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Abstract 
 
Recently a novel method of reproducing a plane wave sound field based on wave number domain 
focusing is proposed, which makes it possible to generate plane wave propagating to a desired direction 
in a region by concentrating sound energy on a desired area in wave number domain. 
In this paper, we introduce the method briefly, and then compare it with existing methods; Ambisonics 
and Wave Field Synthesis. Wave number domain focusing has many advantages compared with 
Ambisonics and WFS on the aspects of reproduction accuracy and the number of required loudspeakers.  
 

Introduction 

In the research on control of sound field providing 3-D sound sensation by using 
loudspeaker array, reproduction of a plane-wave sound field is a fundamental problem 
because plane-wave gives a feeling that notional sound source exists in the direction 
plane-wave comes from. Several methods for it have been proposed, among them 
Ambisonics[1] and WFS(Wave Field Synthesis)[2] are representative.  
Ambisonics reproduce the sound field, which is recorded by the sound field 
microphones, by using circular array of loudspeakers. It can reproduce plane-wave 
propagating to any direction at the position.  
WFS is based on Rayleigh integral, and makes it possible for linear array of 
loudspeakers to generate wave front which is almost same as that generated by 
original notional source in a relatively large area. 
Recently a novel method[3] based on wave number domain focusing is proposed. This 
method generates plane-wave propagating to a desired direction in a region by 
concentrating sound energy on a point in wave number domain.  
In this paper, we introduce the method by wave number domain focusing briefly, and 
then compare it with Ambisonics and WFS respectively by numerical experiment.  

Theory: wave number domain focusing 

Problem definition 

The plane wave is transformed to a delta function in wave number domain. It means 
that a plane wave can be generated by concentrating sound energy on a point in wave 
number domain. Therefore, this problem is analogous with focusing problem in 
spatial domain. For the focusing of sound energy, we apply acoustic brightness 
control and acoustic contrast control[4]. 

Focusing in wave number domain: acoustic brightness control & contrast control 

Let us consider N loudspeakers fixed in space, and we denote their location as 
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The acoustic brightness is defined as the ratio of acoustic potential energy in desired 
bright zone to input power, can be written as follows, 
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where kH ,0
ˆ  is a normalization constant and kb,R  is a spatial correlation matrix in 

the bright zone, in this case, the point at which 0kk
rr

=  in wave number domain. The 
solution that maximizes acoustic brightness can be obtained by eigenvalue analysis. 
So that, equation (3) is rearranged as follows: 
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Here max,kα  is the maximum eigenvalue and αŝ  is eigenvector corresponds to 

max,kα . 
On the other hand, the acoustic contrast is defined as the ratio of acoustic potential 
energy in bright zone to that in dark zone. Therefore it can be written as follows, 
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where kd ,R  is a spatial correlation matrix in the dark zone which is the total area 
except the bright zone. (In this case, bright zone is so small as a point that total zone 
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can be used instead of dark zone.) This equation can be rearranged as a following 
eigenvalue problem: 
 

 ββ β ssRR ˆˆ max,,
1
, kkbkd =−  (6) 

Here max,kβ  is the maximum eigenvalue and βŝ  is eigenvector corresponds to it.  

Comparison of wave number domain focusing with ambisonics and 
WFS 

In the reproduction problem, important issues are ‘how precisely the method can 
reproduce original sound field’ and ‘how large area the method can reproduce’ by 
using as small number of loudspeakers as possible. Thus we compare the error rate in 
the control zone when the same number of loudspeakers is used for each method. The 
error rate is defined from difference between the sound pressure values of the original 
field and of the reproduced field in control zone as follows,  
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where )(ˆ 0 rp r  is sound pressure value at the position rr  in original field, )(ˆ rpr
r  in 

reproduced field, and ( )E  indicates average value.  
First we compare wave number domain focusing with Ambisonics and then with WFS.  
 

Computational experiment setting 

We consider 2-D plane as shown in Figure 1, where λ  is wavelength. The control 
zone locates in the center of the plane and its size is λλ 00 LL × .  
2-D circular array of loudspeakers is used to compare wave number domain focusing 
with Ambisonics as shown in Figure 2 (left). The loudspeakers stand on the circle 
which is centered at origin and radius is λ0r . While, we use linear array for 
comparing wave number domain focusing with WFS, the length of the array is λ02r  
and it locates in left side of control zone as shown in Figure 2 (right). . 
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Figure 1. control zone          Figure 2. location of loudspeakers,  

(left) circular array  (right) linear array 
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The loudspeakers input signal 

In Ambisonics, the input signal feeding the i-th loudspeaker can be expressed as[5]: 
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Here θ  is the direction of propagation of plane wave in original field, M is the 
sound pick-up order of the spatial encoding, and iφ  is the angle indicating location 
of the loudspeaker.  
In WFS, the input signal can be expressed as[2], 
 

 )(ˆ2)(ˆ )(2
1

)(

00

0)( i
sn

i
s

i
s rprr

jk
rs rrrr

−
+

=
σρ

σπ  (9) 

where 0σ  is the distance between position of listener and the array line of 
loudspeakers, and 0ρ  is the distance between notional source and the array line of 
loudspeakers. The vector nr

r  indicates the position of a notional source.  
 

Comparison wave number domain focusing with ambisonics 

Let us assume the original field is a plane wave field. Loudspeakers are considered as 
plane wave sources and the shape of the array is circular. And we assume that the size 
of control zone( 0L ) is λ4 , the number of loudspeakers( N ) is 30, the angle of plane 
wave for reproducing is o360~1 .  
The results of reproduction in case of o10=θ  are in Figure 3~6. All pressure scale is 
normailized with respect to the value of center position. The error rates with respect to 
the angle of plane wave are in Figure 7 (left). We can see the error rates of brightness 
control and contrast control are smaller than those of Ambisonics for the most angles,  
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Figure 3. Original Sound Field            Figure 4. ambisonics (order M=10) 
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Figure 5. Brightness control                Figure 6. Contrast control 
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Figure 7. Error rates w.r.t. angle                         Figure 8. Error rates w.r.t.  

(left)with Ambisonics, (right)WFS                        the number of loudspeakers 

 
therefore wave number domain focusing is more precise.  
Practically speaking, it is noteworthy that loudspeakers cannot be plane wave sources 
and an Ambisonic sound pick-up for order greater than 2 is unfeasible. Thus the error 
rates of Ambisonics in practical situation would be bigger and controllable zone too 
small. On the other hand, the error rates of wave number domain focusing wouldn’t 
be much different because it has no assumption for loudspeakers. But a process of 
measuring transfer function between loudspeakers and control zone is needed.  
 

Comparison wave number domain focusing with WFS 

In WFS, the loudspeakers are considered as dipole sources and the array shape is 
linear. (Circular array in WFS isn’t reasonable mathematically because Kirchhoff-
Helmholtz integral cannot be derived into the integral composed of only monopoles or 
dipoles as in Rayleigh integral in circular array case.) We consider original field as a 
field generated by a notional source that locates at )sin10,cos10( θθ −− . Let us 
assume a case that the size of control zone( 0L ) is λ4 , the number of 
loudspeakers( N ) is 20, the length of linear array( 02r ) is λ10 , the distance from the  
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Figure 9. Original Field                     Figure 10. WFS 
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Figure 12: Brightness control                 Figure 13: Contrast control 
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array to center of control zone( xr ) is λ5 , and the angle of plane wave is oo 30~30− .  
The results of reproduction in case of o10=θ  are in Figure 9~12, all pressure scale 
is normailized with respect to the value of center position. And the error rates of WFS, 
brightness control and contrast control with respect to angle of propagating are in 
Figure 7 (right). For the most angles, the error rates of brightness and contrast control 
are smaller than that of WFS. But strictly speaking, this result doesn’t show wave 
number domain focusing is more precise than WFS because the errors of WFS 
strongly depend on the position of notional source.  
It is noteworthy that wave number focusing needs smaller number of loudspeakers for 
reproducing the control zone even if controllable zone of WFS is larger than those of 
wave number focusing. In WFS, as the smaller number of loudspeakers is used, the 
larger error rates are included because of spatial aliasing as shown in Figure 8. While 
in wave number focusing, error rates remain in relatively low level even if the number 
of loudspeakers decreases. In other words, wave number domain focusing has the 
advantage of reproducing control zone using small number of loudspeakers.  

Conclusions 

Wave number domain focusing is an effective method to generate plane waves 
propagating to any direction by focusing sound energy on a point in wave number 
domain.  
And it has been shown that reproduction by wave number domain focusing is more 
precise than that by Ambisonics for the control zone when circular array of 
loudspeakers are used.  
In addition, it has been shown that the area of reproduction is smaller than that in 
WFS but wave number domain focusing has the advantage that the number of 
loudspeakers required to reproduce the control zone is fewer.  
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