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ABSTRACT 

This paper presents an always-balanced dual-path hybrid buck con-
verter capable of covering all conversion ratios with high efficiency. 
The proposed tri-mode operations ensure seamless, defect-free dy-
namic voltage scaling (DVS). Fabricated in 180nm, the chip outputs 
voltages ranging from 0.2 to 1.5V with a 1.8V input. It achieves a 
peak efficiency of 94.2%, even with compact-volume LC parts. Its 
current density was measured to be 930mA/mm3 at 2.5A load current. 

INTRODUCTION 
In the design of PMICs for mobile computing systems, the empha-

sis has increasingly shifted toward achieving both high efficiency and 
high power density. These goals, however, often conflict due to the 
elevated parasitic resistance (DCR) that comes with using a compact 
inductor. To address this challenge, recent research has explored hy-
brid converters [1-6] that employ flying capacitors (CF). Such hybrid 
converters effectively lower the inductor current (IL), thereby mini-
mizing the DCR-related losses, PDCR (= DCR∙IL

2). Despite these ad-
vances, supporting a wide range of dynamic voltage scaling (DVS) 
poses a significant challenge. This encompasses low-voltage opera-
tion as low as VO = 0.2V, suitable for subthreshold computing, to high-
voltage scenarios up to VO = 1.5V for high-performance modes, with 
VIN = 1.8V. Although a PMIC capable of covering these broad VIN-to-
VO voltage conversion ratios (VCRs) is highly desirable, previous hy-
brid converters have limitations. Specifically, topologies in [1-6] fall 
short in covering the full scope of VCRs, and those in [1-5] suffer 
from exceedingly high capacitor currents at certain VCRs, leading to 
a drastic drop in efficiency. Furthermore, studies [1-4], which involve 
multi-mode operations to extend the available VCR range, face issues 
such as discontinuities in the CF voltage during mode transitions, pos-
ing a risk of excessive inrush current. 

Fig. 1 shows the basic concept used in most hybrid converters. Dur-
ing a switching cycle of TSW, the hybrid converter operates in two 
phases: ΦS (= DS∙TSW) in which CF and the inductor (LO) are connected 
in series, and ΦP (= DP∙TSW) in which they are connected in parallel. 
In this traditional approach, the normalized inductor current, INL (= 
IL/IO, where IO is the load current), is highly dependent on DS (or VCR). 
If DS >> DP, the IL-reduction is maximized, but the CF-current at ΦP, 
ICF,ΦP, surges excessively due to CF being overly charged during a pro-
longed ΦS. This ICF,ΦP surge results in considerable conduction loss. 

In this paper, we present a 1.8-VIN, 0.2-to-1.5-VO, tri-mode hybrid 
buck converter designed to always balance both inductive and capac-
itive currents across all VCRs. It also supports seamless mode change. 

PROPOSED ABDP HYBRID BUCK CONVERTER 
The top of Fig. 2 shows our proposed always-balanced dual-path 

(ABDP) hybrid buck converter. It comprises one LO, two flying ca-
pacitors (CF1 and CF2), and eight switches (S1–S8), featuring three dis-
tinct switching nodes: VXH, VXM, and VXL. This design aims to main-
tain both the normalized INL (= IL/IO) and INCF (= ICF,ΦP/IO) at a constant 
2/3 by always ensuring ΣDS = ΣDP = 0.5 (top-left of Fig. 2). As shown 
at the middle of Fig. 2, there are five behavioral phases (Φ1–Φ5) in the 
ABDP converter. Specifically, Φ1,3,5 and Φ2,4 connect LO and CF in 
series and parallel, respectively. The duty-cycle ratios for Φ1–Φ5 are 
denoted as D1–D5. During the LC-series phase Φ1 (or Φ5), activating 
S5 (or S2) sets VXL = VIN (or VXH = 0) and the CF2 (or CF1) charged to 
VIN – VO (or VO) energies (or de-energizes) LO by VXM = 2VIN – VO (or 
–VO). In the LC-parallel phase Φ2 (or Φ4), the activation of S3 and S8 
(or S4 and S7) yields VXM = VIN (or 0) and VXL (or VXH) = VO, thus 
setting VCF2 (or VCF1) to VIN – VO (or VO). During this phase, a dual-
path power delivery mechanism is established, involving both the 
magnetizing (or de-energizing) IL and the capacitive current, ICF,ΦP, 
discharged from CF2 (or CF1). In another LC-series phase, Φ3, the ac-
tivated S1 and S6 set VXH = VIN and VXL = 0, ensuring VCF1 + VCF2 = VIN. 
At this phase, the IL is sourced from both CF1-current [= (1 – 2D2)∙IL] 
and CF2-current (= 2D2∙IL). In the proposed ABDP converter, three 
operational phases are chosen from Φ1–Φ5, in accordance with the tar-
get VCR. The aim is to maintain ΣDS (LC-series phase) = ΣDP (LC-
parallel phase) = 0.5, thereby guaranteeing an always-balanced dual-
path power delivery across all VCRs. In the high-VCR (HV) mode, 

covering the range of 2/3 < VCRHV < 1, a switching cycle (TSW) is 
executed in the sequence of Φ1-Φ2-Φ3-Φ2. At this mode, D2 is fixed at 
0.5, and D3 = 0.5 – D1, thus balancing the LC-series phase (D1 + D3 = 
0.5) and the LC-parallel phase (D2 = 0.5). This balanced dual-path 
power delivery consistently equalizes INL and INCF to 2/3, regardless 
of D1. This offers the optimum point at which the total conduction loss 
(PCOND) reaches its minimum, enhancing efficiency. Despite the fixed 
INL, VCRHV is controllable, given by (2 + 2D1)/3. For the mid-VCR 
(MV) mode (1/3 < VCRMV < 2/3), TSW consists of the sequence Φ2-
Φ3-Φ4-Φ3. In this mode, D3 = 0.5 and D4 = 0.5 – D2, resulting in 
VCRMV = (1 + 2D2)/3 and INL = INCF = 2/3. In the low-VCR (LV) mode 
(0 < VCRLV < 1/3), the TSW sequence is Φ3-Φ4-Φ5-Φ4. In the LV mode, 
D4 = 0.5 and D5 = 0.5 – D3, leading to VCRLV = 2D3/3. Again, INL and 
INCF are all maintained at 2/3. Note that VCRHV, VCRMV, and VCRLV 
are seamlessly transitional, and all modes include the Φ3-phase, which 
ensures VCF1 + VCF2 = VIN. Thus, the flying capacitor voltages can be 
stably sustained, with VCF1 = VO and VCF2 = VIN – VO, across all VCRs. 

Fig. 3 provides theoretical comparisons between the proposed 
ABDP design and prior hybrid converters. In the top-left of Fig. 3, this 
work stands out as the only design that maintains a constantly-reduced 
IL (= 2/3∙IO) for the full VCR range. The top-right of Fig. 2 delves into 
the normalized capacitor current (INCF). In contrast to [2-4], where INCF 
values tend to diverge to infinity as they approach specific VCRs, the 
ABDP converter consistently offers INCF = 2/3 irrespective of the VCR. 
Assuming that all switches have identical RON and that the inductor’s 
DCR = 3∙RON, the bottom-left of Fig. 3 focuses on the comparison of 
normalized conduction loss (PNC). The PNC values in prior works [2-
4] fluctuate significantly due to VCR-dependent INL and INCF. On the 
other hand, the proposed ABDP converter consistently achieves a 33-
to-36% reduction in PNC across all VCRs. The bottom-right of Fig. 3 
shows the flying capacitor voltages with respect to the VCR. In multi-
mode converter [4], discontinuity in VCF can be observed at certain 
VCRs, potentially impeding seamless transitions between VCRs. In 
contrast, the ABDP converter is designed to stably maintain VCF1 = VO 
and VCF2 = VIN – VO, thereby facilitating seamless mode changes. 

Fig. 4 shows the design details of the ABDP hybrid converter chip. 
Five operational phase signals (Φ1–Φ5) for tri-mode operations are 
generated by comparing the error-signal (VE) with four distinct trian-
gular waves (VRP1–VRP4). The interval of VRP1–VRP4 are set to imple-
ment the 50%-fixed duty-cycles D2, D3, and D4 in the HV, MV, and 
LV modes, respectively. To promote seamless mode changes, the up-
per-vertex of VRP4 (VRP3) is designed to coincide with the lower-vertex 
of VRP2 (VRP1). In the proposed ABDP design, dynamic voltage switch-
ing necessitates sophisticated gate and body driving techniques. In-
stead of resorting to extra bootstrapping capacitors, this work employs 
a Φ-adaptive gate and body driver that leverages multi-level voltages 
(VIN, VXH, and VXL) that are inherently given in the ABDP converter. 

MEASUREMENT RESULTS 
The proposed converter was fabricated in a 180nm CMOS (Fig. 8). 

The chip able to supply IO up to 2.5A operates with VIN = 1.8V and 
FSW = 1MHz. Tests were performed with LO = 470nH and CF1 = CF2 
= CO (output cap) = 10μF. Fig. 5 shows the measured steady-state 
waveforms for VO = 1.5V, 0.9V, and 0.2V. It is observed that IL was 
consistently reduced by 31~36% compared to IO = 1A. Fig. 5 also 
demonstrates seamless VO coverage across a wide VCR range. Note 
that any defective voltage or current is invisible in VO, VXM, or IL. The 
top of Fig. 6 shows the load-transient and DVS responses. The bottom 
of Fig. 6 displays the measured efficiency curves. Using compact-vol-
ume passive components, a peak efficiency of 94.2% was achieved at 
VO = 1.2V and IO = 0.4A. Fig. 7 summarizes the performance. This 
work is the first buck converter capable of seamless coverage across 
all VCRs, while maintaining a consistent balance between inductive 
and capacitive currents. As a result of these innovations, this work 
achieves a current density of 930mA/mm3, which outperforms [2-6]. 
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Fig. 2: Topology and tri-mode operation of the proposed ABDP hybrid converter.

Fig. 3: Theoretical comparisons of the proposed ABDP with prior hybrid designs.

Fig. 4: Detailed implementation of the proposed ABDP hybrid buck converter.

Fig. 6: Measured load transient, DVS waveforms, and power efficiency graphs.

Fig. 8: Die and PCB photos. 

Fig. 5: Measured steady-state waveforms and tri-mode’s seamless transition.

Fig. 7: Performance summary in caparison with previous state-of-the-arts.

Fig. 9: Benchmark with state-of-the-arts.

Fig. 1: Basic concept of prior hybrid buck converters and their constraints.
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