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ABSTRACT

This paper presents an always-balanced dual-path hybrid buck con-
verter capable of covering all conversion ratios with high efficiency.
The proposed tri-mode operations ensure seamless, defect-free dy-
namic voltage scaling (DVS). Fabricated in 180nm, the chip outputs
voltages ranging from 0.2 to 1.5V with a 1.8V input. It achieves a
peak efficiency of 94.2%, even with compact-volume LC parts. Its
current density was measured to be 930mA/mm? at 2.5A load current.

INTRODUCTION

In the design of PMICs for mobile computing systems, the empha-
sis has increasingly shifted toward achieving both high efficiency and
high power density. These goals, however, often conflict due to the
elevated parasitic resistance (DCR) that comes with using a compact
inductor. To address this challenge, recent research has explored hy-
brid converters [1-6] that employ flying capacitors (Cr). Such hybrid
converters effectively lower the inductor current (/1.), thereby mini-
mizing the DCR-related losses, Ppcr (= DCR1;?). Despite these ad-
vances, supporting a wide range of dynamic voltage scaling (DVS)
poses a significant challenge. This encompasses low-voltage opera-
tion as low as Vo =0.2V, suitable for subthreshold computing, to high-
voltage scenarios up to Vo = 1.5V for high-performance modes, with
Vin=1.8V. Although a PMIC capable of covering these broad Vin-to-
Vo voltage conversion ratios (VCRs) is highly desirable, previous hy-
brid converters have limitations. Specifically, topologies in [1-6] fall
short in covering the full scope of VCRs, and those in [1-5] suffer
from exceedingly high capacitor currents at certain VCRs, leading to
a drastic drop in efficiency. Furthermore, studies [ 1-4], which involve
multi-mode operations to extend the available VCR range, face issues
such as discontinuities in the Cr voltage during mode transitions, pos-
ing a risk of excessive inrush current.

Fig. 1 shows the basic concept used in most hybrid converters. Dur-
ing a switching cycle of Tsw, the hybrid converter operates in two
phases: ®g (= Ds Tsw) in which Cr and the inductor (Lo) are connected
in series, and ®p (= Dp:Tsw) in which they are connected in parallel.
In this traditional approach, the normalized inductor current, /ni. (=

Ii/Io, where I, is the load current), is highly dependent on Ds (or VCR).

If Ds >> Dp, the [ -reduction is maximized, but the Cr-current at ®p,
Icr.op, surges excessively due to Cr being overly charged during a pro-
longed ®s. This Icrep surge results in considerable conduction loss.

In this paper, we present a 1.8-Vin, 0.2-to-1.5-Vo, tri-mode hybrid
buck converter designed to always balance both inductive and capac-
itive currents across all VCRs. It also supports seamless mode change.

PROPOSED ABDP HYBRID BUCK CONVERTER

The top of Fig. 2 shows our proposed always-balanced dual-path
(ABDP) hybrid buck converter. It comprises one Lo, two flying ca-
pacitors (Cri and Cr2), and eight switches (S;—Ss), featuring three dis-
tinct switching nodes: Vxu, Vxwm, and Vxi. This design aims to main-
tain both the normalized Ini. (= 11/1o) and Incr (= Icrap/lo) at a constant
2/3 by always ensuring £Ds = XDp = 0.5 (top-left of Fig. 2). As shown
at the middle of Fig. 2, there are five behavioral phases (O1—®s) in the
ABDP converter. Specifically, @35 and ®,4 connect Lo and C in
series and parallel, respectively. The duty-cycle ratios for ®,—®s are
denoted as D—Ds. During the LC-series phase @; (or ®s), activating
Ss (or Sy) sets Vx. = Vin (or Vxu = 0) and the Cr> (or Cr1) charged to
Vin— Vo (or Vo) energies (or de-energizes) Lo by Vxm =2Vin— Vo (or
—Vo). In the LC-parallel phase @, (or @), the activation of S; and Sg
(or S4 and S7) yields Vxy = Vi (or 0) and Vxe (or Vxu) = Vo, thus
setting Vers (or Verr) to Vin — Vo (or Vo). During this phase, a dual-
path power delivery mechanism is established, involving both the
magnetizing (or de-energizing) /i and the capacitive current, Icrep,
discharged from Cy, (or Cr;). In another LC-series phase, @s, the ac-
tivated S; and S¢ set Vxu = Vinand Vxi, =0, ensuring Ve + Ve = Vi
At this phase, the /1. is sourced from both Cri-current [= (1 —2D,)-Ii ]
and Cr-current (= 2D»'11). In the proposed ABDP converter, three
operational phases are chosen from @ ,—®s, in accordance with the tar-
get VCR. The aim is to maintain ZDs (LC-series phase) = ZDp (LC-
parallel phase) = 0.5, thereby guaranteeing an always-balanced dual-
path power delivery across all VCRs. In the high-VCR (HV) mode,

covering the range of 2/3 < VCRuy < 1, a switching cycle (Tsw) is
executed in the sequence of @-D,-D5-O,. At this mode, D is fixed at
0.5, and D3 = 0.5 — Dy, thus balancing the LC-series phase (D, + D3 =
0.5) and the LC-parallel phase (D, = 0.5). This balanced dual-path
power delivery consistently equalizes /ni. and Incr to 2/3, regardless
of D,. This offers the optimum point at which the total conduction loss
(Pconp) reaches its minimum, enhancing efficiency. Despite the fixed
I, VCRuyy is controllable, given by (2 + 2D,)/3. For the mid-VCR
(MV) mode (1/3 < VCRwmy < 2/3), Tsw consists of the sequence ®,-
D3-D4-O5. In this mode, D3 = 0.5 and D4 = 0.5 — D,, resulting in
VCRwmy = (1 +2D,)/3 and I, = Incr = 2/3. In the low-VCR (LV) mode
(0<VCRyry < 1/3), the Tsw sequence is D3-Ds-Ds-Py. In the LV mode,
D4=0.5 and Ds = 0.5 — D5, leading to VCRry = 2D5/3. Again, Ini. and
Incr are all maintained at 2/3. Note that VCRyy, VCRuy, and VCRyy
are seamlessly transitional, and all modes include the ®s-phase, which
ensures Verr + Ve = Vin. Thus, the flying capacitor voltages can be
stably sustained, with Vep = Vo and Vep = Vin— Vo, across all VCRs.

Fig. 3 provides theoretical comparisons between the proposed
ABDP design and prior hybrid converters. In the top-left of Fig. 3, this
work stands out as the only design that maintains a constantly-reduced
1. (=2/3-1) for the full VCR range. The top-right of Fig. 2 delves into
the normalized capacitor current (/ncr). In contrast to [2-4], where Incr
values tend to diverge to infinity as they approach specific VCRs, the
ABDP converter consistently offers Incr = 2/3 irrespective of the VCR.
Assuming that all switches have identical Ron and that the inductor’s
DCR = 3-Ron, the bottom-left of Fig. 3 focuses on the comparison of
normalized conduction loss (Pnc). The Pc values in prior works [2-
4] fluctuate significantly due to VCR-dependent /xi. and Incr. On the
other hand, the proposed ABDP converter consistently achieves a 33-
t0-36% reduction in Pxc across all VCRs. The bottom-right of Fig. 3
shows the flying capacitor voltages with respect to the VCR. In multi-
mode converter [4], discontinuity in Vcr can be observed at certain
VCRs, potentially impeding seamless transitions between VCRs. In
contrast, the ABDP converter is designed to stably maintain Ver = Vo
and Ver = Vin— Vo, thereby facilitating seamless mode changes.

Fig. 4 shows the design details of the ABDP hybrid converter chip.
Five operational phase signals (O—®s) for tri-mode operations are
generated by comparing the error-signal (V&) with four distinct trian-
gular waves (Vrpi—Vres). The interval of Vrpi—Vres are set to imple-
ment the 50%-fixed duty-cycles D, D3, and D; in the HV, MV, and
LV modes, respectively. To promote seamless mode changes, the up-
per-vertex of Vres (Vre3) is designed to coincide with the lower-vertex
of Vrpa (Vre1). In the proposed ABDP design, dynamic voltage switch-
ing necessitates sophisticated gate and body driving techniques. In-
stead of resorting to extra bootstrapping capacitors, this work employs
a ®-adaptive gate and body driver that leverages multi-level voltages
(Vs Vxn, and Vxy) that are inherently given in the ABDP converter.

MEASUREMENT RESULTS

The proposed converter was fabricated in a 180nm CMOS (Fig. 8).
The chip able to supply /o up to 2.5A operates with Vi = 1.8V and
Fsw = IMHz. Tests were performed with Lo = 470nH and Cr = Cr>
= Co (output cap) = 10uF. Fig. 5 shows the measured steady-state
waveforms for Vo= 1.5V, 0.9V, and 0.2V. It is observed that /; was
consistently reduced by 31~36% compared to /o = 1A. Fig. 5 also
demonstrates seamless Vo coverage across a wide VCR range. Note
that any defective voltage or current is invisible in Vo, Vxw, or Ir.. The
top of Fig. 6 shows the load-transient and DVS responses. The bottom
of Fig. 6 displays the measured efficiency curves. Using compact-vol-
ume passive components, a peak efficiency of 94.2% was achieved at
Vo =12V and Io = 0.4A. Fig. 7 summarizes the performance. This
work is the first buck converter capable of seamless coverage across
all VCRs, while maintaining a consistent balance between inductive
and capacitive currents. As a result of these innovations, this work
achieves a current density of 930mA/mm?, which outperforms [2-6].
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Fig. 2: Topology and tri-mode operation of the proposed ABDP hybrid converter.
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Vin [V] 45 34-45 | 3-42 | 28-42 [ 15-33 18
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* Estimated from the reported data

** Lo+ Crs + Chip (0.3mm die height estimation) —*** [6] Single Branch

PE = Peak Efficiency ~ CD = Current Density (= lo/ Total Volume) ~ VCR = Voltage Conversion Ratio (=Vo/Viy)
Fig. 7: Performance summary in caparison with previous state-of-the-arts.
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Fig. 8: Die and PCB photos.
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