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Abstract 

 Nowadays, it has become important to mitigate unfairness in deep learning models. Individual fairness 

aims to ensure that similar individuals should be treated similarly. Graph neural networks (GNNs) are 

widely adopted in graph representation learning. GNNs aggregate node representations with message-

passing mechanisms to learn neighborhood information. However, the individual fairness of GNNs can 

be limited through this process. On the other hand, MLPs can achieve a higher degree of individual 

fairness despite having a lower accuracy than GNNs in general. In this paper, we introduce a knowledge 

distillation framework that captures both accuracy and fairness. The proposed framework first learns the 

structural information with a GNN teacher, then distills the knowledge to a MLP student. Through extensive 

experiments, we demonstrate the effectiveness of the proposed method. 

 

1. Introduction 

Graph representation learning has attracted a wide 

range of interest due to its possibility of analyzing social 

networks, knowledge graphs, and biological networks 

[1,2]. It aims to learn low-dimensional vectors that 

preserve attributes and local structures of nodes. With 

the advent of deep learning, graph neural networks 

(GNNs) have surpassed other state-of-the-art graph 

representation learning methods in a variety of graph 

analysis tasks. They take advantage of message-

passing architectures that aggregate neighborhood 

information to learn node representations. Recently, 

there has been growing concern in society that there is 

a lack of consideration for the fairness of GNNs. 

One of the main concerns of GNNs is the tendency to 

lose individual fairness that is the requirement for similar 

individuals to be treated alike. They may fail to 

guarantee consistent predictions for individuals with 

similar characteristics because of their reliance on the 

message-passing. Figure 1 shows an example that 

describes the weakness of GNNs concerning individual 

fairness. Suppose there are two nodes 𝑣1 and 𝑣2 that 

have the same attribute values ( 𝑥v1
= 𝑥v2

). As GNN 

aggregates neighborhood information, node 

representations zv1
 and zv2

 become different. There 

are some attempts to handle the limitation by 

introducing objective functions concerning individual 

                                            
1 This work was supported by the ITRC support program (IITP 

-2020-2020-0-01795) supervised by the IITP. 

fairness. Although they mitigate the problem to some 

extent, they cannot completely overcome the problem 

because of the dependence on message-passing 

mechanisms. 

 

Figure 1. An example that illustrates the inherent 

weakness of GNNs in preserving individual fairness.     

To address the issue, we introduce a framework 

called Fair Graph Multi-Layer-Perceptron (FairGMLP). 

Based on the MLP architecture, the framework encodes 

a representation of a node with its attributes. In this way, 

it achieves a higher level of individual fairness 

compared to GNNs. We enhance the power of the MLP 

in graph analysis by injecting the knowledge of a GNN 

teacher. Extensive experiments show that FairGMLP 

achieves the best utility and fairness results in almost 
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all combinations of datasets with various backbone 

models.  

2. Background : Individual Fairness for GNNs 

Individual fairness is a principle that similar individuals 

are to be treated similarly. With the advance of GNNs, 

there have been many efforts to enhance the individual 

fairness of GNNs. Some studies address the limitation 

by introducing objective functions with respect to 

individual fairness in GNNs. InFoRM designs a node pair 

distance-based fairness based on the Lipschitz 

condition. REDRESS enhances individual fairness 

through a ranking-based strategy, wherein fairness 

scores were assigned to nodes in the graph. However, 

they still rely heavily on message-passing mechanisms 

which limit the individual fairness of models. 

3. Approach 

In this section, we present our knowledge distillation 

framework to overcome the limited individual fairness of 

GNNs. Our work consists of three components: (1) GNN 

teacher, (2) MLP student, and (3) Fairness Promoting 

Regularization. 

3.1 GNN Teacher 

An initial step of our work is to obtain the 

neighborhood information from a pre-trained teacher 

GNN as eq.(1). The teacher model employed in the 

framework can be an arbitrary GNN model, including 

GCN, GAT, and SGC. 

 𝑧𝑣
(𝑇𝑒𝑎)

=  GNN(xv, {𝑥𝑢|𝑢 ∈ 𝑁(𝑣)})  (1)   

3.2 MLP Student 

Next, the framework encodes node attributes with a 

student MLP to generate node representations as eq.(2). 

As node attributes are the only matter, node 

representations of similar individuals are likely to be 

treated similarly. Consequently, the representations can 

achieve a higher level of individual fairness compared 

to those of the teacher. 

𝑧𝑣
(𝑆𝑡𝑢)

=  MLP(xv, {𝑥𝑢|𝑢 ∈ 𝑁(𝑣)})  (2)   

where xv is a node attribute vector of a node v. 

Despite the potential of MLPs for improving fairness, 

they have difficulty in learning graph structures. With the 

success of knowledge distillation, our framework injects 

the local structure knowledge of the teacher into the 

fairer student as follows: 

where D𝐾𝐿(𝑝||𝑞)  is a Kullback–Leibler divergence 

between p and q. 

3.3 Fariness Promoting Regularization 

We further encourage the framework to produce fairer 

results by incorporating a fairness loss. Our work tries 

to integrate the ranking-based fairness loss designed 

in REDRESS. The fairness minimize the difference 

between the feature similarity matrix S and the outcome 

similarity matrix 𝑆̂ as: 

 

where <⋅,⋅> is a similarity function, z@𝑘 is a similarity 

metric between two top-k ranking lists 

The total loss is defined as the sum of the distillation 

loss and the fairness loss as follows: 

 

where γ  is a hyperparameter that controls the 

importance of individual fairness regularization term.  

Table 1. Statistics of Datasets 

 

4. Evaluation 

4.1 Datasets 

To verify the effectiveness of our method in 

analyzing graphs with different characteristics, we 

carry out node classification and link prediction. For 

node classification, we use two citatio n networks 

(Cora and Pubmed), a co-authorship network (Co-CS), 

and a gender prediction network (Penn94). For link 

prediction, we use two social networks Facebook and 

BlogCatalog. The detailed statistics of these datasets 

are shown in Table 1. 

4.2 Metrics 
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To evaluate our model in terms of utility, we use the 

Macro-F1 score for the node classification task and 

Area-Under-Curve (AUC) for the link prediction task.  

In addition, we use NDCG@k with k=10 for both tasks 

in order to evaluate the fairness. The higher value of 

Macro-F1 and AUC means better performance and the 

higher value of NDCG@10 means better individual 

fairness. 

4.3 Baselines 

We compare two state-of-the-art baselines 

(InFoRM [3] and REDRESS [4]) with FairGMLP in 

terms of their performances and individual fairness. 

    4.4 Results 

4.4.1 Node Classification 

We present the results of our experiments for the 

node classification task in Table 2. Here, “O.O.M” 

represents having an out-of-memory issue, and 

boldface indicates the highest score. Our framework 

outperforms existing state-of-the-art models for all 

four GNN backbone models. It highlights the 

effectiveness of our approach in achieving superior 

performance in terms of utility and fairness compared 

to existing methods.  Note that the fairness scores of 

a vanilla MLP are better than those of vanilla GNNs.  

In addition, FairGMLPs have far higher F1 scores 

compared to vanilla MLPs. 

This implies that MLPs can enhance individual fairness, 

and also the distilling structure knowledge can 

enhance node representation utility. 

4.4.2 Link Prediction 

Table 3 presents quantitative results for link 

prediction. The boldface indicates the highest score. 

Generally, FairGMLPs provide higher AUC and NDCG 

scores compared to existing state-of-the-art models.  

We also observe that when using GCN and APPNP 

teachers, the MLP students consistently improve in 

both utility and fairness scores across all cases.  

These results indicate that our approach can be used 

to predict the relationship between high performance 

and fairness among individuals. 

5. Conclusion 

In this paper, we introduce a knowledge distillation 

framework that injects the knowledge of a GNN 

teacher into a MLP student. The framework 

outperforms existing graph representation learning 

models in terms of utility and individual fairness. In the 

future, we will examine fairness in graphs directly 

related to real-world situations, such as 

heterogeneous graphs, knowledge graphs, and 

temporal graphs. 
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