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ABSTRACT 
A carry-select adder can be implemented by using single ripple 
carry adder and an add-one circuit [1] instead of using dual 
ripple-carry adders. This paper proposes a new add-one circuit 
using the first zero finding circuit and multiplexers to reduce the 
area and power with no speed penalty. For bit length n = 64, this 
new carry-select adder requires 38 percent fewer transistors than 
the dual ripple-carry carry-select adder and 29 percent fewer 
transistors than Chang’s carry-select adder using single ripple 
carry adder [1]. This new 64b adder has 3.45ns delay time at 2.5 
V power supply using a 0.25um CMOS technology. 
  

1. INTRODUCTION 
Due to the rapidly growing mobile industry, not only faster 
arithmetic units but also smaller and lower power arithmetic units 
are demanded. However, it has been difficult to do well both in 
speed and in area. In general, ripple-carry adder (RCA) provides 
a compact design but suffers from a long delay time. Carry look-
ahead adder (CLA) gives a fast design but has a large area. 
Carry-select adder (CSA) is intermediate in regard to speed and 
area. Therefore, CSA is suitable in many applications that 
consider both speed and area. CSA is also used with CLA to 
improve the speed [4].  
This paper proposes a new architecture to reduce area and power 
of CSA. Reduced area schemes are introduced in Section 2. In 
Section 3, proposed CSA architecture is discussed.  In Section 4, 
SPICE simulated results and comparisons with other 
conventional CSAs are discussed. Finally, this paper ends with 
conclusion.  
 

2. REDUCED AREA SCHEMES 
2.1 An add-one circuit to replace one of RCAs 
Adders with very large words sizes are constructed hierarchically 
by combining smaller “block” adders [3]. As shown in Fig. 1(a), 
the shaded parts are the blocks in the conventional carry-select 
adder consists two ripple carry adders, one for Cin = 0 and the 
other for Cin=1. If the results for Cin = 0 is known, the result for 
Cin=1 can be found by adding one to the result for Cin=0. Thus, 
an add-one circuit can replace the ripple-carry adder for Cin=1 in 
a block as shown in Fig. 1(b). With an efficient design of an add-
one circuit, the area of CSA can be reduced. The add-one circuit 
architecture is discussed in the next section. 
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(a) Conventional CSA using dual RCAs. 
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(b) CSA with add-one circuit replacing the RCA for C=1. 

 
Figure 1. A conventional and a modified carry- select 
adders. 

 
 

2.2 Complement scheme for performing an add-
one circuit 
To design an efficient add-one circuit, the complement scheme 
by Chang is used [1]. This scheme is explained as follows. 
Assume (S0

n-1, S0
n-2, …, S0

0) and (S1
n-1, S1

n-2, …, S1
0) are the 

results of two CRAs with Cin=0 and Cin=1 respectively. Then, 
S0

0 is always equal to the complement of S1
0 and S1

kis equal to 
S0

k, if ∏k-1
I=0 S0

i = 0; otherwise, S1
k = Sbar0

k for 1 < k < n-1, 
where Sbar is the complement of S [1]. In other words, adding 
one is just inverting each S0 bit starting from the least significant 
bit until the first zero is found. Two examples for the scheme are 
shown in Fig. 2. 
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Figure 2. Examples for the complement scheme. The 
first zero decides whether the bit is needed to be inverted 
or not. 

3. PROPOSED CSA ARCHITECTURE 

3.1 Inverter elimination in carry path of RCA 

CSA is composed of many small RCA blocks. Thus, reducing the 
delay of RCAs is important for designing a CSA. In order to 
optimize the RCA delay, all RCAs in this paper use the mirror 
adders [4] and the inverter elimination scheme in carry path [3]. 
The inverter elimination scheme uses two properties of the mirror 
adder. The first property is inverting all inputs on the full adder 
results in inverted values for all outputs.  The second one is the 
mirror adder generates the complement of carryout first and 
inverts it to generate the carryout. Therefore, by putting even and 
odd cells as shown in Fig. 3, the number of the inverting stages 
in the carry path is reduced [1]. This reduces N x inverter delay 
in the carry pass where N is the block size. There is no transistor 
penalty for this scheme. In fact, one less transistor is used than 
the conventional full adder with 28 transistors.  
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Figure 3. Inverter elimination in carry path. FA’ stands 
for the mirror full adder without the inverters in carry and 
sum paths. The FA’ contains 24 transistors. 
 

3.2 Proposed add-one circuit 
As mentioned in the previous section, the complement scheme is 
used for performing an add-one circuit. Chang used half adders, 
inverters, and multiplexers to perform the add-one circuit [1]. 
Instead, a multiplexer-based add-one circuit is proposed as 
shown in Fig. 4. According to the previous complement scheme, 
a S1

k is either the S0
k or the complement of S0

k where S0
k 

represents a sum of kth bit for C=0. Since the full adder 
generates both sum and the complement of sum, no extra inverter 

is needed to get the complement. To generate the add-one circuit, 
a multiplexer is needed for each bit to choose either Sk or the 
complement of Sk. The control signal of the multiplexer is from 
the first zero finding circuit. The first zero finding circuit is 
NMOS and PMOS chains as shown in the top middle of Fig. 4. 
This circuit generates 0 at the kth node if no zero is founded until 
kth bit from the least significant bit; otherwise, it generates 1. If  
the control signal is 0, the multiplexer chooses Sk; otherwise, it 
chooses the inverted Sk. The least significant bit does not need a 
multiplexer since S1

0 is always the opposite of S0
0. This saves a 

few transistors for each block.  
The carry out for a block can be chosen between the carry out for 
the RCA or the carry out for the add-one circuit. The carry out 
for the add-one circuit is one if and only if all sums from the 
RCA are equal to one. When all sums are equal to one, the first 
finding circuit generates zero at the final node. All other cases it 
generates one. Therefore, the inverted final node can be used as 
the carryout for C=1. 
Finally, the multiplexers is placed in the bottom to choose 
between the results for C=0 and the results for C=1.  
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Figure 4. Proposed multiplexer-based add-one circuit.  

 
 
One multiplexer and a NAND can replace the two multiplexers in 
Fig. 4. The Fig. 5 shows that two circuits are equal. Then, 2 x (N-
1) can be reduced where N is the number of bits in a block.   
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Figure 5. Replacing two multiplexers by one multiplexer 
with a NAND.  
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However, to use this module, the control signal 1 should be 
inverted as shown in Fig. 5. Therefore, by switching the VDD 
and the GND on the first zero finding circuit, the inverted 
control 1 signals are generated. This scheme also eliminates an 
inverter delay for the carry out.  
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Figure 6. Final proposed circuit. 
 

3.3 Designing square-root CSA 
In order to optimize the worst-case delay, the square-root scheme 
is used [1]. The square-root scheme is matching the block size 
according to the arrival time for the carry-in signal. To determine 
the each block size, the delay for each basic gate is needed. Table 
1 shows the SPICE simulated delay time for each basic gate on 
our 0.25um CMOS technology.  
 

Table 1. The simulated actual delay time and normalized 
delay of basic gates.  

Basic gates Delay 
Inverter 0.08ns 
NAND 0.13ns 
Multiplexer(sel) 0.11ns 
Multiplexer(thru) 0.05ns 
XOR 0.11ns 
Sum(Half Adder) 0.11ns 
Cout(Half Adder) 0.21ns 
Sum(Full Adder) 0.35ns 
Cout(Full Adder) 0.25ns 

 
Base on the Table 1, the block delay can be estimated as shown 
in Fig, 7. Since the sum of the most significant bit for C=0 is 
used to get the carryout of a block, the proposed CSA delay is 
longer than the CSA using dual RCAs. Therefore, by replacing 
the last FA by two-level XORs to get the sum faster, the delay 
time can be reduced. As shown in Fig. 7 (a) and 7 (b), the 
estimated delay time for a block now becomes approximately 
same as the conventional CSA. The SPICE simulated results 
shown in Fig. 8 verified the previous statement. Using the 
estimated delay times, block sizes can be determined. Since the 
conventional and the proposed block delay are similar, the 
conventional CSA block size can be adapted in our proposed 
design.  

�
��������

����

����
��������

����

��	�

��
�

����

����������������

����

��������

����

����

����
��������

����

��	�

��
�

����

����������������

����

��������

����

 
(a) Conventional CSA using dual RCA. 
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(b) CSA using the mirror FA for all bits. 
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(c) Proposed CSA using FA2 with two-level XORs and 
two-level NANDs at the most significant bits. FA 
blocks are the mirror FA. 

 
Figure 7. Estimated delay times for various 4 bits’ adder 
block. 
 
 

 
(a) The 12 bits conventional CSA block. 
 

 
(b) The 12 bit proposed CSA block.  
 

Figure 8. The 12 bits block delays for the conventional and 
the proposed carry-select adder. 

 
 
Table 2,3,4 shows  the number of transistors, block sizes, and the 
estimated delay time for various CSA types. The proposed adder 
has 38 percent fewer transistors than the conventional adder and 
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29 percent fewer transistors than the Chang’s CSA. The 
estimated delay time for the proposed adder is very close to the 
conventional CSA. 
 

Table 2. Original 64 bits square root carry-select adder 
with 10 blocks. 

Block Total 10 9 8 7 6 5 4 3 2 1
RCA n= 64 12 11 9 8 7 6 4 3 2 2

TR# 3660 708 650 530 470 410 348 228 170 108 38
Delay 3.11 3.11 2.76 2.26 2.01 1.76 1.51 1.01 0.76 0.51 0.46

Table 3. Chang’s carry-select adder. 
Block Total 9 8 7 6 5 4 3 2 1

RCA n= 64 12 11 9 8 7 6 4 3 4
TR# 3166 616 566 462 408 358 304 200 150 102
Table 4. Proposed carry select adder. 

Block Total 10 9 8 7 6 5 4 3 2 1
RCA n= 64 12 11 9 8 7 6 4 3 2 2

TR# 2268 486 442 358 318 282 226 150 96 66 38
Delay 3.17 3.17 2.84 2.33 2.07 1.81 1.55 1.04 0.77 0.52 0.46

 

4.  SIMULATED RESULTS AND 
COMPARISONS 

The SPICE simulated delays for the conventional CSA and the 
proposed CSA are shown in Fig. 9. The results show that the 
proposed adder is faster than the conventional adder. The reason 
for is shown in Fig. 10. The worst-case delay happens when the 
carry propagated from the LSB to MSB. In that case, the inputs 
for each adder are either (an=1, bn=0) or (an=0, bn=1) besides the 
LSB where both a0 and b0 should be 1. As shown in Fig.10, the 
Cout for Cin=1 in a block propagates and cause a long delay time 
for Cout. Thus, if the arrival time of Cin is faster than the time 
for generating Cout for Cin=1, the total delay time become 
slower than the proposed adder where no carry propagation 
occurred. The arrival times for the Cin and the Cout for Cin=1 
should be adjusted to be the same. Then, the original CSA is 
faster than the proposed as estimated previously. However, it 
would be quite complicated since FA delay is not equal to a 
MUX delay. Therefore, no carry RCA propagation in the critical 
path is preferred for a CSA design. 
 

 
(a) The worst-case delay for the conventional CSA. 

 
(b) The worst-case delay for the proposed CSA. 

Figure 9. Critical path SPICE waveforms for the conventional 
and the proposed CSAs  
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(a) The proposed CSA. No carry propagation at the 

critical path in the block.  
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(b) The conventional CSA. Carry propagation of RCA for 

cin = 1 at the critical path  
 
Figure 10. Showing carry propagation of a block in case 
of critical path at the worst case 

 

5. CONCLUSIONS 
Replacing the RCA for C=1 by the proposed add-one circuit with 
the complement scheme reduces the number of transistors of the 
CSA with ignorable speed penalty. Compared to the 
conventional and Chang’s CSA, the proposed adder required 
38% and 29% fewer transistors, respectively. Fewer transistors 
results less area and less power. The power consumption of 
proposed CSA is estimated to be only 75% of the conventional 
CSA from the SPICE simulation.  The proposed 64b adder has 
3.45ns delay time at 2.5 V power supply using a 0.25um CMOS 
technology.  
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