary,
there is a wide difference between the recentness of transactions cleared at L12, L11 and that of
the other transactions cleared at the other low security levels. The rationale of such a wide
difference is that OS positions transactions with L12 or L11 nearly at the very last. Therefore,
such transactions are apt to read recent data versions. From L10, the smooth declination of OS's
recentness implies that the reorganized TORs do not seriously affect the recentness.

Fig. 13 Recentness (write_pct = 10%, 20%, 30%, mpl = 10 ~ 200)

6.5.4 Fairness

In this section, we investigate the difference between maximum and minimum results for

each simulation index. We obtain the results by subtracting minimum average value over different
security levels and different write_pcts from maximum average value over them. If the difference in
the results of an SCC is less than that of the other SCC, the former can be evaluated as fairer one
than the latter. The rationale is that histories produced by the fair SCC are less affected by the
variations in num_sec_levels, write_pcts, or security levels. Such fairness in abort ratio or response
time is advantageous to suppressing the denial of service.

Fig. 14 Difference in abort ratio (write_pct = 10%, 20%, 30%)
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DIFF_VO_NL4 and DIFF_VO_NL12 in following figures denote differences in the results of
transactions synchronized by VO, cleared at four and twelve different security levels, and with
write_pct = 10%, 20%, 30%. In Fig. 14 and 15, the differences in VO's abort ratios and response
times are far less than those of OS and OL over all mpls. The wide differences imply that
intentional and intensive conflicting operations that are requested by malicious transactions and
scheduled by OS or OL may obstruct the legitimate accesses of the other transactions. This is the
typical instance of intentional denial of service. On the contrary, VO is capable of reducing such
threats to availability due to its unbiased scheduling feature.

Fig. 15 Difference in response time (write_pct = 10%, 20%, 30%)

Fig. 16 depicts the difference in recentness. Compared to OS, the differences of
DIFF_VO_NL4 and DIFF_VO_NL12 are far slight over all mpls. The serious difference in OS's
recentness implies that high transactions are forced to read far outdated versions and thereby it
leads to a declined trustworthiness of MLS/DBMS.

Fig. 16 Difference in recentness (write_pct = 10%, 20%, 30%)

6.5.5 Effect of secure garbage collection

The enlarged database is the major obstacle to an adoption of MVDB-based SCC. It is not

only the problem of storage cost but also is the problem of response time. Secure garbage
collection of VO mitigates these problems. The version ratio depicted in Fig. 17 represents the
average number of sibling versions of a data item.

Fig. 17 Version ratio (num_sec_level = 4, write_pct = 20%)
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Fig. 17 is the result of settings: num_data_item = 1000, write_pct = 20%, and mean tr_size
= 10. 2000 committed transactions have been observed. As write_pct is set to 20%, almost 4000
writes have been processed. Every write of OS's committed transactions produces a version that
is destined to be accumulated in database due to the absence of garbage collection. Since the
number of data objects in database has been initialized to 1000, the number of version in
database becomes 5000. In case of VO, on the contrary, the average number of siblings of a data
item is approximately 2 due to secure garbage collection. Such a reduced version ratio helps VO
to outperform OS in storage cost and response time.

7. Conclusion

We have proposed a secure concurrency controller, named Verified Ordering-based secure
concurrency controller (VO), that founds on multiversion database. It utilizes information, which
elaborately describes ordering relationship among transactions, in order to verify whether the
newly arrived operation definitely violates one-copy serializability or has a high potential of
opening a covert channel. For gathering the elaborated information, whenever VO receives an
operation from a transaction, it verifies an ordering relationship between the transaction and the
other relevant transaction and accumulates the verified ordering relationship. By referencing the
information, VO is capable of guarding transactions against being aborted unnecessarily and
reading excessively outdated data versions. By virtue of the information, moreover, VO is
allowed to delete unworthy versions and unworthy ordering relationships among transactions.
The ability for perceiving such unworthy ones has the advantage of reducing the intrinsic
overhead for maintaining multiple versions and accumulated transaction ordering relationships.

We have evaluated the performance of VO in a way of comparing representative single
version database-based SCC and multiversion database-based SCC. Through the evaluation, we
have ascertained that VO outperforms with respects to the response time, abort ratio, recentness
of versions read, and the size of database. Moreover, we have verified that VO serves
transactions more fairly than the others. Such an improved fairness will be advantageous for VO
to be evaluated as an SCC with higher availability. The improved recentness is expected to
upgrade the trustworthiness of VO.

In principle, computer security is composed of three major aspects: secrecy, integrity, and
availability. Among them, we have mainly focused on achieving secrecy in this paper. Integrity
and availability have been achieved without precise modeling for them from the viewpoint of
security. We therefore hope to study the issues for modeling integrity and availability in MLS
information system. We also hope to study an implementation of SCC that is capable of
safeguarding transactions against threats to any aspects of computer security. With such an
SCC, the MLS/DBMS becomes a highly secure one.
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