
CalmRISCTM : A Low Power Microcontroller with Efficient Coprocessor Interface

Kyoung-Mook Lim, Seh-Woong Jeong, Yong-Chun Kim, Seung-Jae Jeong, Hong-Kyu Kim,
Yang-Ho Kim, Bong-Young Chung, Hyung-Lae Roh, and H.S. Yang

Samsung Semiconductor and KAIST
 e-mail: lracer@samsung.co.kr

Abstract
This paper presents the low power architecture of
CalmRISC, a low power 8-bit microcontroller consuming
only 0.1mW per MIPS at 3.0V, and its efficient
coprocessor interface. The architectural consideration of
CalmRISC for low power consumption is presented. Some
low power circuit design schemes as well as an efficient
coprocessor interface scheme in CalmRISC are proposed
and discussed.

1. Introduction

As the VLSI process technology advances, three
remarkable trends in the competitive MCU industry have
been a challenge to MCU (Microcontroller Unit)
designers: low power, high performance, and system on a
chip.

The power consumption of an MCU has been paid
more attention, because it takes a significant portion of the
operating power of the system as well as its power
consumption becomes dominant in non-operating mode
(or sleep mode) of the system.

The competition towards high performance in the MCU
industry seems endless. As systems are getting more
complex and advanced, system engineers expect an MCU
to handle more complex tasks. Especially, it is very
attractive to them if they can upgrade their systems by
simply changing programs with a better performing MCU,
which reduces both the development cost and the system
cost itself.

RISC (Reduced Instruction Set Computer) has been
known for its high performance. Recently, it has been
focused because of its low power characteristics. Due to
these facts, it has become a de facto standard architecture
for low power and high performance MCU and has started
to be widely accepted in 8-bit embedded MCUs [1][2].

The SOC (System On a Chip) approach has been very
attractive to ASIC designers since cost, power
consumption and system design complexity can be
drastically reduced. The trend of SOC integration around
an MCU core is more conspicuous, due to the fact that an

MCU is a mandatory element to almost all electronic
appliances and it is much easier to integrate devices
around a programmable core. Especially, the integration of
an MCU core and a DSP (Digital Signal Processing) core
has been focused as the advanced VLSI process
technology has made DSP more easily available than ever.

A simple solution to the integration of an MCU core
and a DSP core is to put two independent cores on a single
die, an MCU core for control tasks and a DSP core for
signal processing algorithms. In this simple two-core
approach, we can have the flexibility to choose any
application specific pair of MCU cores and DSP cores, to
fit the target application optimally. However, it suffers
from several drawbacks: ill programmability,
communication overhead, and hardware overhead.

Another way to support MCU and DSP capabilities on
a chip is to use a single processor with both capabilities.
For example, an MCU with MAC (Multiply and
Accumulate) instructions or a DSP with powerful bit
manipulation instructions and branch instructions fall into
the category. This approach has some advantages over the
simple two-core approach: reduced hardware cost due to
no hardware duplication and no communication problem
because it is a single processor, which also provides a
single development environment. However, it lacks
flexibility and extensibility. For example, to add more
DSP horse power to the single processor means that more
powerful DSP instructions with appropriate data paths
should be added, which requires to design almost a new
processor.

2. Low Power Architecture of CalmRISC

There are many important criteria in choosing an
architecture for MCU cores, such as power consumption,
performance, size, and interoperability. Especially, in
embedded applications, a chip contains an MCU as well as
other components like program ROM, data RAM, and
peripheral logic, hence it is crucial to consider an
architecture in the context of the whole chip, not just an
MCU core. CalmRISC adopts a RISC (Reduced
Instruction Set Computer) architecture. Except some 2-

word instructions, all instructions are fixed to 1 word and
executed in a single clock cycle. The instruction set of
typical RISC architectures is simple and regular. Therefore,
control logic and data paths are relatively smaller than
those of CISC (Complex Instruction Set Computer), and
power consumption and die size can be reduced
accordingly. Another advantage of the RISC architecture
is that it is easy to utilize a pipeline scheme. With a well-
designed pipeline scheme, we can obtain large timing
margin for each instruction, low CPI (clock per
instruction) near 1.0, and high throughput. A lower CPI or
higher throughput MCU performs a given task with a
smaller number of clock cycles, hence consumes
potentially less power than an MCU with high CPI or low
throughput. From the architecture standpoint, one of the
most efforts centers around how to reduce CPI, and the
RISC architectures have appeared as a natural choice.

As mentioned earlier, the power consumption of an
MCU core itself has less meaning unless it is considered
with other components in a whole chip. One of such
components, which are strongly coupled with an MCU
core, is a program memory. If an architecture mandates a
larger program memory due to the ill programmability of
the instruction set, it increases not only the die size (i.e.,
cost) but also the power consumption. Hereinafter, we will
consider three major instruction set architectures, which
are well accepted in the MCU industry : Register-Memory,
Memory-Memory, Load/Store instruction sets[3]. To make
a fair comparison between the three instruction set
architectures, we assume that an ALU instruction takes
two operands, op1 and op2, on which the ALU operation
is performed, and then the result is stored into op1, i.e.,
op1 ← op1 ⊕ op2. CalmRISC has the register-memory
instruction set architecture, where only op2 can be a
memory location except store instructions. In the memory-
memory instruction set architecture, either op1 or op2, but
not both, can be a memory location. In the load/store
instruction set architecture, memory locations can be
referenced only in load and store instructions.

<Table 1> compares the number of instructions of the
three instruction set architectures for some typical

operations, assuming each operation is executed with
equal frequency.

In the table, Mi means a memory operand and Ri means
an internal register. It is shown that the memory-memory
instruction set architecture has the best code density, and
the load/store architecture is the worst. However,
comparing only the average number of instructions might
be misleading without careful consideration of other
aspects, such as trade-off between average bits per
instruction and addressing modes, and program memory
access time.
� Trade-off between average bits per instruction
and addressing modes: The memory-memory instruction
set architecture needs memory addressing for op1 and op2.
On the other hand, the register-memory instruction set
architecture needs memory addressing only for op2, and
the load/store instruction set architecture restricts memory
addressing only to load/store instructions. If addressing
modes are the same, the memory-memory instruction set
architecture has the largest average bits per instruction, the
load/store instruction set architecture has the smallest one,
and the register-memory architecture is somewhere in-
between. In other words, if average bits per instruction is
the same, the load/store instruction set architecture has the
most powerful addressing modes, the memory-memory
instruction set architecture has the least powerful
addressing modes, and the register-memory architecture is
in the middle. If an application program is large and needs
powerful addressing modes, a memory-memory
instruction set architecture MCU requires more
instructions for compensating poor addressing modes, and
the code size grows rapidly. We can conclude that the
memory-memory instruction set architecture has best code
density for small size application programs, the load/store
instruction set architecture is better for large size
application programs, and the register-memory instruction
set architecture is good for small or intermediate size
application programs.
� Program memory access time: The access time
requirement of the program memory (normally, a ROM) is
also an influential factor for the power consumption and
the die size of a whole chip. Generally speaking, a shorter
access time of a program memory (or a faster memory)
results in larger size and more power consumption [4].
Since the CPI of a memory-memory instruction set
architecture MCU is about 4 to 20, the clock frequency
should be much higher to maintain the same throughput
than in a RISC type MCU, which is the case for a register-
memory or a load/store instruction set architecture.
Therefore, a memory-memory instruction set architecture
requires a faster program memory than the other
architectures, which, in turn, can increase the die size and
the power consumption. Even in the case where a
memory-memory instruction set architecture MCU has a
relatively small code length, it is not obvious whether the

Table 1. Code size comparison for various
instruction set architectures

Number of instructions
Operation Reg.-Mem Mem-Mem Load/Store

M1 = M1 + M2 3 2 4
M1 = M2 + M3 3 3 4
M1 = M1 + R1 2 1 3
M1 = M2 + R1 2 2 3
R1 = M1 + M2 2 2 3
M1 = R1 + R2 2 2 2
R1 = R2 + M1 2 2 2
R1 = R2 + R3 2 2 2

Average 1.00 0.89 1.28

actual die size and the power consumption are small.
From the observation we have made so far, the register-
memory RISC architecture appears the most attractive
choice for low-power 8-bit embedded applications, where
the program memory is relatively small. Hence, we
adopted the register-memory RISC architecture for
CalmRISC since the most important design criterion is
low power.

CalmRISC has a simple 3-stage pipeline architecture,
and <Figure 1> depicts the CalmRISC pipeline structure
and other alternative pipeline structures for an MCU with
the register-memory instruction set architecture. Since the
main design target of CalmRISC is low power
consumption, deeper pipeline structures beyond 4 stages
are excluded from the consideration.

In the first stage named IF (Instruction Fetch) of the
CalmRISC pipeline (<Figure 1>-(a)), instructions are
fetched from the program memory and an early decoding
(i.e., decoding the fetched instruction partially on the fly)
for some instructions is performed. In the second stage
dubbed as ID/MEM (Instruction Decode/Memory),
fetched instructions are decoded and operands are fetched
from the data memory or the register file. In the case that
one of the source operands should be from the data
memory or the destination is a data memory location, a
simple early decoding detects it in the first stage and the
required memory address is calculated in the first half of
the ID/MEM stage. In the third stage named EX
(Execution), an ALU operation and its write-back to the
register file are performed. Since the pipeline structure is
simple, there is no pipeline stall caused by data
dependency. However, there exists a pipeline stall due to
control dependency for conditional branch instructions.
CalmRISC does not have a branch prediction mechanism
in order to avoid power consumption on mispredictions.
Due to the branch stall, the CPI of CalmRISC is slightly
over 1.0, about 1.1 ~ 1.2, still much lower than that of a
typical CISC machine.

<Figure 1>-(b) depicts an alternative 3-stage pipeline.
CoolRISCTM adopts the alternative 3-stage pipeline [5]. In
the alternative pipeline structure, operations after the IF
stage, such as ID, MEM, EX, and WB, are performed
earlier by a half cycle than in the CalmRISC pipeline
structure. The advantage of the pipeline structure is that
the control dependency from branch instructions is totally
removed and the CPI is exactly 1.0, which is the ideal
value for scalar processors. However, it is noted that the
pipeline structure requires a faster program memory. In the
second half of the first stage, both program memory access
and instruction decoding should be done, and therefore it
requires about two times faster program memory than
CalmRISC. Unless the clock is sufficiently slow, the
requirement may cause power or speed problems. In
general, the power consumption of a program memory is
comparable to or more than that of an MCU core in typical

MCU products, and a two times faster memory consumes
2 ~ 4 times more power [4]. Since the program memory
should be accessed at least once for an instruction, the
program memory speed requirement results in 2 ~ 4 times
more power consumption than the MCU core. If a faster
program memory is not affordable for some reasons, it is
inevitable to slow down the clock frequency (or
throughput) to the half.

<Figure 1>-(c) presents an alternative 4-stage pipeline.
It is a deeper pipeline version of CalmRISC, where the
second stage ID/MEM of CalmRISC pipeline is divided
into two separate stages. At a first glance, the timing
constraint of data address calculation and data memory
seems to be relieved, compared to that of the CalmRISC
pipeline (<Figure 1>-(a)). But, due to data dependency of
registers from previous instructions, the data address
calculation time and data memory access time is
practically the same as that of the CalmRISC pipeline.
Only the instruction decoding time margin is increased.
Since the instruction decoding time is not on the critical
path in the CalmRISC pipeline, there is little gain of
timing margin in the alternative 4-stage pipeline over the
CalmRISC pipeline. Since a conditional branch needs a 2-
cycle stall, CPI of the alternative 4-stage pipeline is about
1.2 ~ 1.5, which means throughput degradation.

From the observations we have made so far, we can
safely conclude that the CalmRISC pipeline outperforms
the other alternatives in terms of power consumption.

3. Low Power Circuit Design in CalmRISC

The dynamic power consumption of CMOS logic is
described as follows[6].

P C V fi

i

i dd= ∑α 2

The power reduction by lowering Vdd maintaining the
same performance is mainly related to process technology.
From the architectural standpoint, most of design efforts
go to reducing CPI(Clock Per Instruction), hence the
operating frequency f. CalmRISC achieves relatively low

MEMIF ID EX WB

MEMIF ID EX WB

MEMIF ID EX WB

(a)

(b)

(c)

Figure 1. Pipeline structures : (a) CalmRISC 3-
stage pipeline (b) Alternative 3-stage
pipeline (c) Alternative 4-stage pipeline

CPI (1.1 ~ .12) by adopting Harvard RISC architecture.
To reduce the switching capacitance αiCi , smaller cells

are used whenever possible (e.g., on non-critical paths)
and unnecessary transitions are avoided by a smart use of
signal gating. Especially, the clock signals should be paid
attention to because not only the clock signals have a
larger routing capacitance but also their transition
frequencies are much higher. Hence clock gating schemes
are extensively used in the CalmRISC design [7]. An
example is the 12 bit increment logic in PAGU (Program
Address Generation Unit) in CalmRISC. For low power
consumption of the increment logic, a ripple carry adder is
used. The clocks of m LSB bits make a transition every
cycle, and the clocks of the remaining (n-m) MSB bits are
gated by carry output of m-th half adder. The clocks of (n-
m) bits are toggled only when the carry output is 1. From
simple mathematics, the power consumption can be
minimized when m = 3. By the use of the clock gating
scheme, we can reduce about 70% of the clock power
consumption in PAGU.

In addition to the clock gating scheme discussed in the
above, what CalmRISC uses extensively for power
reduction is a selective input latching technique. Its basic
idea is that any change of inputs to a combinational logic
can be safely blocked by making those inputs filtered
through latches, if the output changes of the combinational
logic due to the input changes are not used by other logics.
In CalmRISC, the selective input latching technique is
especially effective to reduce power consumption in
combinational logic between pipeline registers. In DAGU
(Data Address Generation Unit), only when the memory
address calculation is required, data are loaded in the input
latches of the DAGU adder.

The power consumption from the short circuit current
in CMOS logic is a significant portion of the total power
consumption, especially when logic cells with minimum
feature size are used. To reduce the short circuit current, a
careful in-place optimization, where a weak gate is
replaced by a stronger one with equivalent function, is
iterated.

4. Coprocessor Interface in CalmRISC

The interface of a coprocessor with a host processor
requires the following aspects should be scrutinized:
synchronization of the host and the coprocessor executions,
instruction issues to the coprocessor, data transfer between
the host and the coprocessor, and flagging of the
coprocessor status to the host processor.

 The synchronization scheme between processors in a
multi-processor system should be carefully designed to
prevent resource conflicts, false data dependency, and
deadlocks. In CalmRISC, synchronization overhead can be
relieved since the coprocessors are passive (or non-
autonomous) in a sense that they perform only the

designated task at a designated time (or cycle) by the host
(CalmRISC).

CalmRISC only provides a set of generic coprocessor
instructions, and its instantiation to a specific coprocessor
instruction set can differ from a coprocessor to another.

A coprocessor instruction is fetched and early decoded
by CalmRISC. Once it is identified as a coprocessor
instruction, CalmRISC indicates to the coprocessor the
appropriate command through the coprocessor interface
signals. Then the coprocessor performs the designated
tasks at ID/MEM and EX stage. Hence IF from CalmRISC
and then ID/MEM and EX from the coprocessor constitute
the pipeline for the instruction.

Data transfers are accomplished efficiently through a
single shared data memory. The coprocessor in CalmRISC
accesses the shared data memory only at the designated
time by CalmRISC at which CalmRISC is guaranteed not
to access the data memory, and therefore there is no
contention over the shared data memory. Another
advantage of the proposed scheme is that the coprocessor
can access the data memory in its own bandwidth. The
only direct data transfer involving CalmRISC and the
coprocessor is via CLD (coprocessor register load/store
instruction) instructions.

Coprocessors of CalmRISC are passive, that is, do not
have their own programs. To perform a branch operation
according to a status of a coprocessor (which may be an
outcome of a coprocessor instruction execution),
CalmRISC conditional branch instruction directly refers to
the value of some input signals where the coprocessor has
put its status.

References

[1] CalmRISC Technical Reference Manual, Samsung
Electronics Co., Ltd., 1999.

[2] “AVR Enhanced RISC microcontroller”, data book, May
1996, Atmel Corporation.

[3] M. Flynn, “Computer Architecture”, Jones and Bartlett
publishers, 1995.

[4] 0.5µm 5V/3.3V Standard Cell Library Data Book, Samsung
Electronics Co., Ltd., 1996.

[5] C. Piguet et al., “Low-Power Design of 8-b Embedded
CoolRisc Microcontroller Cores”, IEEE J. of Solid-State
Circuits, Vol. 32, No 7, July 1997, pp. 1067-1078.

[6] A. Bellaouar, M. Elmasry, “Low-Power Digital VLSI design
Circuits & Systems”, Kluwer Academic Publishers, 1995.

[7] M. Alidina, J. Monteiro, S. Devadas, “Precomputation-Based
Sequential Logic Optimization for Low Power”, Proc.
IEEE/ACM International Conf. On CAD-94, Nov 1994, pp.
74-81.

