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1. INTRODUCTION 
 

Many products and packages undergo vibration in real 
world environments. In transportation environment, they can 
suffer vibration via truck or rail. In operating environment, 
examples include electronics in vehicles, construction 
equipment and aircraft. Serious damage of many types of 
products is expected on this condition. Many products have to 
survive vibration in their daily working life regardless of any 
environments. Vibration testing, in brief, is the shaking or 
shocking of a component or assembly to see how it will stand 
up to real conditions. Its ability to survive in real world can be 
determined through vibration testing. The procedure for 
vibration testing is used in applications ranging from circuit 
boards and aircraft to vehicle and household appliances. 

The vibration testing system or shaking table is a type of 
parallel manipulator. Typically a parallel manipulator consists 
of a moving platform connected by several legs to a fixed 
platform, usually called a base. The paradigm of parallel 
manipulators is the Gough-Stewart platform, which has 6 DOF. 
In recent years, parallel manipulators have drawn much 
attention of researchers and engineers in the area of robotics 
because they are known to provide better accuracy, rigidity, 
load-to-weight ratio and load distribution than serial 
manipulators [1]. It has been many research works about 
practical design to enlarge small workspace and low dexterity 
of parallel manipulators. However, most papers have dealt 
with its kinematic problems than the dynamic modeling and 
control. 

This paper describes the kinematics, dynamics and control 
of 6-DOF shaking table with a bell crank structure. In 
kinematics, joint design is performed using Grübler’s formula. 
The solution of inverse kinematics is obtained [3] and [6]. The 
Jacobian matrix is derived and used to evaluate singularity 
conditions [4]. Considering maximum stroke of the hydraulic 
actuator, collision between links and singularity, workspace is 
computed [5] and [7]-[8]. In dynamics, Newton-Euler method 
is introduced for dynamic formulation [2]. The parallel 
algorithm arises from a judicious choice of the coordinate 
frames attached to each of the legs, which allows for the 
exploitation of the parallel nature of the mechanism itself. For 
the tracking control of the platform, the efficient control 
algorithm is proposed.   

This paper is organized as follows. In Section 2, kinematic 
problems such as joint design, inverse kinematics, Jacobian 
matrix and workspace are analyzed. In Section 3, using 
kinematic properties, dynamic equation is derived. We show 
that a parallel algorithm can be applied to the shaking table 
system. In Section 4, we propose a control algorithm for the 
tracking control. In Section 5, concluding remarks are 
followed. 
      

2. KINEMATICS 
 
2.1 Bell crank mechanism  

The bell crank mechanism is used to convert the direction 
of reciprocating movement. In this shaking table, a bell crank 
structure is used to reduce the amount of space needed to 
install the shaking table and create horizontal displacement of 
the platform. The 6-DOF shaking table with a bell crank 
structure is shown in Fig. 1. 

 

 
 

Fig. 1 The 6-DOF shaking table with a bell crank structure. 
 

2.2 Joint design  
In general, the number of degrees of freedom of a closed 

loop mechanism is not readily obvious. The total number of 
freedoms can be computed with Grübler’s formula, expressed 
as 

     
6( - -1)F l j f= + .                           (1) 

 
where F is the total number of degrees of freedom in the 
mechanism, l is the number of links including the base, j is the 
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total number of joints and f is the total number of degrees of 
freedom associated with joints. 

This shaking table system has two types of hydraulic 
actuators. One is a straight actuator which is a general type. 
The other is a bell crank actuator which has a triangular bell 
crank structure. These two types of hydraulic actuators are 
shown in Fig. 2. 
 

 
 

Fig. 2 Two types of hydraulic actuators in the shaking table. 
 

The mechanism analyzed in this shaking table has 6 
actuated prismatic (P) joints, revolute (R) joints, universal 
(2R) joints and spherical (3R) joints. In Fig. 2(a), the straight 
actuator consists of 3 (1 spherical, 1 prismatic and 1 universal) 
joints. In Fig. 2(b), the bell crank actuator consists of 6 (1 
spherical, 1 prismatic, 1 universal and 3 revolute) joints. In 
case of a bell crank actuator, to analyze the degrees of 
freedom in the mechanism it is transformed into the equivalent 
link structure as shown in Fig. 2(b). Using Grübler’s formula, 
we verify that the total number of freedoms is six, computed 
as  

 
6(14-18-1) 36 6F = + = .                          (2) 

 
2.3 Inverse kinematics  

The inverse kinematics can be described as: given the 
position and orientation of the moving platform, calculate the 
displacements of the actuating devices which can be used to 
attain this given position and orientation. To solve inverse 
kinematics, first it is necessary to establish a set of coordinate 
frames. The reference frame ( , , , )A A AA O x y z  is fixed to the 
base and the coordinate frame ( , , , )B B BB P x y z  is attached to 

the platform. Let AP  and A
B R  position and rotation of the 

moving frame B with respect to the base coordinate frame A. 
A
B R  is a 3 3×  matrix and AP  is a 3 1×  vector, which can 
be expressed as 
 

( , , ) ( ) ( ) ( )
-

-
-

A
B R R R R

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c

α β γ γ β α
γ β γ β α γ α γ β α γ α
γ β γ β α γ α γ β α γ α
β β α β α

=

+⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟
⎝ ⎠

 

.
A

x A y A z AP P x P y P z= + +                            (3) 

 
In case of the straight actuator as shown in Fig. 3, using 

homogeneous transformation, we can write 
 

.1, 2, 3
B

A A A B
i ib P R b i= + =                     (4) 

 

where the left superscript indicates the reference frame in 
which a vector is expressed.  
 

 
 

Fig. 3 The straight actuator in the shaking table.  
 
Let 1, 2,3sid i =  denote the length of the three straight 
actuators respectively, the following equations represent the 
inverse kinematics of the straight actuator of the shaking table. 
 

[ - ] [ - ] 1, 2 , 3A A T A A
si i i i id b a b a i= =             (5) 

 
In bell crank actuator, points 

1iC  and points 
2iC  are 

function of 
iθ  as shown in Fig. 4. 

 

 
 

Fig. 4 The bell crank actuator in the shaking table.  
 
Using the constraint condition that the length of crank rod is L, 

iθ  is computed as 
 

2
2 2 .[ - ] [ - ] 1, 2 , 3A A T A A

i i i iL c d c d i= =              (6) 
 
Let 1, 2,3tid i =  denote the length of the three bell crank 
actuators respectively, the following equations represent the 
inverse kinematics of the bell crank actuator of the shaking 
table. 
 

ti 1 0 1 0d [ ] 1, 2 , 3i i i ic c c c i= =A A T A A- ] [ -           (7) 
 
2.4 Jacobian  

The Jacobian describes the relationship between joint and 
end-effector velocities. The Jacobian of the shaking table 
relates velocities of the mass center of the platform to joint 
velocities as follows 
 

.pl Jx=                                    (8) 
 
where l is actuator length vector and 

px  is displacement 
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vector.  
In the straight actuator, Jacobian matrix is easily derived 

applying conventional velocity vector-loop method. Using the 
definition of angular velocity, the relationship between linear 
and angular velocity of the platform and the displacement 
vector can be written as 
 

1 1 1 2 1 1 1 2 1 3 1 1 1 2 1 3

2 1 2 2 2 1 2 2 2 3 2 1 2 2 2 3

3 1 3 2 3 1 3 2 3 3 3 1 3 2 3 3

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0
0 0 0
0 0 0

A
P

A
s s s s s s s sP

s s s s s s s s

s s s s s s s s

x

v
u v u v w u v w
u v u v w u v w
u v u v w u v w

α α β β β γ γ γω
α α β β β γ γ γ
α α β β β γ γ γ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ + + + + +⎜ ⎟⎝ ⎠
⎜ ⎟+ + + + +
⎜ ⎟⎜ ⎟+ + + + +⎝ ⎠

.m p

y
z

J x

α

β
γ

⎛ ⎞
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝ ⎠

=

  (9) 

 
where A

pv  and A
pω  are the linear and angular velocity of 

the platform respectively and , , , ,i i i si siu v w α β  and 

1, 2,3si iγ =  are the function of ,α β and γ  . In Fig. 3, 
the relationship between actuator velocity and A

pv  and A
pω  

can be written as 
 

( )

A A A A
i si i i

AA B
B i

A A i A A A A
si i s i i P P i

A A A A A
si i P i i P

a d s P b

P b

d s d s v b

d s v b s

ω ω

ω

+ = +

= +

+ ⋅ × = + ×

= ⋅ + × ⋅

 

1 1 1 1

2 2 2 2

.
3 3 33

( )
( )
( )

A T A A T
s A

PA T A A T
s A

A T A A T P
s

d s b s
v

d s b s
s b sd

ω

⎛ ⎞ ⎛ ⎞×
⎜ ⎟ ⎛ ⎞⎜ ⎟

= ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

            (10)                

     

where A
is  is the unit vector from point 

siA  to 
siB . In Eq. 

(9) and Eq. (10), Jacobian matrix of the straight actuator can 
be written as  
 

1 1 1 1

2 2 2 2 .

3 3 33

( )
( )
( )

A T A A T
s

A T A A T
s m p s p

A T A A T
s

d s b s
d s b s J x J x

s b sd

⎛ ⎞ ⎛ ⎞×
⎜ ⎟ ⎜ ⎟

= × =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

         (11) 

 
In the bell crank actuator, Jacobain matrix is derived 

applying velocity vector-loop method and constraint equation. 
Using vector-loop method as shown in Fig. 4, the following 
equation is derived as 

 

1 .- 0A A A
ti i ti i id t d t c+ =                        (12) 

 
where A

it  is the unit vector from point 
0iC  to 

1iC . From 
the constraint condition that the length of crank rod is L, the 
following equation is derived as 
 

2
2 2 .[ - ] [ - ] 1, 2, 3A A T A A

i i i iL d c d c i= =            (13) 
 
Since the vector 

2
A

ic  is the function of 
iθ , Eq. (13) can be 

written as 
 

1 2 3 .
1 ( )i i i i ti ti ti

i

R x R y R z
R

θ α α β β γ γ= + + + + +       (14) 

 
where 

1 2 3, , , , ,i i i i ti tiR R R R α β  and 1, 2,3ti iγ = are the 

function of , ,α β γ and iθ  . Using the fact that 
1

A
ic  is the 

function of 
iθ , Eq. (12) can be expressed as 

 
1 0 2 1 0 1 0

2 2 2 2 3 3
2 32 2

2

( - ) ( - )( - )1 [ ]i i i i i i
ti i i i

i ti ti

c c c c c cd Cp Cp
t d d

θ= +  (15) 

0 0 0 1 1 1
1 2 3 0 1 2 3 1 1 2 3 .[ ] [ ] [ ]A T A T A T

i i i i i i i i i i i it t t t c c c c c c c c= = =   

 

where 
2iCp  and 

3 1, 2,3.iCp i =  are the function of 
iθ . 

Combining Eq. (14) with Eq. (15), the Jacobian matrix of the 
bell crank actuator can be written as 
 

1 2 3( )i
i i i i ti ti ti

i

Sd R x R y R z
R

α α β β γ γ= + + + + +        

1 1 1 1 1 1
11 12 13 1 1 1

1 1 1 1 1 1
1

2 2 2 2 2 2
2 21 22 23 2 2 2 .

2 2 2 2 2 2
3

3 3 3 3 3 3
31 32 33 3 3 3

3 3 3 3 3 3

t t t

t

t t t t P t P

t

t t t

S S S S S SR R R
R R R R R Rd
S S S S S Sd R R R x J x
R R R R R R

d S S S S S SR R R
R R R R R R

α β γ

α β γ

α β γ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞

⎜ ⎟ ⎜ ⎟
= =⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

(16) 

 
where 

iS  is the function of , ,α β γ and iθ  . From the Eq. 
(11) and Eq. (16), the Jacobian matrix of the shaking table can 
be expressed as 
 

.
s

P P
t

J
l x Jx

J
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

                          (17) 

 
2.5 Workspace  

In most cases, it is very difficult to exactly calculate the 
workspace volume of parallel manipulator. The discretization 
method is efficient and useful. The workspace volume can be 
numerically approximated by considering a parallelepiped 
workspace volume *V , which can be evaluated by 
considering the extreme reaches, maximum and minimum, 
along x, y and z axis, if one consider the position space, or the 
extreme reaches along Euler angles axes, for the orientation 
workspace. 

The factors to determine workspace are maximum stroke of 
the hydraulic actuator, collision between links and singularity 
as shown in Fig. 5. Considering maximum stroke and collision, 
workspace is computed as shown in Table 1. 
 

 
 

Fig. 5 Maximum stroke and collision between links. 
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Table 1 The allowable maximum displacement of motion. 
 

Directions Disp.(mm) Directions Disp.(deg)
Longitudinal(x) -250 ~ +250 Roll(α ) -5 ~ +5 

Lateral(y) -250 ~ +250 Pitch( β ) -5 ~ +5 

Heave(z) -500 ~ +500 Yaw(γ ) -10 ~+10
 

To check singularity, condition number is introduced. The 
condition number is defined by Eq. (18) 

 
1

.*J Jλ −=                             (18) 
 

where ⋅  denotes the norm of 2 of a matrix. For high 
values of λ , there are end-effector directions where the 
manipulator can develop much higher forces or velocities than 
in other directions. In many applications, this is not a desirable 
system property. The condition number is plotted for the 
position workspace at 200z mm=  and for the orientation 
workspace at 3γ °= as shown in Fig. 6. 
 

 
 

Fig. 6 Condition number 
 for the position and orientation workspace. 

 
Fig. 6 shows the workspace is well conditioned and the system 
is away from singular conditions. 
 

3. DYNAMICS 
 

To derive parallel algorithms, each of the unknown forces 
and torques associated with one particular leg is decomposed 
into one vector in the direction of the leg and the other vector 
acting in a plane orthogonal to the leg. 

In straight actuator, the free body diagram of the upper and 
lower part of the leg is represented in Fig. 7. 
 

 
 

Fig. 7 Free body diagram of the upper and lower part  
of the straight actuator. 

From Fig. 7 the equations are obtained as follows: first, the 
upper part is considered. The forces and moments are summed 
in the plane orthogonal to the direction of the leg, which leads 
to 
 

1 2

-

.

i i i i
i si u u ui

i i i i i i i i i i
i si i u i i u i

d g m g m a

r d r g n I Iω ω ω

⊥ ⊥+ =

× − × + = + ×
              (19) 

 
where i frame is attached to the actuator and i

uia⊥  is the 
acceleration of the center of mass of the upper part in the 
plane orthogonal to the direction of the upper part. The same 
equations are applied to the lower part. This leads to 
 

3 4

-

- - .

i i i i
i i l l li

i i i i i i i i i i
i i i l i i l i

d e m g m a

r d r e n I Iω ω ω

⊥ ⊥+ + =

× + × = + ×
              (20) 

 
where i

lia⊥  is the acceleration of the center of mass of the 
lower part in the plane orthogonal to the direction of the lower 
part. These last two vectors are obtained from the kinematic 
analysis. From Eq. (19) and Eq. (20), this system forms 8 
scalar equations in 8 unknowns, the unknowns being the 
components of , ,i i i

i si id g n  and i
ie . The solution of this 

system will lead to the determination of the components of 
vector i

sig .  
In bell crank actuator, since the crank rod is connected to 

the platform, the free body diagram of the crank rod is 
represented in Fig. 8 to determine the orthogonal component. 

 

 
 

Fig. 8 Free body diagram of the crank rod  
of the bell crank actuator. 

 
Applying the Euler equation, the following equation is derived 
as 

 

(- ) .
2

L
L L L L B L L L B L

ti L i L Li Li L Li
LL g m g I Iω ω ω× + × = + ×         (21) 

 
where L frame is attached to the crank rod and L B

LI  is the 
inertia tensor for point B. The orthogonal vector L

tig  can be 
determined from the Eq. (21). 

When the determination of the orthogonal components is 
performed for each leg - in parallel –, only 6 unknown 
quantities will remain on the free body diagram of the 
platform, i.e., the forces in the direction of each leg. Applying 
Newton-Euler equation to the platform, the following 
equations are obtained as 

 

3 3 3 3

1 1 1 1

A A A A
p p p

B B B B B B B B B
p i si i si i ti i ti

i i i i

F G m g m v

n b f b g d f d g
= = = =

+ + =

= × + × + × + ×∑ ∑ ∑ ∑

     (22) 
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with 
 

3 3

1 1
3 3

1 1
.

A A
s si t ti s t

i i

A A
s si t ti s t

i i

F f F f F F F

G g G g G G G

= =

= =

= = = +

= = = +

∑ ∑

∑ ∑

 

 
where B

pn  is the sum of the moments applied to the platform. 

Using the solution of Eq. (22), the hydraulic actuator force 
i

sih  in the straight actuator can be obtained applying to 
Newton equation to each of the upper parts of the legs, in the 
direction of the leg. This leads to 
 
- .i i i i

si si u i u uif h m g m a+ + =                        (23) 
 
where i

uia  is the acceleration in the direction of the leg. 
Since the upper and lower part of the bell crank actuators 

are not directly connected to the platform, the hydraulic 
actuator force i

tih  can be obtained after the dynamics of the 
crank and crank rod is analyzed. From Fig. 8, using the 
orthogonal component L

tig  and directional component L
tif , 

the L
Lig  and L

Lif  can be obtained from the following 
equation as 

 
-

- .

L L L L
ti Li L i L Li

L L L L
ti Li L i L Li

g g m g m a

f f m g m a

⊥ ⊥+ + =

+ + =
                     (24) 

 
where L

Lia⊥  and L
Lia  are the orthogonal and directional 

acceleration of the crank rod respectively. 
To obtain the directional component of the upper part in the 

bell crank actuator, orthogonal component i
Aig  must be 

determined. The free body diagram of the upper and lower 
part of the bell crank actuator is represented in Fig. 9. Unlike 
the straight actuator, the upper and lower part of the bell crank 
actuator move on the plane. The forces and moments are 
summed in the plane orthogonal to the direction of the leg, 
which leads to 
 

 
 

Fig. 9 Free body diagram of the upper and lower part  
of the bell crank actuator. 

 
2 1 2

1 2 1

4 3 4

( ) (- )

( )

( ) (- ) .

i i i i B i
i Ai i i u u i

i i i i A i
i Bi i i u u i

i i i i D i
i Bi i i l l i

r r y g n r y m g I

r r y g n ry m g I

r r y g n r y m g I

ω

ω

ω

+ × + + × =

+ × + + × =

+ × − + × =

             (25) 

 

From Eq. (25), this system forms 3 scalar equations in 3 
unknowns, the unknowns being the components of ,i i

Ai Big g  
and i

in . The solution of this system will lead to the 
determination of the component i

Aig .  
Using transformation between two frames, the force A

Aif  
acting in the crank can be expressed as the function of i

Aif  . 
 

1

2

( )

( )

i
AiA A i A i A i

Ai i Ai i Ai i Ai i
Ai

g f
f R g R f R g

g f

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟

⎝ ⎠

             (26) 

 
Finally, the dynamics of the crank is analyzed to determine 

the directional component i
Aif . The free body diagram of the 

crank is represented in Fig. 10.  
 

 

 
 

Fig. 10 Free body diagram of the crank. 
 

Applying the Newton-Euler equations, the following equations 
are derived as 
 

1 2 3

- -

.

A A A A A A
Ai Ci Li Li t t ti

A A A A A A A B A
Ai Ci t t ti

f f f g m g m a

r f r f r m g I ω

+ + =

× + × + × =
              (27) 

 
where A

tia  is acceleration of the crank. From Eq. (27), the 
directional component i

Aif  can be obtained.  
The hydraulic actuator force i

tih  in the bell crank actuator 
can be obtained applying to the Newton equations to each of 
the upper parts of the legs. This leads to 
 
- .i i i i

Ai ti u i u uif h m g m a+ + =                        (28) 
 

The solution of inverse dynamics derived above is almost 
completely parallel. Only one of the steps - the application of 
the Newton-Euler equations to the platform – must be 
performed on one single processor.   

 
4. CONTROL 

 
For the tracking control of manipulators, joint-based control 

schemes have been used. The joint-based control schemes, 
that is, schemes in which we develop trajectory errors by 
finding the difference between desired and actual quantities 
expressed in joint space. An alternative approach is 
Cartesian-based control which is based on forming errors in 
Cartesian space. 

In the tracking control of parallel manipulators, model 
based control schemes such as computed torque method and 
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sliding mode control were proposed. Since these control 
schemes use joint based reference input and measured output, 
synchronous problem can occur. Cartesian-based scheme can 
be more efficient than joint-based scheme if synchronousness 
is considered. However, Cartesian-based controllers must 
perform many computations in the loop because of the 
kinematics and other transformations which are inside the 
loop. 

Joint-based control using Cartesian-based command 
generator is proposed as shown in Fig. 11.  

   

 
 

Fig. 11 Joint-based control  
using Cartesian-based command generator. 

 
Unlike the previous joint-based control schemes, this control 
scheme uses sensors attached to the platform as well as 
sensors attached to the actuators. Consequently, there is no 
need for solving the forward kinematic problem with highly 
nonlinear simultaneous equations. Using trajectory conversion, 
the joint-based control is performed. 

 
5. CONCLUSION 

 
In this paper, 6-DOF shaking table with a bell crank 

structure was introduced. The bell crank mechanism is used to 
reduce the amount of space needed to install and create 
horizontal motion. In kinematics, joint design was performed 
using Grübler’s formula. The Jacobian matrix was derived in 
the velocity domain and used to check singularities. 
Considering the maximum stroke, collision and singularity, 
workspace was computed. 

In dynamics, the solution of inverse dynamics was obtained 
using the Newton-Euler method. To derive parallel algorithms, 
each contact force was decomposed into one force acting in 
the direction of the leg and the other acting in the plane 
orthogonal to the direction of the leg. Except for the 
application of the Newton-Euler equations to the platform, 
processors were completely parallel. 

Considering synchronous problem, we proposed the 
joint-based control using Cartesian-based command generator 
for the tracking control of the shaking table. Unlike the 
previous control schemes, Cartesian information is directly 
measured. Using joint-based control schemes such as 
computed torque method and sliding mode control, the 
proposed control algorithm will be verified. This is left for the 
future work.     
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