
Packet Fair Queueing Algorithms for Wireless
Networks with Link Level Retransmission

Namgi Kim

Div. of Computer Science, Dept. of EECS
Korea Advanced Institute of Science and Technology

Daejeon, Korea
ngkim@camars.kaist.ac.kr

Hyunsoo Yoon
Div. of Computer Science, Dept. of EECS

Korea Advanced Institute of Science and Technology
Daejeon, Korea

hyoon@camars.kaist.ac.kr

Abstract— Recently, a number of fair queueing algorithms for
wireless networks have been proposed. They, however, need
perfect channel prediction before transmission and rarely
consider a medium access control (MAC) algorithm. In the
wireless world, link level retransmission scheme is popularly used
in the MAC layer for recovering channel errors. Therefore, we
propose a new wireless fair queueing algorithm that works well
with the link level retransmission and does not require channel
prediction. Through simulation, we showed that our algorithm
guarantees throughput and fairness. Also, we found that our
algorithm achieves flow separation and compensation.

Keywords - Wireless QoS; Wireless packet scheduling

I. INTRODUCTION
In recent years, with the increasing usage of these wireless

data, the wireless networks are quickly becoming an integral
part of the Internet. While, supporting multimedia
communication applications requires the network to provide
quality of service for packet flows. In wired networks, FFQ
(Fluid Fair Queueing) has been a popular paradigm for
providing fairness among packet flows over a shared link [1].
Besides, a number of approximation algorithms for the
implementation have been proposed such as WFQ [2], SCFQ
[3], SFQ [4], and WF2Q+ [5]. These algorithms for wired
networks, however, cannot be applied directly to wireless
networks because a wireless channel experiences location-
dependent and bursty channel errors.

Recently, a number of wireless fair queueing algorithms
have been proposed such as IWFQ (Idealized Wireless Fair-
Queueing) [6], SBFA (Server Based Fairness Approach) [7],
CIF-Q (Channel-condition Independent Fair Queueing) [8],
and WFS (Wireless Fair Service) [9]. To overcome the
location-dependent channel errors, these algorithms
dynamically reassign channel allocation by predicting channel
errors. Consequently, they need perfect channel prediction
before transmission and rarely consider MAC (Medium Access
Control) algorithm, but the perfect channel prediction before
scheduling is very difficult in practice. Instead of channel
prediction, most wireless networks adapt link level
retransmission, like ARQ (Automatic Repeat reQuest), in the
MAC layer for recovering channel errors. The previous
wireless fair queueing algorithms, however, do not work well
with this link level retransmission MAC algorithm. The WFS

algorithm has proposed a specific medium access algorithm
[9], but it is not commonly used in the wireless world.
Therefore, in this work, we propose a wireless fair queueing
algorithm that does not require channel prediction and works
well with the link level retransmission, the most commonly
used MAC algorithm.

The rest of the paper is organized as follows. In section II,
we introduce background and motivation for this paper. In
section III, we present the new wireless fair queueing algorithm
with link level retransmission. Then, in section IV, we evaluate
the performance of our algorithm through simulation. Lastly, in
section V, we conclude the paper.

II. BACKGROUND AND MOTIVATION

A. Fairness Criteria in Wireless Networks
There are two kinds of fairness criteria in networks: data

fairness and resource fairness. In wired networks, data fairness
and resource fairness are generally the same. In wireless
networks, however, they are not the same due to wireless
channel errors. Data fairness is the fairness based on received
data. It guarantees that each flow receives the same amount of
data if their weights are equal. This concept, however, is
inadequate for wireless networks. In wireless networks, an
erroneous flow, which experiences severe channel errors, can
exhaust most wireless resources and other flows may have few
resources even if their channel conditions are good. On the
contrary, resource fairness keeps fairness based on the amount
of wireless resources used by each flow. It equally distributes
scarce wireless resources to all flows. Therefore, the resource
fairness is more suitable in wireless networks and we
concentrate on this resource fairness rather than the data
fairness.

B. Network and Channel Model
We consider wireless link is a shared channel and packet

scheduling is performed above the MAC layer. When a packet
experiences channel errors during transmission, the packet is
retransmitted in the MAC layer until the destination receives
the packet correctly or the maximum number of the
retransmission is reached.

This work was supported by the Korea Science and Engineering
Foundation (KOSEF) through the Advanced Information Technology
Research Center (AITrc) and University IT Research Center (ITrc) Project.

0-7803-8145-9/04/$17.00 ©2004 IEEE. 122

Packet scheduling for downlink flows is performed at a
base station or an access point in centralized manner. For
uplink flows, it is difficult to know current states of all mobile
hosts in the base station. However, the amount of traffic is also
small in proportion to that of downlink flows. So, the fairness
for uplink flows is usually acquired through the contention-
based channel scheduling in distributed manner. Therefore, we
just deal with the fairness of downlink flows in the centralized
packet control.

C. Problems of Previous Wireless Fair Queueing Algorithms
with Link Level Retransmission
Figure 1 illustrates the problem of wireless fair queueing

algorithms without considering the link level retransmission. In
this example, flows 1, 2, and 3 have weights 1, 1, and 2
respectively. In an error-free model, each flow sends 2, 2, and 4
packets in two rounds. However, in a real system, the first
packet of flow 1 has experienced channel error during
transmission, and the packet is retransmitted in the MAC layer
with three more resources. Consequently, each flow receives 2,
1, and 2 packets. Moreover, possessions of the wireless channel
are 5, 1, and 2, respectively. This means that the previous
prediction-based wireless fair queueing algorithms no longer
provide fairness with the link level retransmission. Therefore,
we propose a new wireless fair queueing algorithm that can
handle this situation.

Capacity consumed by retransmission for flow 1

Flow 1 Flow 2 Flow 3

Error-Free Model

Real System with previous WFQ algorithms

1 12 23 3

12 31

3 3

31 1 1

Figure 1. Unfair packet scheduling with link level retransmission

III. WIRELESS PACKET FAIR QUEUEING ALGORITHM WITH
LINK LEVEL RETRANSMISSION

The basic concept of the Wireless Fair Queueing with
Retransmission (WFQ-R) algorithm is that the share used for
retransmission is regarded as a debt of the retransmitted flow to
the others. Hence, when the retransmission occurs, the
overhead, the used wireless resources in retransmission, is
charged to the retransmitted flow.

The WFQ-R algorithm has two kinds of compensation
types: Flow-In-Charge (FIC) and Server-In-Charge (SIC). FIC
regards the entire overhead used for the retransmission as a
charge of the retransmitted flow. That is, an error-prone flow
should take responsibility for its own channel condition. For
instance, consider a flow that has consumed two more
resources for the retransmission in Figure 2. Then, in the FIC,
since the flow has the entire responsibility for the two

consumed resources, the flow does not use the next two
resources and makes a concession to other flows in the second
and third turns.

First turn

1 1 2 33 2 33

2 33

1

1 2 33

Second turn

Third turn Fourth turn

Figure 2. The example of Flow-In-Charge type

The FIC is fair with respect to allocated wireless resources.
However, it may be too severe for a flow experiencing frequent
errors. We propose another compensation type, SIC. For SIC,
all backlogged flows are responsible for channel errors. So, the
overhead is distributed over all flows and the retransmitted
flow has responsibility for only a portion of the overhead in
proportion to its weight. Therefore, the charging overhead of
the retransmitted flow would be naturally reduced. For
example, when a flow has consumed four resources for the
retransmission and the weight of the flow is a quarter of the
sum of the weights of all flows in Figure 3, the retransmitted
flow is responsible for only one resource. Accordingly, the
flow disclaims only one time in the second turn.

First turn

1 1 1

3 3

2 33

2

11

12 33

Second turn Third turn

Figure 3. The example of Server-In-Charge type

A. Algorithm Description

TABLE I. TERMINOLOGIES FOR WFQ-R ALGORITHM

 : virtual time of flow i
: the difference between the service that flow i should receive in a reference

 error-free packet system and the service it has received in the real system

i

i

v
lag

 lagging if positive, leading if negative, and in-sync otherwise
 : the set of active flows
 : minimal fraction of service retained by any leading flow
 : normalized amount of service aci

A

s
α

tually received by a leading flow i
 since its became leading

 : normalized amount of compensation service received by a lagging flow i
 : the rate of flow i

i

i

c
r

The full WFQ-R algorithm is shown in Figure 4 and
parameter definitions are shown in Table I. The basic
framework and notations follow that of CIF-Q algorithm [8].

0-7803-8145-9/04/$17.00 ©2004 IEEE. 123

When a packet is received, it is enqueued at a buffer in on
receiving function. Then, the server picks up a packet from the
buffer and sends it in on sending function. If a flow has no
more packets to send, the flow leaves scheduling in leave
function. In the on sending function, after a packet is selected
to send, the packet is sent by send_pkt() function. The
send_pkt() function gets the packet from the buffer and adjusts
degrees of flows as leading or lagging. Then, it calls

send_and_charge() function, in which the packet is actually
sent through MAC layer by send() function. The send()
function returns the overhead used by the link level
retransmission. After that, the charging overhead, for which
retransmitted flow takes responsibility, is calculated by
charge() function depending on compensation type. Lastly, the
charging overhead is distributed over all backlogged flows.

1 session packet :
2 ()
3 max (, min { });
4 0;
5 { };
6 (,);
7
8

i i k A k
i

i

i p
i A

v v v
lag
A A i / * mark flow active * /

queue p

∈
∉
←

←
← ∪

on receiving
if

enqueue

on sending current packet:
9 min { };
10 (0 (0))
11
12 (,

iv
i i i i

/ * get next packet to send * /
i i A

lag lag s v
/ * flow i non - leading or leading with degradation * /

i

α
← ∈

≥ < ≤if or and

send_pkt);
13
14
15 min { | 0};
16

k

i

c k

i / * flow i served through v selection * /
/ * flow i is leading and not allowed to send * /

/ * select lagging flow j to compensate * /
j k A lag← ∈ >

else

 ()
17 (,);
18 (() 0)
19 ();
20

j j

j
j i / * serve flow j but charge to i * /

i j queue lag
j / * j becomes inactive * /

≠ ≥

if exists
send_pkt
if and empty and

leave

21 (,);
22 (() 0)
23 ();
24
25 (

i i

/ * there is no lagging flow * /
i i / * serve given back to flow i * /

queue lag
i / * i becomes inactive * /

j

≥

else
send_pkt

if empty and
leave

send_pkt ,)
26 ();
27 ;
28 (0)
29
30

j
i i i

i i i
i

i / * serve flow j but charge to i* /
p queue
v v p.length r

i j lag s v
/ * flow i is leading and served through v selection * /

α

←
← +

= < ≤

dequeue

if and and

 ;
31 ()
32 ;
33 (0)
34

i i i

j j
j

j j

s s p.length r
i j

lag lag p.length / * flow j has gain extra service * /
lag / * j continues to be lagging * /

c c p

← +
≠

← −
>

← +

if

if
 ;

35 (0 0)
36
37 ;
38 ;
39 (

j
j j

j j
i i

.length r
lag p.length lag

/ * j just becomes leading * /
s v

lag lag p.length / * flow i has lost service * /
la

α

+ ≥ <

←
← +

if and

if 0 0)
40
41 = max (, min { | 0});
42 (, ,);
43

i i

i i k A k k

g p.length lag
/ * i just becomes lagging * /
c c c lag

p j i
/ * send pkt with retransmission and ch

∈

− ≤ >

>

and

send_and_charge
arge overhead * /

44 (, ,);
45
46 (); ret

 p j i / * send pkt p with retransmission * /
/ * and charge overhead * /

used p / * send pkt p through MAC layer←

send_and_charge

send
47
48 (0 { })
49 ;

ret

 and * /
/ * return used wireless resources due to retransmission* /
used A j / * if no retransmission or * /

 / * no
≤ − = ∅if or

return ,
50 (,);
51
52 (

ret
other flows then return * /

charged used j / * charging overhead depending * /
/ * on compensation type * /

i

←

=

charge

if 0)
53 ;
54 /* - , * /
55 ;

j i
j j j

j j

j lag / * flow i is leading and served through v * /
s s charged r

in sync or lagging in i j or i j
lag lag charged / * flow j has gain extra se

<
← +

= ≠
← −

and

else

56 (0)
57 ;
58 (0 0)
59

j
j j j

j j

rvice * /
lag / * j continues to be lagging * /

c c charged r
lag p.length lag / * j just becomes leading * /

>
← +

+ ≥ <

if

if and

_
{ }

_

 ;
60 ({ })
61 ;
62 ;
63 (0

j j

l before l
l l l k A j k

l before l

s v
l A j / * other flows ditributively get share * /

lag lag
lag lag charged r r

lag lag

α

∈ −

←
∈ −

←
← + × ∑

≤

for

if and 0)
64
65 = max (, min { | 0});
66
67 (,)
68 (

l l k A k k

ret

/ * i just becomes lagging * /
c c c lag

used j / * calculate amount of charging overhead * /
COMPENSATION

∈

>

>

charge
switch)

69 :
70
71 (1);
72 :
73

ret j k A k

_TYPE
FLOW_IN_CHARGE

/ * entire overhead is charged to the retransmitted flow * /
used r r

SERVER_IN_CHARGE
∈× − ∑

case

return
case

74 (1) ;
75
76 ()
77 \ { };
78 ()

ret j k A k j k A k
/ * overhead is distributively charged to flows in the server * /

used r r r r

i / * flow i leaves * /
A A i

j A / * upda

∈ ∈× − ∑ × ∑

←
∈

return

leave

for
79 (0 0)
80
81 max (, min { | 0});
82

j j i j k A k

i i k A k k
j j i j k

te lags of all active flow * /
lag lag lag r r

/ * j just becomes lagging * /
c c c lag

lag lag lag r

∈

∈
∈

≤ + × ∑ >

← >
← + × ∑

if and

;
83 (. . () 0)
84 ();

A k
i i

r
j A s t queue lag

j
∃ ∈ ∧ ≥if empty

leave

Figure 4. WFQ-R Algorithm

More detail descriptions of functions are as follow:

• on receiving: when a flow i becomes backlogged and
active, its virtual time vi is initialized to the maximum
of its virtual time and the minimum virtual time among
other active flows (line 3). Then, its lag is initialized to
zero (line 4).

• on sending: The algorithm selects the active flow i
with the minimum virtual time for service (line 9). If
that flow is not leading or leading but did not get
minimal fraction of service, then the packet at its queue

is transmitted (line 10-12). However, if the flow is
leading with getting more than minimal service, we
search for the lagging flow j with the minimum cj (line
15). If there is such a flow j, the packet at its queue is
transmitted, instead of the packet of flow i (line 16-19).
Otherwise, transmit the packet of flow i originally (line
20-21).

• send_pkt(): After the packet to transmit is decided, the
virtual time of flow i, vi, is advanced as vi. + p.length /
ri where ri is the rate of flow i (line 27). Then,
parameters are adjusted depending on the flow's

0-7803-8145-9/04/$17.00 ©2004 IEEE. 124

situation (line 28-41). If flow i is leading but gets
services due to graceful degradation, si is updated to si.
+ p.length / ri (line 28-30). If flow j is served but
charge to i (i ≠j), then the flow j has gain extra service
and flow i has lost service (line 31-41). As a result, lagj
is updated to lagj - p.length (line 32), and lagi is
updated to lagi + p.length (line 38). ci, si, and ci are
also adjusted depending on flow i and j's situations
(line 33-37, 39-41). After that, the selected packet is
passed to send_and_charge() function (line 42-43).

• send_and_charge(): In this function, the packet is
actually transmitted through the MAC layer and the
effect of the link level retransmission is reflected to our
wireless fair queueing algorithm. The send() function
transmits the packet and returns the amount of used
wireless resources, usedret, due to the link level
retransmission in the MAC layer (line 46-47). If there
is no retransmission (usedret ≤ 0) or no other active
flow (A - {j} = Ø), then finish the procedure and return
to first step of algorithm (line 48-49). Otherwise, the
flow j has gain extra service by link level
retransmission and it takes responsibility for that. flow
j's charging overhead, charged, is calculated through
charge() function with usedret. (line 50-51). The
charged is the amount of resources for which the
retransmitted flow has to be responsible. At that time,
if flow j is leading, sj is updated to sj. + charged / rj
(line 52-53). Otherwise, lagj is reduced to lagj -
charged (line 55) and ci and si, are updated depending
on flow j's situation (line 56-59). Because the other
flows are deprived of their share due to the flow j's
retransmission, they have to get more shares later.
Thus, the other flows's lags, lagl, are increased in
proportion to their weights (line 60-65). Hence, lagl is
updated to { }/ k A jl l klag charged r r∈ −+ × ∑ (line 62).
Consequently, the retransmitted flow becomes leading,
and the other flows become lagging. Next time, the
lagging flow has higher priority to get wireless channel
than the leading flow.

• charge(): this function calculates and returns charging
overhead caused by link level retransmission. The
charging overhead, charged, is calculated based on the
amount of wireless resources used due to link level
retransmission, usedret. There are two kinds of types:
FIC and SIC. For FIC, the retransmitted flow j has to
take responsibility for the entire resources used by link
level retransmission. So, FIC returns the amount of
other flows' resources, which are used in
retransmission without permission (line 71). On the
other hand, SIC distributes a charge of used resources
to all backlogged flows. So, SIC returns only a portion
of the amount of used resources, which has to be
charged by the flow in proportion to its weight (line
74).

• leave: when a lagging flow i becomes unbacklogged
and wants to leave, its positive lagi is proportionally
distributed among all the remaining active flows j such

that each lagj is updated to / k Aj i j klag lag r r∈+ ⋅ ∑ (line
78-84).

IV. SIMULATION
In this section, we present results from simulation to

demonstrate the fairness properties of WFQ-R algorithm. The
following performance measures are used to evaluate the
algorithm:

• Allocated resources: the amount of wireless resources
used by a flow. It directly represents the resource
fairness.

• Queueing Delay: experienced delay in a queue.

• Goodput: the actual amount of data received at a
destination. It represents the data fairness. However,
the goodput is a second metric as compared to the
allocated resources because the data fairness cannot be
sustained strictly in wireless networks, as mentioned
before.

A. Simulation Environments

Flow 1

Flow 2

Flow 3

Channel
Server

Flow 1
Error Free

Flow 2
Error Free

Flow 3
Error Prone

Wireless Channel
Bandwidth: 1.5Mb

Delay: 10ms

Packet Size: 1KB, Queue Size: 5KB
Packet Generation Interval: 8ms

Figure 5. Simulation Topology

For simulation, we used an ns simulator [10]. The
simulation topology is shown in Figure 5. There are three flows
in the simulation: two error-free flows and one error-prone
flow. The retransmission probability of flows 1 and 2 are zero,
and that of flow 3 is 0.2. All flows have the same weight. The
detail properties of each flow are shown in Table II. If a packet
experiences the link level retransmission, four more resources
are used for that. We simulate CIF-Q algorithm [8] and our
algorithms with the link level retransmission MAC algorithm.
The CIF-Q is for evaluating the performance of prediction-
based wireless fair queueing algorithms without channel
prediction. As mentioned before, most wireless systems adapts
the link level retransmission MAC algorithm, instead of the
perfect channel prediction.

0-7803-8145-9/04/$17.00 ©2004 IEEE. 125

TABLE II. PROPERTIES OF FLOWS IN THE SIMULATION

 flow1 flow2 flow3
Weight 1 1 1

Retrans. Prob. 0 0 0.2
Start Time 0 s 0.4 s 1.3 s
Stop Time 10 s 10 s 10 s

Packet Size (KBytes) 1KB 1KB 1KB
Queue Size (KBytes) 5KB 5KB 5KB
Packet Gen. Interval 8 ms 8 ms 8 ms

B. Simulation Results
The simulation results are shown in Figure 6 and Table III.

In Figure 6-(a) and Table III, we can find that the CIF-Q
algorithm with the LLR (CIF-Q_LLR) does not provide
fairness properly. It assigns too many wireless resources to

error-prone flow. Additionally, the delay of the error-free flow
is also increased due to the error-prone flow. The CIF-Q_LLR
seems to keep goodput fairness, but this is the result from
lopsided sacrifice of error-free flows and, moreover, it cannot
be maintained when the error-prone flow suffers severe
channel errors.

Our WFQ-R algorithms, however, fairly distribute wireless
channel resources to each flow. The WFQ-R_FIC gives the
same amount of resources among flows precisely (shown in
Figure 6-(b)). The WFQ-R_SIC gives slightly more resources
to the error-prone flow to compensate error recovery (shown in
Figure 6-(c)). In addition, the WFQ-R_SIC separates the delay
of error-free and error-prone flows completely. While, the
WFQ-R_SIC separates the delay smoothly.

 (a) CIF-Q_LLR algorithm

 (b) WFQ-R_FIC algorithm

 (c) WFQ-R_SIC algorithm

Figure 6. Simulation Results

0-7803-8145-9/04/$17.00 ©2004 IEEE. 126

According to the simulation results, we can find that our
WFQ-R algorithms keep well the fairness with the link level
retransmission MAC algorithm. The difference between FIC
and SIC is a trade-off between the flow separation and
compensation [11]. The flow separation is a property that an
error-free flow should not be impacted at all by other flows.
Strict flow separation, however, brings about the starvation of a
frequent error-prone flow due to the shortage of compensation
resources. Thus, we proposed two compensation types, FIC
and SIC, to coordinate flow separation and compensation
appropriately. In other words, the FIC rigidly keeps resource
fairness and the SIC gives a little more resources to error-prone
flows for data fairness. Through the WFQ-R algorithms, we
can also adaptively achieve the separation among flows in
delay and throughput depending on each channel condition.

TABLE III. AVERAGE VALUE OF SIMULATION RESULTS

 flow1 flow2 flow3
Allocated

Resources (Kbps)
wireless channel resources used by
each flow

CIF-Q_LLR 423.908 424.828 649.195
WFQ-R_FIC 499.31 500.23 499.31
WFQ-R_SIC 441.379 442.299 614.253

Goodput (Kbps) actual amount of received data
CIF-Q_LLR 423.908 424.828 422.989
WFQ-R_FIC 499.31 500.23 282.299
WFQ-R_SIC 441.379 442.299 353.103

QueueDelay (ms) queueing delay in a buffer
CIF-Q_LLR 91.06 89.334 92.209
WFQ-R_FIC 75.564 74.501 140.93
WFQ-R_SIC 85.616 85.19 111.785

V. CONCLUSION
We proposed a new wireless fair queueing algorithm. It

achieves wireless fairness with the link level retransmission by

penalizing flows using resources without permission. In
addition, our algorithm does not need channel prediction for
guaranteeing fairness. Through simulation, we proved that our
algorithm guarantees throughput and fairness. Furthermore, we
found that our algorithm achieves flow separation and
compensation.

REFERENCES
[1] A. Demers, S. Keshav, and S. Shenker, "Analysis and Simulation of a

Fair Queueing Algorithm," in proceeding of ACM SIGCOM'89, 1989.
[2] A. Parekh and R. Gallager, "A Generalized Processor Sharing Approach

to Flow Control in Integrated Services Networks: The Single-Node
Case," IEEE/ACM Transactions on Networking, Vol. 1, No. 3, Jun.
1993.

[3] S. Golestani, "A Self-Clocked Fair Queueing Scheme for Broadband
Applications," in proceeding of ACM SIGCOMM'94, Toronto, Canada,
Jun. 1994.

[4] P. Goyal, H. M. Vin, and H. Cheng, "Start-Time Fair Queueing: A
scheduling Algorithm for Integrated Services Packet Switching
Networks," IEEE/ACM Transactions on Networking, Vol. 5, No. 5, Oct.
1997.

[5] J. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
Algorithms," IEEE/ACM Transactions on Networking, Vol. 5, No. 5,
Oct. 1997.

[6] S. Lu, V. Bharghavan, and R. Srikant, "Fair Scheduling in Wireless
Packet Networks," IEEE/ACM Transactions on Networking, Vol. 7, No.
4, Aug, 1999.

[7] P. Ramanathan and P. Agrawal, "Adapting Packet Fair Queueing
Algorithms to Wireless Networks," in proceeding of ACM
MOBICOM'98, Dallas, USA, Oct. 1998.

[8] T. S. E. Ng, I. Stoica and H. Zhang, "Packet Fair Queueing Algorithms
for Wireless Networks with Location-Dependent Errors," in proceeding
of IEEE INFOCOM'98, 1998.

[9] S. Lu, T. Nandagopal and V. Bharghavan, "Design and Analysis of an
Algorithm for Fair Service in Error-Prone Wireless Channels," ACM
Wireless Networks Journal, Vol. 6, No. 4, pp. 232-343, 2000.

[10] http://www.isi.edu/nsnam/ns/
[11] V. Bharghavan, S. Lu, and T. Nandagopal, "Fair Queuing in Wireless

Networks: Issues and Approaches," IEEE Personal Communications,
Feb. 1999.

0-7803-8145-9/04/$17.00 ©2004 IEEE. 127

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

