
Packet Fair Queueing Algorithms for Wireless 
Networks with Link Level Retransmission 

 
Namgi Kim 

Div. of Computer Science, Dept. of EECS 
Korea Advanced Institute of Science and Technology 

Daejeon, Korea 
ngkim@camars.kaist.ac.kr 

Hyunsoo Yoon 
Div. of Computer Science, Dept. of EECS 

Korea Advanced Institute of Science and Technology 
Daejeon, Korea 

hyoon@camars.kaist.ac.kr
 
 

Abstract— Recently, a number of fair queueing algorithms for 
wireless networks have been proposed. They, however, need 
perfect channel prediction before transmission and rarely 
consider a medium access control (MAC) algorithm. In the 
wireless world, link level retransmission scheme is popularly used 
in the MAC layer for recovering channel errors. Therefore, we 
propose a new wireless fair queueing algorithm that works well 
with the link level retransmission and does not require channel 
prediction. Through simulation, we showed that our algorithm 
guarantees throughput and fairness. Also, we found that our 
algorithm achieves flow separation and compensation. 

Keywords - Wireless QoS; Wireless packet scheduling 

I.  INTRODUCTION 
In recent years, with the increasing usage of these wireless 

data, the wireless networks are quickly becoming an integral 
part of the Internet. While, supporting multimedia 
communication applications requires the network to provide 
quality of service for packet flows. In wired networks, FFQ 
(Fluid Fair Queueing) has been a popular paradigm for 
providing fairness among packet flows over a shared link [1]. 
Besides, a number of approximation algorithms for the 
implementation have been proposed such as WFQ [2], SCFQ 
[3], SFQ [4], and WF2Q+ [5]. These algorithms for wired 
networks, however, cannot be applied directly to wireless 
networks because a wireless channel experiences location-
dependent and bursty channel errors. 

Recently, a number of wireless fair queueing algorithms 
have been proposed such as IWFQ (Idealized Wireless Fair-
Queueing) [6], SBFA (Server Based Fairness Approach) [7], 
CIF-Q (Channel-condition Independent Fair Queueing) [8], 
and WFS (Wireless Fair Service) [9]. To overcome the 
location-dependent channel errors, these algorithms 
dynamically reassign channel allocation by predicting channel 
errors. Consequently, they need perfect channel prediction 
before transmission and rarely consider MAC (Medium Access 
Control) algorithm, but the perfect channel prediction before 
scheduling is very difficult in practice. Instead of channel 
prediction, most wireless networks adapt link level 
retransmission, like ARQ (Automatic Repeat reQuest), in the 
MAC layer for recovering channel errors. The previous 
wireless fair queueing algorithms, however, do not work well 
with this link level retransmission MAC algorithm. The WFS 

algorithm has proposed a specific medium access algorithm 
[9], but it is not commonly used in the wireless world. 
Therefore, in this work, we propose a wireless fair queueing 
algorithm that does not require channel prediction and works 
well with the link level retransmission, the most commonly 
used MAC algorithm. 

The rest of the paper is organized as follows. In section II, 
we introduce background and motivation for this paper. In 
section III, we present the new wireless fair queueing algorithm 
with link level retransmission. Then, in section IV, we evaluate 
the performance of our algorithm through simulation. Lastly, in 
section V, we conclude the paper. 

II. BACKGROUND AND MOTIVATION 

A. Fairness Criteria in Wireless Networks 
There are two kinds of fairness criteria in networks: data 

fairness and resource fairness. In wired networks, data fairness 
and resource fairness are generally the same. In wireless 
networks, however, they are not the same due to wireless 
channel errors. Data fairness is the fairness based on received 
data. It guarantees that each flow receives the same amount of 
data if their weights are equal. This concept, however, is 
inadequate for wireless networks. In wireless networks, an 
erroneous flow, which experiences severe channel errors, can 
exhaust most wireless resources and other flows may have few 
resources even if their channel conditions are good. On the 
contrary, resource fairness keeps fairness based on the amount 
of wireless resources used by each flow. It equally distributes 
scarce wireless resources to all flows. Therefore, the resource 
fairness is more suitable in wireless networks and we 
concentrate on this resource fairness rather than the data 
fairness. 

B. Network and Channel Model  
We consider wireless link is a shared channel and packet 

scheduling is performed above the MAC layer. When a packet 
experiences channel errors during transmission, the packet is 
retransmitted in the MAC layer until the destination receives 
the packet correctly or the maximum number of the 
retransmission is reached. 
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Packet scheduling for downlink flows is performed at a 
base station or an access point in centralized manner. For 
uplink flows, it is difficult to know current states of all mobile 
hosts in the base station. However, the amount of traffic is also 
small in proportion to that of downlink flows. So, the fairness 
for uplink flows is usually acquired through the contention-
based channel scheduling in distributed manner. Therefore, we 
just deal with the fairness of downlink flows in the centralized 
packet control. 

C. Problems of Previous Wireless Fair Queueing Algorithms 
with Link Level Retransmission 
Figure 1 illustrates the problem of wireless fair queueing 

algorithms without considering the link level retransmission. In 
this example, flows 1, 2, and 3 have weights 1, 1, and 2 
respectively. In an error-free model, each flow sends 2, 2, and 4 
packets in two rounds. However, in a real system, the first 
packet of flow 1 has experienced channel error during 
transmission, and the packet is retransmitted in the MAC layer 
with three more resources. Consequently, each flow receives 2, 
1, and 2 packets. Moreover, possessions of the wireless channel 
are 5, 1, and 2, respectively. This means that the previous 
prediction-based wireless fair queueing algorithms no longer 
provide fairness with the link level retransmission. Therefore, 
we propose a new wireless fair queueing algorithm that can 
handle this situation. 

Capacity consumed by retransmission for flow 1

Flow 1 Flow 2 Flow 3

Error-Free Model

Real System with previous WFQ algorithms

1 12 23 3

12 31

3 3

31 1 1

 

Figure 1.  Unfair packet scheduling with link level retransmission 

III. WIRELESS PACKET FAIR QUEUEING ALGORITHM WITH 
LINK LEVEL RETRANSMISSION 

The basic concept of the Wireless Fair Queueing with 
Retransmission (WFQ-R) algorithm is that the share used for 
retransmission is regarded as a debt of the retransmitted flow to 
the others. Hence, when the retransmission occurs, the 
overhead, the used wireless resources in retransmission, is 
charged to the retransmitted flow. 

The WFQ-R algorithm has two kinds of compensation 
types: Flow-In-Charge (FIC) and Server-In-Charge (SIC). FIC 
regards the entire overhead used for the retransmission as a 
charge of the retransmitted flow. That is, an error-prone flow 
should take responsibility for its own channel condition. For 
instance, consider a flow that has consumed two more 
resources for the retransmission in Figure 2. Then, in the FIC, 
since the flow has the entire responsibility for the two 

consumed resources, the flow does not use the next two 
resources and makes a concession to other flows in the second 
and third turns. 

First turn

1 1 2 33 2 33

2 33

1

1 2 33

Second turn

Third turn Fourth turn

 

Figure 2.  The example of Flow-In-Charge type 

The FIC is fair with respect to allocated wireless resources. 
However, it may be too severe for a flow experiencing frequent 
errors. We propose another compensation type, SIC. For SIC, 
all backlogged flows are responsible for channel errors. So, the 
overhead is distributed over all flows and the retransmitted 
flow has responsibility for only a portion of the overhead in 
proportion to its weight. Therefore, the charging overhead of 
the retransmitted flow would be naturally reduced. For 
example, when a flow has consumed four resources for the 
retransmission and the weight of the flow is a quarter of the 
sum of the weights of all flows in Figure 3, the retransmitted 
flow is responsible for only one resource. Accordingly, the 
flow disclaims only one time in the second turn. 

First turn

1 1 1

3 3

2 33

2

11

12 33

Second turn Third turn

 

Figure 3.  The example of Server-In-Charge type 

A. Algorithm Description 

TABLE I.  TERMINOLOGIES FOR WFQ-R ALGORITHM 

   : virtual time of flow i
: the difference between the service that flow i should receive in a reference

         error-free packet system and the service it has received in the real system
   

i

i

v  
lag  

      lagging if positive, leading if negative, and in-sync otherwise
   :  the set of active flows
    : minimal fraction of service retained by any leading flow
   : normalized amount of service aci

A

s  
α

tually received by a leading flow i
         since its became leading

   : normalized amount of compensation service received by a lagging flow i
    : the rate of flow i

i

i

c  
r  

 

The full WFQ-R algorithm is shown in Figure 4 and 
parameter definitions are shown in Table I. The basic 
framework and notations follow that of CIF-Q algorithm [8]. 
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When a packet is received, it is enqueued at a buffer in on 
receiving function. Then, the server picks up a packet from the 
buffer and sends it in on sending function. If a flow has no 
more packets to send, the flow leaves scheduling in leave 
function. In the on sending function, after a packet is selected 
to send, the packet is sent by send_pkt() function. The 
send_pkt() function gets the packet from the buffer and adjusts 
degrees of flows as leading or lagging. Then, it calls 

send_and_charge() function, in which the packet is actually 
sent through MAC layer by send() function. The send() 
function returns the overhead used by the link level 
retransmission. After that, the charging overhead, for which 
retransmitted flow takes responsibility, is calculated by 
charge() function depending on compensation type. Lastly, the 
charging overhead is distributed over all backlogged flows. 
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Figure 4.  WFQ-R Algorithm 

More detail descriptions of functions are as follow: 

• on receiving: when a flow i becomes backlogged and 
active, its virtual time vi is initialized to the maximum 
of its virtual time and the minimum virtual time among 
other active flows (line 3). Then, its lag is initialized to 
zero (line 4). 

• on sending: The algorithm selects the active flow i 
with the minimum virtual time for service (line 9). If 
that flow is not leading or leading but did not get 
minimal fraction of service, then the packet at its queue 

is transmitted (line 10-12). However, if the flow is 
leading with getting more than minimal service, we 
search for the lagging flow j with the minimum cj  (line 
15). If there is such a flow j, the packet at its queue is 
transmitted, instead of the packet of flow i (line 16-19). 
Otherwise, transmit the packet of flow i originally (line 
20-21). 

• send_pkt(): After the packet to transmit is decided, the 
virtual time of flow i, vi, is advanced as vi. + p.length / 
ri where ri is the rate of flow i (line 27). Then, 
parameters are adjusted depending on the flow's 
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situation (line 28-41). If flow i is leading but gets 
services due to graceful degradation, si is updated to si. 
+ p.length / ri (line 28-30).  If flow j is served but 
charge to i (i ≠j), then the flow j has gain extra service 
and flow i has lost service (line 31-41). As a result, lagj 
is updated to lagj - p.length (line 32), and lagi is 
updated to lagi + p.length (line 38).  ci, si, and ci are 
also adjusted depending on flow i and j's situations 
(line 33-37, 39-41). After that, the selected packet is 
passed to send_and_charge() function (line 42-43). 

• send_and_charge(): In this function, the packet is 
actually transmitted through the MAC layer and the 
effect of the link level retransmission is reflected to our 
wireless fair queueing algorithm. The send() function 
transmits the packet and returns the amount of used 
wireless resources, usedret, due to the link level 
retransmission in the MAC layer (line 46-47). If there 
is no retransmission (usedret  ≤ 0) or no other active 
flow (A - {j} = Ø), then finish the procedure and return 
to first step of algorithm (line 48-49). Otherwise, the 
flow j has gain extra service by link level 
retransmission and it takes responsibility for that. flow 
j's charging overhead, charged, is calculated through 
charge() function with usedret. (line 50-51). The 
charged is the amount of resources for which the 
retransmitted flow has to be responsible. At that time, 
if flow j is leading, sj is updated to sj. + charged / rj 
(line 52-53). Otherwise, lagj is reduced to lagj - 
charged (line 55) and ci and si, are updated depending 
on flow j's situation (line 56-59). Because the other 
flows are deprived of their share due to the flow j's 
retransmission, they have to get more shares later. 
Thus, the other flows's lags, lagl, are increased in 
proportion to their weights (line 60-65). Hence, lagl is 
updated to { }/ k A jl l klag charged r r∈ −+ × ∑  (line 62). 
Consequently, the retransmitted flow becomes leading, 
and the other flows become lagging. Next time, the 
lagging flow has higher priority to get wireless channel 
than the leading flow. 

• charge(): this function calculates and returns charging 
overhead caused by link level retransmission. The 
charging overhead, charged, is calculated based on the 
amount of wireless resources used due to link level 
retransmission, usedret. There are two kinds of types: 
FIC and SIC. For FIC, the retransmitted flow j has to 
take responsibility for the entire resources used by link 
level retransmission. So, FIC returns the amount of 
other flows' resources, which are used in 
retransmission without permission (line 71). On the 
other hand, SIC distributes a charge of used resources 
to all backlogged flows. So, SIC returns only a portion 
of the amount of used resources, which has to be 
charged by the flow in proportion to its weight (line 
74). 

• leave: when a lagging flow i becomes unbacklogged 
and wants to leave, its positive lagi is proportionally 
distributed among all the remaining active flows j such 

that each lagj is updated to / k Aj i j klag lag r r∈+ ⋅ ∑  (line 
78-84). 

IV. SIMULATION 
In this section, we present results from simulation to 

demonstrate the fairness properties of WFQ-R algorithm. The 
following performance measures are used to evaluate the 
algorithm: 

• Allocated resources: the amount of wireless resources 
used by a flow. It directly represents the resource 
fairness. 

• Queueing Delay: experienced delay in a queue.  

• Goodput: the actual amount of data received at a 
destination. It represents the data fairness. However, 
the goodput is a second metric as compared to the 
allocated resources because the data fairness cannot be 
sustained strictly in wireless networks, as mentioned 
before. 

A. Simulation Environments 

Flow 1

Flow 2

Flow 3

Channel
Server

Flow 1
Error Free

Flow 2
Error Free

Flow 3
Error Prone

Wireless Channel
Bandwidth: 1.5Mb

Delay: 10ms

Packet Size: 1KB, Queue Size: 5KB
Packet Generation Interval: 8ms  

Figure 5.  Simulation Topology 

For simulation, we used an ns simulator [10]. The 
simulation topology is shown in Figure 5. There are three flows 
in the simulation: two error-free flows and one error-prone 
flow. The retransmission probability of flows 1 and 2 are zero, 
and that of flow 3 is 0.2. All flows have the same weight. The 
detail properties of each flow are shown in Table II. If a packet 
experiences the link level retransmission, four more resources 
are used for that. We simulate CIF-Q algorithm [8] and our 
algorithms with the link level retransmission MAC algorithm. 
The CIF-Q is for evaluating the performance of prediction-
based wireless fair queueing algorithms without channel 
prediction. As mentioned before, most wireless systems adapts 
the link level retransmission MAC algorithm, instead of the 
perfect channel prediction. 
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TABLE II.  PROPERTIES OF FLOWS IN THE SIMULATION 

 flow1 flow2 flow3 
Weight 1 1 1 

Retrans. Prob. 0 0 0.2 
Start Time 0 s 0.4 s 1.3 s 
Stop Time 10 s 10 s 10 s 

Packet Size (KBytes) 1KB 1KB 1KB 
Queue Size (KBytes) 5KB 5KB 5KB 
Packet Gen. Interval 8 ms 8 ms 8 ms 

 

B. Simulation Results 
The simulation results are shown in Figure 6 and Table III. 

In Figure 6-(a) and Table III, we can find that the CIF-Q 
algorithm with the LLR (CIF-Q_LLR) does not provide 
fairness properly. It assigns too many wireless resources to 

error-prone flow. Additionally, the delay of the error-free flow 
is also increased due to the error-prone flow. The CIF-Q_LLR 
seems to keep goodput fairness, but this is the result from 
lopsided sacrifice of error-free flows and, moreover, it cannot 
be maintained when the error-prone flow suffers severe 
channel errors. 

Our WFQ-R algorithms, however, fairly distribute wireless 
channel resources to each flow. The WFQ-R_FIC gives the 
same amount of resources among flows precisely (shown in 
Figure 6-(b)). The WFQ-R_SIC gives slightly more resources 
to the error-prone flow to compensate error recovery (shown in 
Figure 6-(c)). In addition, the WFQ-R_SIC separates the delay 
of error-free and error-prone flows completely. While, the 
WFQ-R_SIC separates the delay smoothly. 

 

 
 (a) CIF-Q_LLR algorithm 

 
 (b) WFQ-R_FIC algorithm 

 
 (c) WFQ-R_SIC algorithm 

Figure 6.  Simulation Results 
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According to the simulation results, we can find that our 
WFQ-R algorithms keep well the fairness with the link level 
retransmission MAC algorithm. The difference between FIC 
and SIC is a trade-off between the flow separation and 
compensation [11]. The flow separation is a property that an 
error-free flow should not be impacted at all by other flows. 
Strict flow separation, however, brings about the starvation of a 
frequent error-prone flow due to the shortage of compensation 
resources. Thus, we proposed two compensation types, FIC 
and SIC, to coordinate flow separation and compensation 
appropriately. In other words, the FIC rigidly keeps resource 
fairness and the SIC gives a little more resources to error-prone 
flows for data fairness. Through the WFQ-R algorithms, we 
can also adaptively achieve the separation among flows in 
delay and throughput depending on each channel condition. 

TABLE III.  AVERAGE VALUE OF SIMULATION RESULTS 

 flow1 flow2 flow3 
Allocated 

Resources (Kbps) 
wireless channel resources used by 
each flow 

CIF-Q_LLR 423.908 424.828 649.195 
WFQ-R_FIC 499.31 500.23 499.31 
WFQ-R_SIC 441.379 442.299 614.253 

Goodput (Kbps) actual amount of received data 
CIF-Q_LLR 423.908 424.828 422.989 
WFQ-R_FIC 499.31 500.23 282.299 
WFQ-R_SIC 441.379 442.299 353.103 

QueueDelay (ms) queueing delay in a buffer 
CIF-Q_LLR 91.06 89.334 92.209 
WFQ-R_FIC 75.564 74.501 140.93 
WFQ-R_SIC 85.616 85.19 111.785 

 

V. CONCLUSION 
We proposed a new wireless fair queueing algorithm. It 

achieves wireless fairness with the link level retransmission by 

penalizing flows using resources without permission. In 
addition, our algorithm does not need channel prediction for 
guaranteeing fairness. Through simulation, we proved that our 
algorithm guarantees throughput and fairness. Furthermore, we 
found that our algorithm achieves flow separation and 
compensation. 
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