
A LOW POWER CARRY SELECT ADDER

WITH REDUCED AREA

Youngjoon Kim and Lee-Sup Kim

Department of EECS, KAIST,
373-1 Kusong-dong, Yusong-gu, Taejon,

Korea

ABSTRACT
A carry-select adder can be implemented by using single ripple
carry adder and an add-one circuit [1] instead of using dual
ripple-carry adders. This paper proposes a new add-one circuit
using the first zero finding circuit and multiplexers to reduce the
area and power with no speed penalty. For bit length n = 64, this
new carry-select adder requires 38 percent fewer transistors than
the dual ripple-carry carry-select adder and 29 percent fewer
transistors than Chang’s carry-select adder using single ripple
carry adder [1]. This new 64b adder has 3.45ns delay time at 2.5
V power supply using a 0.25um CMOS technology.

1. INTRODUCTION
Due to the rapidly growing mobile industry, not only faster
arithmetic units but also smaller and lower power arithmetic units
are demanded. However, it has been difficult to do well both in
speed and in area. In general, ripple-carry adder (RCA) provides
a compact design but suffers from a long delay time. Carry look-
ahead adder (CLA) gives a fast design but has a large area.
Carry-select adder (CSA) is intermediate in regard to speed and
area. Therefore, CSA is suitable in many applications that
consider both speed and area. CSA is also used with CLA to
improve the speed [4].
This paper proposes a new architecture to reduce area and power
of CSA. Reduced area schemes are introduced in Section 2. In
Section 3, proposed CSA architecture is discussed. In Section 4,
SPICE simulated results and comparisons with other
conventional CSAs are discussed. Finally, this paper ends with
conclusion.

2. REDUCED AREA SCHEMES
2.1 An add-one circuit to replace one of RCAs
Adders with very large words sizes are constructed hierarchically
by combining smaller “block” adders [3]. As shown in Fig. 1(a),
the shaded parts are the blocks in the conventional carry-select
adder consists two ripple carry adders, one for Cin = 0 and the
other for Cin=1. If the results for Cin = 0 is known, the result for
Cin=1 can be found by adding one to the result for Cin=0. Thus,
an add-one circuit can replace the ripple-carry adder for Cin=1 in
a block as shown in Fig. 1(b). With an efficient design of an add-
one circuit, the area of CSA can be reduced. The add-one circuit
architecture is discussed in the next section.

����������

���

�����

��� � �

������

(a) Conventional CSA using dual RCAs.

������������

�

������

�

�

�

(b) CSA with add-one circuit replacing the RCA for C=1.

Figure 1. A conventional and a modified carry- select
adders.

2.2 Complement scheme for performing an add-
one circuit
To design an efficient add-one circuit, the complement scheme
by Chang is used [1]. This scheme is explained as follows.
Assume (S0

n-1, S0
n-2, …, S0

0) and (S1
n-1, S1

n-2, …, S1
0) are the

results of two CRAs with Cin=0 and Cin=1 respectively. Then,
S0

0 is always equal to the complement of S1
0 and S1

kis equal to
S0

k, if ∏k-1
I=0 S0

i = 0; otherwise, S1
k = Sbar0

k for 1 < k < n-1,
where Sbar is the complement of S [1]. In other words, adding
one is just inverting each S0 bit starting from the least significant
bit until the first zero is found. Two examples for the scheme are
shown in Fig. 2.

0-7803-6685-9/01/$10.00©2001 IEEE

IV-218

��������	�
���

001001

1

�
���	��
��
���	

001001
101001

��������	�
���

111001

1

000101

�
���	

��
�

�
���	

111001

��� ���

Figure 2. Examples for the complement scheme. The
first zero decides whether the bit is needed to be inverted
or not.

3. PROPOSED CSA ARCHITECTURE

3.1 Inverter elimination in carry path of RCA

CSA is composed of many small RCA blocks. Thus, reducing the
delay of RCAs is important for designing a CSA. In order to
optimize the RCA delay, all RCAs in this paper use the mirror
adders [4] and the inverter elimination scheme in carry path [3].
The inverter elimination scheme uses two properties of the mirror
adder. The first property is inverting all inputs on the full adder
results in inverted values for all outputs. The second one is the
mirror adder generates the complement of carryout first and
inverts it to generate the carryout. Therefore, by putting even and
odd cells as shown in Fig. 3, the number of the inverting stages
in the carry path is reduced [1]. This reduces N x inverter delay
in the carry pass where N is the block size. There is no transistor
penalty for this scheme. In fact, one less transistor is used than
the conventional full adder with 28 transistors.

����

������ ��� ���

�� �� ���� �� �� �� ��

�� �� �� ��

���� ���� ���� ����

������������������������������������ �������������������������������������		������		������		������		����� �		������		������		������		�����

��������	
 ��������	

Figure 3. Inverter elimination in carry path. FA’ stands
for the mirror full adder without the inverters in carry and
sum paths. The FA’ contains 24 transistors.

3.2 Proposed add-one circuit
As mentioned in the previous section, the complement scheme is
used for performing an add-one circuit. Chang used half adders,
inverters, and multiplexers to perform the add-one circuit [1].
Instead, a multiplexer-based add-one circuit is proposed as
shown in Fig. 4. According to the previous complement scheme,
a S1

k is either the S0
k or the complement of S0

k where S0
k

represents a sum of kth bit for C=0. Since the full adder
generates both sum and the complement of sum, no extra inverter

is needed to get the complement. To generate the add-one circuit,
a multiplexer is needed for each bit to choose either Sk or the
complement of Sk. The control signal of the multiplexer is from
the first zero finding circuit. The first zero finding circuit is
NMOS and PMOS chains as shown in the top middle of Fig. 4.
This circuit generates 0 at the kth node if no zero is founded until
kth bit from the least significant bit; otherwise, it generates 1. If
the control signal is 0, the multiplexer chooses Sk; otherwise, it
chooses the inverted Sk. The least significant bit does not need a
multiplexer since S1

0 is always the opposite of S0
0. This saves a

few transistors for each block.
The carry out for a block can be chosen between the carry out for
the RCA or the carry out for the add-one circuit. The carry out
for the add-one circuit is one if and only if all sums from the
RCA are equal to one. When all sums are equal to one, the first
finding circuit generates zero at the final node. All other cases it
generates one. Therefore, the inverted final node can be used as
the carryout for C=1.
Finally, the multiplexers is placed in the bottom to choose
between the results for C=0 and the results for C=1.

��������

���������

������

���

���

sum1 sum01sum2sum3sum sum2sum3

���

�������	
��

��

Figure 4. Proposed multiplexer-based add-one circuit.

One multiplexer and a NAND can replace the two multiplexers in
Fig. 4. The Fig. 5 shows that two circuits are equal. Then, 2 x (N-
1) can be reduced where N is the number of bits in a block.

���� ����

����������������

����������������

���� ����

����������������

����������������

�����

�����

�
�����

Figure 5. Replacing two multiplexers by one multiplexer
with a NAND.

IV-219

However, to use this module, the control signal 1 should be
inverted as shown in Fig. 5. Therefore, by switching the VDD
and the GND on the first zero finding circuit, the inverted
control 1 signals are generated. This scheme also eliminates an
inverter delay for the carry out.

������

����������	

sum1 1sum2sum3sum sum2sum3

���� ����

sum0

��

�
�	

���

�����

��

�
�	

���

�����

��

�
�	

���

�����

Figure 6. Final proposed circuit.

3.3 Designing square-root CSA
In order to optimize the worst-case delay, the square-root scheme
is used [1]. The square-root scheme is matching the block size
according to the arrival time for the carry-in signal. To determine
the each block size, the delay for each basic gate is needed. Table
1 shows the SPICE simulated delay time for each basic gate on
our 0.25um CMOS technology.

Table 1. The simulated actual delay time and normalized
delay of basic gates.

Basic gates Delay
Inverter 0.08ns
NAND 0.13ns
Multiplexer(sel) 0.11ns
Multiplexer(thru) 0.05ns
XOR 0.11ns
Sum(Half Adder) 0.11ns
Cout(Half Adder) 0.21ns
Sum(Full Adder) 0.35ns
Cout(Full Adder) 0.25ns

Base on the Table 1, the block delay can be estimated as shown
in Fig, 7. Since the sum of the most significant bit for C=0 is
used to get the carryout of a block, the proposed CSA delay is
longer than the CSA using dual RCAs. Therefore, by replacing
the last FA by two-level XORs to get the sum faster, the delay
time can be reduced. As shown in Fig. 7 (a) and 7 (b), the
estimated delay time for a block now becomes approximately
same as the conventional CSA. The SPICE simulated results
shown in Fig. 8 verified the previous statement. Using the
estimated delay times, block sizes can be determined. Since the
conventional and the proposed block delay are similar, the
conventional CSA block size can be adapted in our proposed
design.

�
��������

����

����
��������

����

��	�

��
�

����

����������������

����

��������

����

����

����
��������

����

��	�

��
�

����

����������������

����

��������

����

(a) Conventional CSA using dual RCA.

������

�
��

����

����

����
��������

����

��	�

��
�

����

����������������

����

��������

����

(b) CSA using the mirror FA for all bits.

������

�
��

����

����

����
��������

��	

���

����

����

����������������

����

������������
���

(c) Proposed CSA using FA2 with two-level XORs and
two-level NANDs at the most significant bits. FA
blocks are the mirror FA.

Figure 7. Estimated delay times for various 4 bits’ adder
block.

(a) The 12 bits conventional CSA block.

(b) The 12 bit proposed CSA block.

Figure 8. The 12 bits block delays for the conventional and
the proposed carry-select adder.

Table 2,3,4 shows the number of transistors, block sizes, and the
estimated delay time for various CSA types. The proposed adder
has 38 percent fewer transistors than the conventional adder and

IV-220

29 percent fewer transistors than the Chang’s CSA. The
estimated delay time for the proposed adder is very close to the
conventional CSA.

Table 2. Original 64 bits square root carry-select adder
with 10 blocks.

Block Total 10 9 8 7 6 5 4 3 2 1
RCA n= 64 12 11 9 8 7 6 4 3 2 2

TR# 3660 708 650 530 470 410 348 228 170 108 38
Delay 3.11 3.11 2.76 2.26 2.01 1.76 1.51 1.01 0.76 0.51 0.46

Table 3. Chang’s carry-select adder.
Block Total 9 8 7 6 5 4 3 2 1

RCA n= 64 12 11 9 8 7 6 4 3 4
TR# 3166 616 566 462 408 358 304 200 150 102
Table 4. Proposed carry select adder.

Block Total 10 9 8 7 6 5 4 3 2 1
RCA n= 64 12 11 9 8 7 6 4 3 2 2

TR# 2268 486 442 358 318 282 226 150 96 66 38
Delay 3.17 3.17 2.84 2.33 2.07 1.81 1.55 1.04 0.77 0.52 0.46

4. SIMULATED RESULTS AND
COMPARISONS

The SPICE simulated delays for the conventional CSA and the
proposed CSA are shown in Fig. 9. The results show that the
proposed adder is faster than the conventional adder. The reason
for is shown in Fig. 10. The worst-case delay happens when the
carry propagated from the LSB to MSB. In that case, the inputs
for each adder are either (an=1, bn=0) or (an=0, bn=1) besides the
LSB where both a0 and b0 should be 1. As shown in Fig.10, the
Cout for Cin=1 in a block propagates and cause a long delay time
for Cout. Thus, if the arrival time of Cin is faster than the time
for generating Cout for Cin=1, the total delay time become
slower than the proposed adder where no carry propagation
occurred. The arrival times for the Cin and the Cout for Cin=1
should be adjusted to be the same. Then, the original CSA is
faster than the proposed as estimated previously. However, it
would be quite complicated since FA delay is not equal to a
MUX delay. Therefore, no carry RCA propagation in the critical
path is preferred for a CSA design.

(a) The worst-case delay for the conventional CSA.

(b) The worst-case delay for the proposed CSA.

Figure 9. Critical path SPICE waveforms for the conventional
and the proposed CSAs

��������������	�
����
����������

�
��

������������

������������������������������������

��������������	�
����
����������

(a) The proposed CSA. No carry propagation at the

critical path in the block.

�
��

��������������������������������

������������������������������������

�������������	
�������

�����

���
������������	
���

�����

������������
(b) The conventional CSA. Carry propagation of RCA for

cin = 1 at the critical path

Figure 10. Showing carry propagation of a block in case
of critical path at the worst case

5. CONCLUSIONS
Replacing the RCA for C=1 by the proposed add-one circuit with
the complement scheme reduces the number of transistors of the
CSA with ignorable speed penalty. Compared to the
conventional and Chang’s CSA, the proposed adder required
38% and 29% fewer transistors, respectively. Fewer transistors
results less area and less power. The power consumption of
proposed CSA is estimated to be only 75% of the conventional
CSA from the SPICE simulation. The proposed 64b adder has
3.45ns delay time at 2.5 V power supply using a 0.25um CMOS
technology.

6. ACKNOWLEDGMENT

This work was supported by KOSEF through the MICROS at
KAIST, Korea.

7. REFERENCES
[1] Chang, T. Y. and Hsiao, M. J., “Carry-select adder using

single ripple-carry adder”. Electronics Letters, vol. 34, No.
22, Oct 1998, pages 2101-2103.

[2] Rabaey, J. M., Digital Integrated Circuits: A Design
perspective. New Jersey, Prentice-Hall, 1996.

[3] N. Weste and K. Eshragian, Principles of CMOS VLSI
Designs: A System Perspective, 2nd ed., Addison-Wesley,
1985-1993.

[4] Morinaka, H., Makino, H., Nakase, Y. et. al, “A 64 bit
Carry Look-ahead CMOS adder using Modified Carry
Select”. Custom Integrated Circuit Conference, 1995, pages
585-588.

IV-221

