Available online at www.sciencedirect.com

b&@%@ SCIENCE@DIREGT“ Computational
§ U Geometry

A 'ir.' i Theory and Applications
ELSEVIER Computational Geometry 30 (2005) 59—77

www.elsevier.com/locate/comgeo

Optimal spanners for axis-aligned rectangles

Tetsuo Asané, Mark de Berd, Otfried Cheong*, Hazel Everett,
Herman Haverko®, Naoki Katoh, Alexander Wolff

2 JAIST, Japan
b Technische Universiteit Eindhoven, the Netherlands
€ KAIST, South Korea
d LORIA, Nancy, France
€ BRICS, Department of Computer Science, University of Aarhus, Denmark
f Kyoto University, Japan
9 Fakultat fur Informatik, Universitat Karlsruhe, Germany

Received 23 December 2003; received in revised form 6 September 2004; accepted 8 September 2004
Available online 7 October 2004
Communicated by S. Suri

Abstract

The dilation of a geometric graph is the maximum, over all pairs of points in the graph, of the ratio of the Euclid-
ean length of the shortest path between them in the gragthair Euclidean distance. We consider a generalized
version of this notion, where the nodes of the graph are not points but axis-parallel rectangles in the plane. The arcs
in the graph are horizontal or vertical segments connecting a pair of rectangles, and the distance measure we use i
the L1-distance. The dilation of a pair of points is then defined as the length of the shortest rectilinear path between
them that stays within the union of the rectangles and the connecting segments, divided by-tfisiance. The
dilation of the graph is the maximum dilation over all pairs of points in the union of the rectangles.

We study the following problem: givem non-intersecting rectangles and a graph describing which pairs of
rectangles are to be connected, we wish to place the ctngeegments such that the dilation is minimized. We
obtain four results on this problem: (i) for arbitrary graphs, the problem is NP-hard; (ii) for trees, we can solve the
problem by linear programming on(@?) variables and constraints; (iii) for paths, we can solve the problem in

© Part of this research was done during the First Utrecht-Carleton Workshop on Computational Geometry. H.H. acknowledges
support by the Netherlands’ Organization for Scientific Research (NWO).
* Corresponding author.
E-mail addresses-asano@jaist.ac.jp (T. Asano), m.t.d.berg@tue.nl (M. de Berg), otfried@tclab.kaist.ac.kr (O. Cheong),
everett@loria.fr (H. Everett), herman@haverkort.net (H. Haverkort), naoki@archi.kyoto-u.ac.jp (N. Katoh),
awolff@ira.uka.de (A. Wolff).

0925-7721/$ — see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.09.001

60 T. Asano et al. / Computational Geometry 30 (2005) 59-77

time O(n3logn); (iv) for rectangles sorted verticalBlong a path, the problem can be solved im®) time, and a
(1+ e)-approximation can be computed in linear time.
0 2004 Elsevier B.V. All rights reserved.

Keywords:Geometric spanners; Dilation optimization; Isothetic rectangles; Manhattan distance

1. Introduction

Geometric networks arise frequently in our everyday life: road networks, telephone networks, and
computer networks are all examples of geometric networks that we use daily. They also play a role in
disciplines such as VLSI design and motion planning. Almost invariably, the purpose of the network is to
provide a connection between the nodes in the network. Often it is desirable that the connection through
the network between any pair of nodes be relatively short. From this viewpoint, one would ideally have a
direct connection between any pair of nodes. This is usually infeasible due to the costs involved, so one
has to compromise between the quality and the cost of the connections.

For two given nodes in a graph, the ratio of their distance in the graph and their ‘direct’ distance is
called thedilation or stretch factorfor that pair of nodes, and the dilation of a graph is the maximum
dilation over all pairs of nhodes. For geometric networks, this is more precisely defined as follov§s. Let
be a set of: points (in the plane, say), and Igtbe a graph with node sét Now the dilation for a pair of
points p, g is defined as the ratio of the length of the shortest path lietweenp andg, and the length
of the segmenpgq. (The length of a path is the sum of the lengths of its edges.) Again, the dilati@n of
is the maximum dilation over all pairs of points $h A graph with dilationr is called as-spanner Ideal
networks are-spanners for smatl with small cost.

Spanners were introduced by Peleg and Schaffer [8] in the context of distributed computing, and by
Chew [3] in the context of computational geometry. They have attracted much attention since—see for
instance the survey by Eppstein [4]. The cost of spanners can be measured according to various criteria
For example, it is sometimes defined as the number of edges (here the goal is to find a spanner with
O(n) edges), or as the total weight of the edges (here the goal is to find a spanner whose total weight is
a constant times the weight of a minimum spanning tree). Additional properties, such as bounding the
maximum degree or the diameter, have been considered as well.

We generalize the notion of spanners to geometric networks whose nodes are rectangles rather that
points. LetS be a set ofi non-intersecting, axis-parallel rectangles andHdbe a set of axis-parallel
segments connecting pairs of rectangles. For any two pgingsin the union of the rectangles, the
dilation is now the ratio of the length of the shortest rectilinear path in the network bepwaedg and
their L,-distance. Here a path in the network is a path that stays within the union of the rectangles and
the connecting segments. The dilation of the network is the maximum dilation over alppairé\gain,
our aim is to construct a network whose dilation is small. To illustrate the concept, imagine one is given
a number of rectangular buildings, which have to be connected by footbridges. It is quite frustrating if, to
walk to a room opposite ones own room in an adjacent building, one has to walk all the way to the end of
a long corridor, then along the footbridge, and then back again along the corridor in the other building.
Hence, one would usually place the footbridge in the middle between buildings. Following this analogy,
we will call the rectangles in the inpbuildingsfrom now on, and the connecting segmerisiges We
call the underlying graph of the network thedge graph

T. Asano et al. / Computational Geometry 30 (2005) 59-77 61

51 —

52

53
Ay

S0
Fig. 1. A bridge graph and a bridge configuration.

The generalization we study introduces one important additional difficulty in the construction of a
spanner: for points one only has to decidiich edges to choose in the spanner, but for buildings, one
also has to deciderhereto place the bridge between a given pair of buildings. It is the latter problem we
focus on in this paper: we assume the topology of the network (the bridge graph) is given, and our only
task is to place the bridges so as to minimize the dilation.

Formally, our problem can be stated as follows: we are given & ekaxis-parallel disjoint rectangles
(buildings) in the plane, a gragh with node setS, and for each are of G abridge regionA,, an axis-
aligned rectangle connecting the two buildings. Buildings may degenerate to segments or points. The
bridge graphG must only have arcs between buildings that can be connected by a horizontal or vertical
segment, and may not have multiple edges or loops. The bridge regions must be disjoint from each other
and the buildings. Our goal is to find a set of horizontal or vertical bridges lying in the bridge regions that
has minimum dilation.

Fig. 1 shows a bridge graph (the bridge regions are shaded) and a set of possible bridges. Note that the
bridge regionsA, and A3 simply allow any bridge between the two buildings, but bridge reglerhas
been chosen so as to avoid intersectifgr the bridge betweesy andss.

Our results are as follows.

e In general, the problem is NP-hard.

o If the bridge graph is a tree, then the problem can be solved by a linear program @fthv@riables
and constraints.

e If the bridge graph is a path, then the problem can be solved:iilGgn) time.

o If the bridge graph is a path and the buildings are sorted vertically along this path, the problem can
be solved in time @:2). A (1 + ¢)-approximation can be computed in linear time.

2. Thebridgegraph isarbitrary

In this section we show that the bridge-placement problem is NP-hard if the bridge graph is allowed to
be arbitrary. We prove this by a reduction fromrR¥1TION. The input to RRTITION is a setB of n posi-
tive integers, and the task is to decide whetBecan be partitioned into two subsets of equal sum.
PARTITION is NP-hard [5, Problem SP12].

Theorem 1. It is NP-hard to decide whether the bridges in a given bridge grapaectangular
buildings can be placed such that the dilation is at nibst

62 T. Asano et al. / Computational Geometry 30 (2005) 59-77

Let B:={Bo, ..., B._1} be an instance ofARTITION. For 0< i < n, we define

o ::,B,-/(Z 3 ﬂj).

0<j<n

Note thatzogjq a; =1/2, and thatB can be partitioned equally if and only fi&, ..., «,_1} can be
partitioned into two subsets of surjidl. We create a bridge gragh(B) with 8z + 2 buildings, as follows:

e for each 0< i < n, we have two point-shaped buildings, nam@&y.= (4i,0) and Q; := (4i + 2 —
20, 0);

e for each 0< i < n, we have four segment-shaped buildings, nanfely= {4i} x [1 — «;, 1] and
Si :==1{4i + 2 — 20;} x [1—«;, 1], and their mirrored imageR; := {4i} x [-1,o; — 1] and §] :=
{41 +2— 20(,'} X [—1, o — 1],

e for each O<i < n, we have two point-shaped buildings, namé&ly= (4 — 1, 1) and7; := (4 — 1,
-1);

¢ we have two more point-shaped buildingjs; := (0, 2n + 3/4) and S’ ; := (0, —2n — 3/4), and two
more segment buildingR, := {4n} x [1, 2n 4+ 3/4] and R}, := {4n} x [—2n — 3/4, —1].

The arcs inG(B) are as follows:

o for eaCh O< i< n,we ha.Ve arC$PI7 Ri)v (Pia Rl/)’ (Qia Si)’ (Qia Sl/)v (Ri7 Sl) and(Rl/7 Sl/)’
e foreach O<i <n, we have arc$S;_1, T;), (T;, R)), (S._,, T)), (T}, R)) and(T;, T});
e we have arc$S_i, Ro), (5”1, Rp), (Su—1, Ry, (S,_1, R)), (R,, R}).

Observe thatr;, S;) and(R;, S!) are the only bridges that can still be moved, all other bridges are fixed
by the geometry. The construction is illustrated in Fig. 2; the bridges to be placed are indicated as gray
segments or rectangles. For the sake of clarity, we chose different scalesxoratitey-axis.

The reduction can clearly be done in polynomial time. The following lemma now implies the theorem.

==

1 o Ry S oLl i T3
: } o Ry 's) Ro | | S5y Rs Sy
S Qo Py 1 Py Q2 Py Qs

0—‘:_ llou--il:_--b}é““} ----- 0;1“-4---4} ~~~~~ | +8m} ---------- 0-1-2~-+--n--} ~~~~~ er >
2

g oo | R, EHEl E R, s,
- |®m % m 1 R

== R

—2n — % ; l g/ 'n

Fig. 2. An instance of the bridge decision problem.

T. Asano et al. / Computational Geometry 30 (2005) 59-77 63

Lemma 2. The setB can be partitioned into two subsets of equal sum if and only if the bridggsan
can be placed such that the dilation is at mast

Proof. “If” Suppose we can place the bridges §@(B) such that the dilation is at most 2. Then the
dilation must be at most 2 for any paiP;, Q;), which implies that either the bridger;, S;) must be
placed in its bottommost position OR;, S/) must be placed in its topmost position. Lietienote the set
of indices for which the former holds, aridthe set of indices for which the latter holds.

Now considerS_; and the top vertex oR,. The L;-distance between them ia 4The shortest path
between them i (B) cannot visit any point on the-axis, because the length of such a path would
be at least 4 + 2(2n + 3/4) so its dilation would be larger than 2. Hence, the shortest path must visit
Ro, So, T, . .., Ry_1, S,_1 in order from left to right. Anyi € I induces an extra vertical distance; 2
Adding the vertical distance betweén; and Ry and alongR,, and the horizontal distance traversed, we
get a total length of at leadt;_, (2«;) + 2(2n — 1/4) + 4n. Hence,} ,_, o; < 1/4. A similar argument
for §” ; and the bottom vertex ak;, shows that) ,_, «; < 1/4. It follows that/ and!’ induce an equal
partition of B.

“Only if” Suppose there is an equal partition 8f Then there are disjoint sets of indicésand I’
with JUI'={0,...,n — 1} such that)_,_, o; =), a; = 1/4. Fori € I place the bridgesR;, S;)
and (R}, S}) in their bottommost position, and fére I’ place the bridgesR;, S;) and(R;, S;) in their
topmost position.

Consider two pointg, ¢, each lying on a building, withp, < ¢,. If p. = ¢«, theng can be reached
without any detour. Otherwise, we distinguish two cases.

e The first case is that or g (or both) have non-zerg-coordinate. Assume without loss of generality
that p, > 0 or thatp, = 0 andg, > 0. Consider the path that goes up or down frprantil reaching
y =1, then goes to the right while staying above ihaxis until thex-coordinate of; is reached,
and then goes straight down or upgto
If p=5_1andg € R,, then the length of the path is bounded by

An+) (2a;) +2(2n — 1/4) = 8n.
iel
Since|p, — ¢,| = 4n, the dilation is at most 2.
If p#S_10rq ¢ R,, the length of the path is bounded by

Px = qul +2) i+ 11— pyl 4+ 11— gyl =px — gul +1/2+ 11— py| + 1= g.
iel
If p, andg, are not both< 1, then|1 — p,| + |1 —g,| = |p, — ¢, |, otherwise|1 — p,|+ |1 —¢q,| =
Ipy — gy + 2|11 — max(py, q,)| < |py — gy + 1/2. In both cases the length of the path is at most
|px — qx| + |py — gy + 1, and from|p, — g, | > 1 it follows that the dilation is at most 2.

e The second case is that = ¢, = 0. Now the vertical distance traversed by the shortest path is at
most 2+ >_,_,(2e;) =5/2. Hence, iflp, — g.| > 5/2, the dilation is at most 2. Bup, — ¢.| <5/2
implies thatp = P; andg = Q; for some 0< i < n orthatp = Q; andg = P;,, for some 0< i < n.

In the former case the dilation is 2 because eitf®y; S;) is bottommost or(R;, S!) is topmost.
In the latter case the dilation is less than 2 because the vertical distance traversed is exactly 2 and
lpx —qx1>2. O

64 T. Asano et al. / Computational Geometry 30 (2005) 59-77

3. Thebridgegraphisatree

In this section we will show that the bridge-placement problem can be solved by a linear program if
the bridge graph is a tree. We start by introducing some terminology and notation, and by proving some
basic lemmas.

As before, we denote the bridge graphdyAny set of bridges realizing will be called aconfigura-
tion.

Given a configuratiorB and two pointsp andg in the union of all buildings, we use(p, ¢, B) to
denote the family of rectilinear shortest paths frpno ¢ within the configuration (that is, paths whose
links lie inside buildings or on bridges). The paths of this family are essentially the same, they differ only
in how they connect two points inside the same building, and so we will simply speaktakawique
pathz(p, g, B). Thedilation of the pathmr = 7 (p, g, B) is dil() := ||/l pq|l, where|r| is the total
length ofr and| pq|| is the L1-distance ofp andg. Fig. 3 shows a configuration and an example path.

Thedilation dil (B) of a configurationB is defined as the maximum dilation of any path with respect
to B. Our aim is to find a configuration of minimum dilation. We first characterize pairs of points that are
responsible for the dilation of a given configuration.

Lemma 3. Leto be the dilation of a configuratio® whose underlying graph is a tree. Then there are
points p and g with dil(z (p, ¢, B)) = o such that the closed bounding boxptnd g does not contain
any point of a building other thap andg, and at least one of the poingsandgq is a building corner.

Proof. Among all pairs of pointqp, ¢) that have maximum dilation with respect By consider the
subset of pairs wherfgpqg|| is minimum. Choose a paip, ¢) from this subset wherg is lexicographi-
cally smallest. Lep be the closed bounding box pfandg, and assume there is a poing g distinct
from p andgqg that belongs to a building. By our choice @, ¢), we have|z(p,r, B)| < o| pr| and
|7 (r,q, B)| <ollrqll. Sincer € B we have| pg| = ||prll + lIrgll. Combining with the triangle inequal-
ity we obtain

|7(p.q.B)| <|n(p,r,B)|+|n(r,q. B)| <ollprl+ollrgll = ollpgll = |7 (p.q, B)

a contradiction, so no such poink g exists.

It immediately follows thatp andg are on the boundary of their buildings. It remains to prove that at
least one of them is a building corner. Assume to the contrary that both are on the interior of a building
edge. Then eithep and g have the same-coordinate and lie on the top and bottom edge of their
buildings, or they have the samecoordinate and lie on the left and right edge of their buildings. We
discuss the first case, the second case is analogous. Clearly, movingdrudp the same distance to the
left or right does not changépg||. But what aboutz (p, g, B)|? Let£ be the vertical line througl and
q, and lete and f be the points where (p, ¢, B) leaves the buildings containingandg, respectively.

If e and f lie on opposite sides dfas in Fig. 4, we can move andg slightly to the left without changing
dil(z(p, g, B)), a contradiction to the assumption thais lexicographically smallest. It follows that
and f lie on the same side df (including ¢ itself), and son (p, g, B)| increases if we move andg
into the opposite direction, a contradiction to the assumption th@t @il ¢, B)) is maximal. O

’

A point pair (p, g) as in the lemma—its bounding box contains no other point of any building and
at least one op andgq is a building corner—will be called w@isible pai—see Fig. 5 for examples. We

T. Asano et al. / Computational Geometry 30 (2005) 59-77 65

p,___ﬂliqﬂ____j
| iq
] 7, T
B 3
m(p,q, B) 7 |
Fig. 3. Fig. 4. Fig. 5. Fig. 6.

denote the set of all visible pairs B} Note that the second statement of the lemma does not hold if there
are cycles in the bridge graph—the maximum dilation may occur between two points in the interior of
building edges, as in Fig. 6.

Lemma 4. For any set of: buildings, there are at mo€(»?) visible pairs and they involve at mak®s
points. These points can be compute®ii logn) time.

Proof. Clearly there are at most(@?) visible pairs where both points are building corners. These pairs
involve only the at most# building corners. Consider a visible pdip, ¢) where onlyp is a building
corner. Thery can be found by shooting a vertical or horizontal ray frprantil it hits another building.

It follows that for each building cornegrs there are at most two choices fprso there are at most:&uch
visible pairs, and at most:8candidates for non-corner points that can be involved in a visible pair. They
can be found in @:logn) time by computing a vertical and a horizontal decomposition of the set of
buildings [2]. O

Lemmas 3 and 4 allow us to compute the dilation of a given configuration efficiently. The quadratic
bound is tight: even if the bridge graph is a path, there caf?) visible pairs.
Given a bridge graply, our goal is to minimize

max dil(w(p, g, B)
(p.q)eV (P-4)

over all configurations® realizingG. We will now reformulate this problem as a linear program.

Theorem 5. If the bridge graphg is a tree, finding a minimume-dilation bridge placement can be reduced
in O(n®) time to solving a linear program wit®(rn?) variables and constraints, whereis the number
of bridges in the bridge graph.

Proof. For each edge of G, we introduce a variablé&, specifying the position of the corresponding
bridge; X, is the x-coordinate of a vertical bridge or thecoordinate of a horizontal bridge. We also
introduce a variableZz. Our linear program will be such that a variable assignment is feasible if and
only if the bridge assignment prescribed by tkig is a configuration realizing; with dilation < Z.
Minimizing Z will then solve the bridge-placement problem.

We will need a number of extra variables. We first define a set of pbiriy taking all points that may
be involved in a visible pair (in the sense of Lemma 4), as well as all bridge endpoints. By Lemma 4,
the size ofU is O(n). Some of the points i/, namely the points in a visible pair, are of the form
(const cons), where “const” means: any constant. Other point&/imre of the form(const X,) (the

66 T. Asano et al. / Computational Geometry 30 (2005) 59-77

endpoints of a horizontal bridge) @¥., consy (the endpoints of a vertical bridge). For each pair of
pointsu andv from U that lie in the same building, we introduce an extra varidbje.

We can now describe the linear program. For edchwe need two simple constraints of the form
X. > const andX, < const, ensuring that the bridge indeed lies in the bridge region. For Bagh
we add constraints enforcind,,, > |uv||, as follows. Letu = (x,, y,), v = (x,, y,) (recall that each
coordinate is either a constant, or one of the varialflegor some edge). Then we add the constraints:

Dy 2 xy — Xy + Yu — Yus
Dy 2 xy — Xy + Yu — Yus
Dyy 2 xy — Xy + Yo — Yus
Dy 2 xy — Xy + Yo — Yu-

Clearly, these four constraints together guaranteefhat> ||uv||.

Finally, we introduce one constraint for each pairg € U. Let bl(p, ¢) be the total length of all
bridges traversed by (p, g, B). Sinced is a tree, the buildings and bridges traversedrloy, g, B) are
independent of the configuration, andtdp, ¢) is a constant. We can now write

7 (p.q, B)| =bl(p,q)+) _ lluvl,
where the sum is over the entry and exit poimtandv of = (p, g, B) for each building traversed. Note
thatu, v € U, andu andv lie in the same building. We introduce the constraint

bl(p.9) + > _ D < Z-Ipqll.
uv

We now argue that if a variable assignment is feasible in this LP, then the bridge assignment prescribed
by the X, is a configuration realizing with dilation < Z. Indeed, consider a visible pdip, ¢). We have

7 (p.q. B)| =bl(p.q) +) luvl <bl(p.)+ Y D < Z-lIpqll.
uv uv
and sodi(z(p,q, B)) < Z.

On the other hand, assume there is a configuralorealizing G. Let X, be the placement of the
bridgee in B, let D,, = |luv|, and letZ be the dilation ofB. It is now easy to see that this variable
assignment is feasible.

It follows that the bridge-placement problem can be solved by minimiZingith respect to the LP
described.

The LP can be constructed in(@¥) time: establishing/ costs Qn logn) time (Lemma 4), and @?)
constraints are generated. Listing thézDvariables in the constraint for a pai, ¢ € U boils down to
finding the path in the bridge tree fromto ¢. This can be done in @) time per constraint, for a total
time of O(n®). O

4. Thebridge graph isapath

In the previous section we have given a linear program for the bridge-placement problem for the case
where the bridge graph is a tree. Linear programs can be solved in practice, and for integer coefficients,

T. Asano et al. / Computational Geometry 30 (2005) 59-77 67

Fig. 7. U-turns and their outer sides.

interior-point methods can solve them in time polynomial in the bit-complexity of the input [6]. It is
not known, however, if they can be solved in polynomial time on the real RAM, the standard model
of computational geometry. In this section, we give polynomial time algorithms for the case where the
bridge graph is a path.

Since the bridge grapti is a path, we can number the buildings and bridges so that bbjdggnnects
buildingss;_; ands;, for 1 <i < n (so there arex + 1 buildings and: bridges). Before we continue,
we need to introduce some more terminology. We consider arpathr (p, g, B) to be oriented fronp
to g. After traversing a bridgé, the path can continue straight on to traverse the next btidigé andb’
are collinear. In all other cases, it has to turn.

Given a pathr, alink ¢ of 7 is a maximal straight segment of the path. A link can contain more than
one bridge if they are collinear. For example, in Fig. 7 there is a link contaimiramd b,, and another
link containingbg, bg andbq.

The pathr turns at both ends of a link (except for the first and last link). The linkriglat U-turn if =
turns right before and after the link. l&ft U-turnis defined symmetrically. In Fig. 7, the links containing
bridges(b1, by), (ba, bs) and by, are right U-turns, while the links containing, (bg, by, b19), b11 and
(b13, b14) are left U-turns. Note that there can be U-turns that do not contain any bridges, such as the link
of & inside buildingsg in Fig. 7.

Theinner sideandouter sideof a U-turn are rectangular regions infinite on one side, and bounded by
the line supporting the link and the two lines orthogonal to it through the first and last points of the link.
The outer side lies locally to the left of a right U-turn, or to the right of a left U-turn, the inner side lies
locally to the right of a right U-turn or to the left of a left U-turn. In Fig. 7, the outer sides of all U-turns
are shaded.

U-turns are the links of a path that determine its dilation, as the following lemma shows.

Lemma 6. Let B and B’ be configurations,p, ¢) a visible pair, andr := n(p,q, B) and 7’ :=
w(p,q, B’) the paths betweep and g with respect to the two configurations.dil (') < dil(;r) then
there exists a U-turt containingd; ... b; of = such that the corresponding bridgés ..., b’ of B’ lie
strictly on the inner side of.

68 T. Asano et al. / Computational Geometry 30 (2005) 59-77

Proof. For each U-turrt of r, shade the outer side éfas in Fig. 7. It is easy to see thatis a shortest
rectilinear path fronmp to ¢ that visits all the shaded regions in order. Now suppose that therpditas
smaller dilation tharnr and that there is no U-turiof 7 such that the corresponding bridgesndflie
strictly on the inner side of. Thenx' visits the shaded regions in the same order aand is therefore
at least as long as, a contradiction to ditz’) < dil(w). O

4.1. The decision problem

We will give an algorithm that takes as input the set of buildisgs. ., s, and a real number > 1,
and computes a configuratighwith dil(B) < o, or determines that no such configuration exists.

The algorithm computes setsI, I», ..., I,, wherel; is a set of possible bridges betwegn, ands;.
The sets are defined recursively as follows. Assumefthat., /;_; have already been defined. For each
visible pair(p, ¢) with p € U’jj)sj andq € s; we definel (p, ¢) as the set of bridgels connectings;
ands; such that the following holds: there is a set of bridges I, b, € I, ..., b;_1 € I;_; such that
dil((p, q, (b, ..., b;))) <o.Finally, I; is the intersection of all (p, g).

Note that for each visible paitp, ¢g) we can choose the bridges In, ..., I;_; independently. This
makes it possible to compute efficiently, as we will see below. On the other hand, it implies that not
every sequence of bridges chosen from the sets will be a configuration with dilation at-+rostr main
lemma will be to show that such a sequence does indeed exist.

The opposite direction is nearly trivial: if a configuration with dilation at mosiists, it can be found
in the sets we constructed, as we show now.

Lemma7.LetB = (b1, by, ..., b,) be a configuration such that ¢ I; for somei. Thendil(B) > o.

Proof. Leti be the smallest index withy ¢ I;. Sinceb; ¢ I;, there exists a visible paip, ¢) with p € s;,

Jj <1i,andgq €s; such that for any set of bridges chosen fréim.. ., I;_; the path betweep andg that
uses these — 1 bridges and the bridge has dilation larger thaa. Since by our choice of we have
by € I, for k < i, we have indeed dilt (p, ¢, B)) > 0. O

We first argue that the sefscan be represented and managed easily.

Lemma8. Letly, I, ..., I, be defined as above. Then theoordinates(y-coordinate$ of the bridges
in each set form an interval.

Proof. Itis sufficient to show that the sei$p, g) are intervals. Consider a visible pay, g) with p € s;
andq € s;. Without loss of generality, assume the bridged ip, ¢) to be vertical. Take three bridges
a, b, c with x-coordinates:, < b, < ¢, anda, c € I (p, g). We will show thatb € I (p, g).

Due to symmetry, we can assume> b,. Sincea € I(p, g), a pathr = n(p, q, (by, ..., b;_1,a))
exists (fat gray in Fig. 8) with dilv) < o that uses bridgéls, € I, ..., b;_1 € I, _;. Now we can exchange
the part ofr from whererr entersa to whererr reaches; by a piece that usds instead ofa (dashed
black in Fig. 8). This new path is at most as longmashich shows thab € I (p,¢). O

Once we know, ..., I,,, we can recursively compute a configuration with dilation at rmosthoose
an arbitrary bridge, € I,. If bridgesb,_1,b,_», ..., b;y1 have been computed, choose a bridge I;

T. Asano et al. / Computational Geometry 30 (2005) 59-77 69

Fig. 8. Proof of Lemma 8. Fig. 9. Proof of Lemma 9.

whose distance frorh; 1 is minimal. Sincel; is an “interval of bridges”, this implies that either and
b;,1 are collinear, ob; is one of the extreme bridges inh We now prove that this approach is correct.

Lemma9. Letly,..., I, be given as defined above. A configurat®mvith dilation dil (B) < o exists if
and only if7, # @. If it exists, it can be computed @(n) time from the intervals.

Proof. The “only if” part follows from Lemma 7. We show the “if” part by proving that the configuration
B = (by, ..., b,) defined above has dilatiog o. Since this configuration can clearly be computed in
linear time from the intervals, the last statement of the lemma will follow at the same time.

Assume that dilB) > o. Then there is a visible pailp, ¢), such that diiz(p, ¢, B)) > 0. Letn =
n(p,q, B), and lets,, s, be the buildings containing andg. Without loss of generality we can assume
u < t. Sinceb, € I, there is a sequence of bridges ..., b,_, with b, € I;, such that the path’ =
7(p,q, (b,b,_4, b)) has dilation at most.

We have diln’) < o < dil(r). By Lemma 6 there is a U-turt= (b;, ..., b;) of = (without loss of
generality assumed to be a left U-turn) such that all the bridges., b, lie strictly to the left of¢, see
Fig. 9.

The last bridge of botlr andr’ is b,, soj < ¢. It follows thatm passes through, 1. Sincel is a left
U-turn, the bridgeb; 1 is strictly to the left ofp;. By definition ofb;, however, this implies that; is the
left endpoint of/;, andb;. ¢ I;, a contradiction. O

Given a pointp in a buildings,, we can define a configuratiaB? that is, in a sense, optimal for
by choosing bridges?, ..., b as follows. Fork < u, choose an arbitrary bridge’ € 1. Choose bridge
b{jH as close as possible o The remaining bridges are chosen recursively, by chodsing /; to be
as close td; ; as possible. Let:/ denote the endpoint @’ on the buildings;. The following lemma
shows thatB? is indeed optimal fop.

Lemma 10. Let intervals/y, ..., I, be as defined above, lgte s, and g € s;, with u < . Further-
more, letB = (b4, ..., b,) be a configuration withh; € I; for i < ¢, and let B’ be the configuration
(b1, ..., by, beH, el bf’_l, bs,...,b,). Thendil(p, g, B") <dil(p, g, B).

Proof. Letr = (p,q, B) andn’ = n(p, q, B’). Assume that ditz’) > dil(;r). By Lemma 6 there is
then a U-turn¢ = (7, ..., bj.’) of 7’ (without loss of generality assumed to be a left U-turn) such that
the corresponding bridges oflie strictly to the left of¢. Since is a left U-turn, the bridgé! ; (or the
point p, if i —1=u) lies to the left ofb”. The definition ofp! implies that! is then the leftmost bridge

in I;, a contradiction withb; e I;,. O

70 T. Asano et al. / Computational Geometry 30 (2005) 59-77

The following lemma shows that optimal paths are helpful in computing the intefvals

Lemma 1l. Letp €s,, g €s;, Withu <i — 1. The intervall (p, g) can be computed in constant time
if b7, and |7 (p,m;_;, B?)| are known.

Proof. Recall that/ (p, ¢) is defined as the set of all bridgésconnectings;_; ands;, such that there is
a set of bridge$, € I1,b, € I, ...,b;_1 € I;_y with dil((p, g, (b1, ..., b;))) < o. By Lemma 10 this

is equivalent to dil (p, g, (b}, b5, ..., b’ 1, b)) < o. This path coincides withr (p, ¢, B?) up to and
including bridgebl.”_l, which is the pathr (p, mf’_l, B?). Since the length of this path is known, we can
computel (p, g) in constant time. O

Lemma 12. The intervalsly, ..., I, defined above can be computeddt?) time andO(n) space.

Proof. Let P denote the set of all building corners and all poiptsuch that there is a visible pdip, ¢)
with p € s,, g € s; andu < ¢r. By Lemma 4,P contains at most ¥2points and it can be computed in
O(nlogn) time.

For each building;, we create a list of visible pairg, ¢) with ¢ € s; andp € U;;% s, such that not
both p andq are building corners. This can be done during the same computation.

The computation then proceedsrirstages, with stagecomputing intervall;. Throughout, we main-
tain for each poinp € P the bridgeb!, as well as the length of the pait(p, m!, B?).

Consider stage We compute the intervals(p, ¢), for all pairs(p, g) with p € U;;%su andg € s; that
are either visible pairs or where bothandg are building corners. (This avoids the need to precompute
and store @:?) visible pairs.) Note that all the poings appearing in such pairs are i, and so there
are at most 12 such pairs.

By Lemma 11, it takes constant time to computg, ¢g) using the information from the previous
stage. We can determit¢ and update the stored length fotp, m!, B”) in constant time as well.

It takes Qin) time to compute the intersection inten/al so the total time spent per stage i6Q O

Lemmas 12 and 9 imply the following theorem.

Theorem 13. Given a bridge grapl§ on a set of: + 1 buildings that is a path and a real number> 1,
we can in timeD(n?) compute a configuratio® realizing G with dil(B) < o or determine that no such
configuration exists.

It seems hard to improve this result when there @ca?) visible pairs that could determine the di-
lation. In fact, we do not even know how to decide im® time whether agiven configuration has
dilation < o.

If the number of visible pairs of the given set of buildings &% logn), it is possible to do better.
The difficulty is that the size of the sét is still linear, and we cannot maintaif for all points p €
P explicitly. Instead, we storé’ and |z (p,m!, B”)| in data structures that allow us to update them
efficiently. We will need the simple data structure described in the following lemma.

Lemma 14. There is a data structure that storesreal numbersiq, ..., a,,, can be built in timeD(m),
and supports the following operations in tir@glogm):

T. Asano et al. / Computational Geometry 30 (2005) 59-77 71

e given anindex € {1,...,m}, returna;;
e given two indiceg’, j” € {1, ..., m} and a real numbeb, replace the value af; by a; + b for all
j/ < _] g j//-

Proof. The data structure is basically a segment tree [2]. It is a balanced binary tree, whose leaves
correspond to the indices 1 ., m in order. Each node of the tree contains a real numbigr, and the

value ofa; for a leaf j is the sum ob, over the nodes on the path from the rootjtcClearly it can be
returned in time @ogm). For the last operation, we find all the nodesf the tree such that the indices

of all leaves in the subtree rootecdhdlie within the interval[j’, j”], while the subtree rooted at the parent

of v contains at least one leaf outside this interval. For all such nodes addb to 5,. O

Let againA; be the bridge region connecting_; ands;. Let » andd’ be two bridges inA;, and
consider them directed from_; to s;. We letb < b’ if and only if b lies left of 5’. Now let P be the set
of points defined in Lemma 12, and 18t:= P N | J;_,s,. Consider the union of all rectangles and all
bridge regions. This is a single rectilinear polygon. We order the poinis aibng the boundary of this
polygon, in counter-clockwise order starting and ending,o(note that there are no points #fin s,)
and denote this order again by

Lemma15. Let p, p' € P,_y. If b” < b” thenp < p.

Proof. If p’ < p while b/ < bi”/, then the pathe (p, m!, B?) andx (p/, mf’ B"") have to cross, which
is impossible. O

Theorem 16. Given a bridge graply on a set of: + 1 buildings that is a path, and a real number> 1,
we can in timeO(k logn) compute a configuratio® realizing G with dil(B) < o or determine that no
such configuration exists, whekds the number of visible pairs.

Proof. It is sufficient to show how to compute the intervdls We start by computing all visible pairs.
This can be done in time @logn) (note thatk > n), by computing both vertical and horizontal decom-
positions [2], and a modified version of the algorithm for reporting all direct visibility pairs by de Berg
et al. [1]. For each building, we build a list of visible pairgp, ¢) with g € s, andp € P,_;.

The algorithm proceeds again instages, computing in stagei. We maintain two data structures,
P (paths) and3 (bridges).P is the data structure of Lemma 14. It stores for epch P a valuea,,
with the points sorted by. If p € s,, thena, =0 up to stage: + 1, anda,, = | (p, m;_;, B”)| when
stagei > u + 2 is about to start3 is a dictionary. At the beginning of staggit stores all the bridges’ ,,
for p € P,_,, in the order<. A bridge shared by several points is only stored once. For each brjdge
store thex- or y-coordinate, and two pointg’, p” € P;_, such that” , = b if and only if p’ < p < p”.
This is possible by Lemma 15.

In stagei, we retrieve the list of visible pair&, ¢) with ¢ € s;. For each pair, we comput&p, ¢).

If p es;_1, this is done directly, in constant time. Otherwigse= P;_,, and we computd (p, ¢) from
b! ; and|x(p,m!_;, BP)| in constant time by Lemma 11. We can find the bridge, in O(logn) time
in B—by Lemma 158 is sorted by points as well as by bridges. The valugp, m! ;, B”)| is stored
in P. It follows that the total time, over all stages, for this computation (816gn»).

72 T. Asano et al. / Computational Geometry 30 (2005) 59-77

It remains to discuss the updating®Bfand 5 to prepare them for the next stage. Let's first disdiss

Consider the interval; _;. The part ofl;_; that continues straight on intk doesn't need to be touched.

The bridgesb!” ; on the left or right of/;_; that cannot continue straight on (all bridges, if the orientation

of I;_1 and[; is different) are removed, and replaced by bridges on the edgeslnfaddition, we insert

new bridges for allp € P Ns;_;. This can be done in time @logn), whered is the number of bridges

being removed and created. We charge the cost of removing a bridge to its creation. Since the number of
bridges created during the course of the algorithi®ist 2n = O(#n), the total time for this is @z logn).

Finally, we discuss the updating . For all the bridges of;_; that go straight on td;, we need to
increase the path length by the same value. By Lemma 15, they correspond to a single interval of points
of P, and so this can be done in timegl@yn). For each bridge that has been removed, we increase
the path length for its interval of points, in time(ldgn) per bridge removed. Finally, for each point
p € PNs;_pinserted in this stage, we set its path length to the correct value. The total cost of updating
is O(n logn) according to Lemma 14. 0O

4.2. The optimization problem
We can now solve the original optimization problem using Megiddo’s parametric search [7].

Theorem 17. Given a bridge graph on a set af+ 1 buildings that is a path, we can compute a config-
uration with the optimal dilation in tim&®(n3logn), or in time O(nk log?n), wherek is the number of
visible pairs.

Proof. We run the algorithm of Lemma 12 with input‘, whereo* is the optimal dilation. Since* is

not known, we parameterize all coordinates used by the decision algorithm in thedotnd. One can

verify that all calculations performed by the algorithm are linear functions on the coordinates, and any
linear combination of expressions of the foam + b is again of this form.

Whenever the algorithm needs to compare two “numbesst b anda’o + b, we compute the value
oo Whereaog + b = d’og + b'. We then run the decision algorithm of Theorem 13 usipgwhich tells
us whethers* < op. The answer implies which of the two “numbers” is larger, and the parametrized
algorithm can proceed. Note thatdf = oy, the outcome of the comparison is arbitrary—inspection of
the algorithm shows that this is not a problém.

When the parametrized algorithm finishes, it has computed a set of non-empty intgrvals I,
since a configuration with dilatio o * exists. Since the outcome of the parametrized algorithm changes
for o = o*, the algorithm must have made a comparison agaifstt follows thato* is the smallesty
tested during the algorithm that resulted in a positive answer of the decision algorithm.

During the algorithm we maintain an interval of dilation values in which the optimal value is known
to lie. Whenever a comparison requires answetifigs og for a og outside this interval, we can imme-
diately return the correct answer without running the decision algorithm. At the end of the parametrized
algorithm, we can report the upper end of the intervat as

1 The reader may wonder why we do not simply augment the algorithm of Theorem 13 to report whether a configuration
with dilation strictly less thamr exists. This is indeed possible, for instance by allowing open and half-open intérvhals
seems to be more complex than the observation that tests for equality are not actually needed.

T. Asano et al. / Computational Geometry 30 (2005) 59-77 73

Following Megiddo [7], we organize the parametric algorithm as a “parallel” algorithm, using batches
of independent computations. Recall that the algorithm of Lemma 12 proceedsgdges, with stage
computing! (p, g) for O(n) pairs (p, g) with ¢ € s;. The computations for each pair are independent,
and take time @). It follows that we can implement them in total tim&/ogn) plus (logn) calls to
the decision algorithm [7].

Forming the intersectioi is equivalent to the computation of a maximum and a minimum‘@ium-
bers” of the formauo + b. Consider the “numberio + b as the liney = ax + b. We compute the upper
and lower envelope of all lines, in time Qnlogn) [2]. We can now perform binary search on the ver-
tices of the envelopes, using(logn) calls to the decision algorithm, to determine between which two
verticeso * falls. This allows us to return the largest and smallest “number”.

Each stage takes time(®@logn) plus Qlogn) calls to the decision algorithm, so the total running
time is Qn2logn). We can also use Theorem 16 to obtain total running tireek@®g?n). O

4.3. The case of vertically sorted buildings

There is one interesting case where we can prove that there are onlyiSible pairs, namely when
the buildings are sorted vertically along the path, that is, all bridges are directed vertically upwards.

Lemma 18. If the bridge graph is a path, and the+ 1 buildings are sorted vertically along the path,
then there are at mo$d(n) visible pairs.

Proof. A visible pair appears in the vertical decomposition of the set of buildings.

Theorem 16 now leads to an(®@ogn)-time decision algorithm for this case. It is possible to do even
better, as we will show in this section.

The improvement is based on a bracket structure formed by the visible pairs. Consider a visible
pair (p, q). The segmenpgq is vertical. Without loss of generality, lgt be its bottom end. The path
w(p,q, B) is y-monotone, and since it cannot intersegt, it lies either completely to the left or to the
right of pg. We call a visible pair(p, ¢g) where the path lies completely to the right g a left-hand
visible pair, otherwise @aght-handvisible pair.

Lemma 19. Given a set ofi 4+ 1 vertically sorted buildings as defined above, and two left-hand visible
pairs (p,q) and(p’, q"), with p € 5,,, g € s;, p’ € 50, ¢’ € sp. Assume that < u’. Then either the pairs
are independent and< u’, or (p, q) is bracketed aroundp’, ¢), thatis, p, < p, andu <u’ <t' <t.

Proof. If u’ < ¢, then the buildings, lies completely to the right of the segmepy, and so we have
px < p.. The pathr (p’, ¢’, B) lies completely to the right of the segmepiy;’, and so it cannot reach
before reaching,.. This impliesu <u' <t <t. O

In a left-hand visible paiKp, ¢), either p is the top-left corner of a building angl is on a bottom
edge of a building, og is a bottom-left corner ang is on the top edge of a building. Lemma 19 leads
to a simple algorithm to compute all left-hand visible pairs in linear time. (The same procedure, with
opposite orientation, can be used to find all right-hand visible pairs.) All we need is a stack. i, stage
we repeatedly check whether > ¢., wherep is the top element of the stack agds the bottom-left

74 T. Asano et al. / Computational Geometry 30 (2005) 59-77

corner ofs;. While that is true, we repoflp, (p,, g,)) as a visible pair and pop from the stack. Finally,
either the stack is empty, g, < ¢g,. In the latter case, we repaty., p,), ¢) as a visible pair. Finally,
we push the top-left corner of onto the stack, and proceed to the next stage.

Theorem 20. Given a set ofi + 1 vertically sorted buildings as defined above and a real nunaberl.
We can compute i@(n) time a configurationB with dilation dil(B) < o, or determine that none exists.

Proof. Again, we compute the intervals, ..., I, in n stages. The visible pairs are computed during the
process, using a “left-side stack” for the top-left corners and a “right-side stack” for the top-right corners.
During the course of computation, we again maintain two data strucRieesd B to store path lengths

and optimal bridges. Define the index of the top-left corner of buildjng be —(« + 1), and the index

of the top-right corner of, to beu + 1.

P is implemented as a doubly-linked list. In this list, we store the path lengthys m., B?)| for all
points p currently in the two stacks. The points are ordered by increasing index as defined above (which
is the same as ordering them by the relatioas defined before). The points on top of the stacks are thus
found at the ends of the list. We store the path lengths by storingiftegencebetween two adjacent
values on the edges of the list. Only for the first and the last point in the list, we [stopem., B”)|
explicitly. Note that we do not explicitly store path lengths for poiptshat are not the corner of a
building. However, these path lengths can be derived in constant time from path lengths that are stored
in P:if p on a building with top-left cornet is part of a left-hand visible pair, thew (p, m!, B?)| is
simply |7 (I, m!, BY)| — | pl|; similarly, if p is part of a right-hand visible pair, we can derive the path
length from that of a top-right corner. Note that we can easily increase the path lengths for an interval of
points inP in constant time by adjusting two difference or end values, provided we have pointers to the
first and the last point of the interval.

BB stores the optimal bridges’ for all points p currently in the two stacks, and is implemented as a
doubly-linked list as well. As before, a bridge shared by several points is stored only once. With each
bridge, we store the index of the first and last point using it. For each point index, we store a pointer to
the node ofP that represents it.

A stage is now implemented as follows:

1. Using the two stacks, compute left-hand and right-hand visible pairs. Accessing the leftmost and
rightmost nodes i andP, we can obtain path length values and bridge positions for these points.
With these values, we compute the new interkal

2. Remove from the ends &f all nodes for points popped from the two stacks. Remove from the ends
of B all bridges that are not used by any point anymore (these bridges can be identified by comparing
the index of the point on top of the stack with the indices of the points using the bridge). Adjust the
interval of points used by the leftmost and rightmost bridge to end at the points on the top of the
stacks.

3. For each bridgé in 1;_; that cannot go straight inth, update the path lengths for the corresponding
interval of points inP (using the indices of the points férand the pointers for these indices iri).

4. Finally, remove all these bridges, updatéithe interval of all points that use the remaining bridges
(the bridges that do continue straight inmtd, add the top-left and top-right corner gf ; to P and
add new bridges at the left and right margin/gfset the point interval of these bridges to the union

T. Asano et al. / Computational Geometry 30 (2005) 59-77 75

of what was just deleted and the new corner points, and push the top-left and top-right carner of
on the two stacks.

Observe that all queries and updatesBoénd P are done at the ends of the lists and can be done in
constant time each. Only updating path length®irequires access to an edge in the interior of the list,

but this edge is found in constant time through the indices stored with the corresponding bridge at the
end of 5. As before, the removal of bridges is charged to their creation. We thus spend constant time per
stage, plus constant time per visible pai

Parametric search now leads directly to the following theorem. Unlike in Theorem 17, we make no
attempt to parallelize the parametric algorithm.

Theorem 21. Given a bridge graph on a set af+ 1 buildings that is a path, we can compute a configu-
ration with the optimal dilation in tim&(»?).

Finally, we can compute €l + ¢)-approximation in linear time. We first show a quality bound for an
arbitrary placement of the bridges. For completeness, we cover the general case as well.

Lemma 22. Given a bridge grapl§ on a set ok + 1 buildings that is a path, and any configuratidh
realizing G. Thendil(B) < (¢*)?, wheres* is the optimal dilation. If the buildings are sorted vertically
along the path, then we hadl (B) < 20*.

Proof. Let B* = (b7, b3, ..., b)) be an optimal configuration, that is dii*) = o*. Consider the interval
of possible bridges betweepn ; ands;, see Fig. 10. Le#; be the distance df; to the farther endpoint of
the interval, and lek; be the length ob;. The pair of pointsp’, ¢’) indicated in the figure has dilation
(2d; + hi)/h; <o, which Implles 2 < (6* = Dh;.

Now consider any visible paiip, ¢). If 7(p, g, B) uses bridge$,,, ..., b;, we have

t t
7 (p.q. B)| <|m(p.q. B+ 2d; < |n(p.q. B+ (0" = 1)) _hi

<7 (p.q, BY)|+ (0" = D|n(p,q. B)| < o*|n(p,q. BH)| < (@2 pql.

If the buildings are sorted vertically along the path, we can observe| that > > ;_ h;, and so we
have

t t
m(p.q.B)| < |m(p.q. BH|+ Y _2d; <o*llpgll + (0" =D Y _hi <20*|pgll. O
i=u i=u
S; d
_Aig
b hi
B

Fig. 10. Proof of Lemma 22.

76 T. Asano et al. / Computational Geometry 30 (2005) 59-77

The lemma leads directly to a PTAS for the vertically ordered case: start with an arbitrary configura-
tion, compute its dilatio, and approximate * by a binary search in the intervét /2, o]. This gives us
a (1+ e)-approximation ob* after Olog(1/¢)) calls to the decision algorithm, leading to the following
result.

Theorem 23. Given a set ofi + 1 buildings sorted vertically along a path. We can compute a configura-
tion with dilation at mos{1 + ¢) times the minimum dilation in tim@(n log(1/¢)).

5. Concluding remarks

We posed the following question: givennon-intersecting rectangles and a bridge graph—that is a
graph describing which pairs of rectangles are to be connected—how fast can we find the connecting
segments that minimize the dilation? We found that if the graph may contain cycles, this problem cannot
generally be solved in polynomial time (unless=RNP), but if the graph is a path, the problem can
be solved in @n3logn) time. For the case of trees, the question is still open: so far, we can solve the
problem by linear programming on(@?) variables and constraints, but we have no strongly polynomial-
time algorithm, that is, we have no polynomial-time algorithm for the real RAM model.

Concerning approximations, we have shown that any bridge placement has at most twice the minimum
dilation in case the bridge graph is a path and buildings are stacked on top of each other. This observation
gives rise to a fasfl + ¢)-approximation algorithm. If the bridge graph is a path but buildings do not
have a vertical order, we could only show that any bridge placement has dilatiph) whereo* is the
minimum dilation of the instance. Is there a constant-factor-approximation algorithm for such instances?
Or more important: is there a constant-factor-approximation algorithm for the case of general bridge
graphs?

Having gained some insight in the bridge placement problem when the bridge graph is prescribed,
it may now be interesting to study the problem with the bridge graph not given. For example: given a
set of non-intersecting rectangles, find a set of connecting segments of given total length such that the
dilation is minimized. Or: given a set of non-intersecting rectangles: find a set of connecting segments of
minimum total length such that a given dilation is achieved. We might have to settle for approximation
algorithms in this case.

When starting this research, we originally asked about how to connect convex polygonal objects by
line segments unrestricted in orientation. It will be interesting to see to what extent the techniques for the
axis-aligned case carry over to (approximation) algorithms for the unaligned case.

References

[1] M.T. de Berg, S. Carlsson, M.H. Overmars, A general approach to dominance in the plane, J. Algorithms 13 (1992) 274-296.

[2] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms and Applications,
Springer, Berlin, 1997.

[3] L.P. Chew, There are planar graphs almost as good as the complete graph, J. Comput. Syst. Sci. 39 (1989) 205-219.

[4] D. Eppstein, Spanning trees and spanners, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier,
Amsterdam, 2000, pp. 425-461.

T. Asano et al. / Computational Geometry 30 (2005) 59-77 77

[5] M.R. Garey, D.S. Johnson, Computersldntractability: A Gude to the Theory of NP-Completeness, Freeman, New York,
1979.

[6] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395.

[7] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30 (4) (1983) 852—-865.

[8] D. Peleg, A. Schéffer, Graph spanners, J. Graph Theory 13 (1989) 99-116.

