
Computational Geometry 30 (2005) 59–77
o

uclid-
ized
The arcs
we use is
etween

rs of
We
lve the
m in

wledges

eong),
www.elsevier.com/locate/comge

Optimal spanners for axis-aligned rectangles✩

Tetsuo Asanoa, Mark de Bergb, Otfried Cheongc,∗, Hazel Everettd,
Herman Haverkorte, Naoki Katohf, Alexander Wolffg

a JAIST, Japan
b Technische Universiteit Eindhoven, the Netherlands

c KAIST, South Korea
d LORIA, Nancy, France

e BRICS, Department of Computer Science, University of Aarhus, Denmark
f Kyoto University, Japan

g Fakultät für Informatik, Universität Karlsruhe, Germany

Received 23 December 2003; received in revised form 6 September 2004; accepted 8 September 2004

Available online 7 October 2004

Communicated by S. Suri

Abstract

The dilation of a geometric graph is the maximum, over all pairs of points in the graph, of the ratio of the E
ean length of the shortest path between them in the graph and their Euclidean distance. We consider a general
version of this notion, where the nodes of the graph are not points but axis-parallel rectangles in the plane.
in the graph are horizontal or vertical segments connecting a pair of rectangles, and the distance measure
theL1-distance. The dilation of a pair of points is then defined as the length of the shortest rectilinear path b
them that stays within the union of the rectangles and the connecting segments, divided by theirL1-distance. The
dilation of the graph is the maximum dilation over all pairs of points in the union of the rectangles.

We study the following problem: givenn non-intersecting rectangles and a graph describing which pai
rectangles are to be connected, we wish to place the connecting segments such that the dilation is minimized.
obtain four results on this problem: (i) for arbitrary graphs, the problem is NP-hard; (ii) for trees, we can so
problem by linear programming on O(n2) variables and constraints; (iii) for paths, we can solve the proble

✩ Part of this research was done during the First Utrecht-Carleton Workshop on Computational Geometry. H.H. ackno
support by the Netherlands’ Organization for Scientific Research (NWO).

* Corresponding author.
E-mail addresses:t-asano@jaist.ac.jp (T. Asano), m.t.d.berg@tue.nl (M. de Berg), otfried@tclab.kaist.ac.kr (O. Ch

everett@loria.fr (H. Everett), herman@haverkort.net (H. Haverkort), naoki@archi.kyoto-u.ac.jp (N. Katoh),
awolff@ira.uka.de (A. Wolff).

0925-7721/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.09.001

60 T. Asano et al. / Computational Geometry 30 (2005) 59–77

time O(n3 logn); (iv) for rectangles sorted verticallyalong a path, the problem can be solved in O(n2) time, and a
(1+ ε)-approximation can be computed in linear time.
 2004 Elsevier B.V. All rights reserved.

s, and
role in

rk is to
through
have a
so one

nce is
um

. Let
f

of

and by
see for
criteria.

ner with
eight is
ing the

ther than
l
e

les and

given
g if, to
end of
ilding.
alogy,
Keywords:Geometric spanners; Dilation optimization; Isothetic rectangles; Manhattan distance

1. Introduction

Geometric networks arise frequently in our everyday life: road networks, telephone network
computer networks are all examples of geometric networks that we use daily. They also play a
disciplines such as VLSI design and motion planning. Almost invariably, the purpose of the netwo
provide a connection between the nodes in the network. Often it is desirable that the connection
the network between any pair of nodes be relatively short. From this viewpoint, one would ideally
direct connection between any pair of nodes. This is usually infeasible due to the costs involved,
has to compromise between the quality and the cost of the connections.

For two given nodes in a graph, the ratio of their distance in the graph and their ‘direct’ dista
called thedilation or stretch factorfor that pair of nodes, and the dilation of a graph is the maxim
dilation over all pairs of nodes. For geometric networks, this is more precisely defined as followsS

be a set ofn points (in the plane, say), and letG be a graph with node setS. Now the dilation for a pair o
pointsp,q is defined as the ratio of the length of the shortest path inG betweenp andq, and the length
of the segmentpq. (The length of a path is the sum of the lengths of its edges.) Again, the dilationG
is the maximum dilation over all pairs of points inS. A graph with dilationt is called at-spanner. Ideal
networks aret-spanners for smallt with small cost.

Spanners were introduced by Peleg and Schäffer [8] in the context of distributed computing,
Chew [3] in the context of computational geometry. They have attracted much attention since—
instance the survey by Eppstein [4]. The cost of spanners can be measured according to various
For example, it is sometimes defined as the number of edges (here the goal is to find a span
O(n) edges), or as the total weight of the edges (here the goal is to find a spanner whose total w
a constant times the weight of a minimum spanning tree). Additional properties, such as bound
maximum degree or the diameter, have been considered as well.

We generalize the notion of spanners to geometric networks whose nodes are rectangles ra
points. LetS be a set ofn non-intersecting, axis-parallel rectangles and letE be a set of axis-paralle
segments connecting pairs of rectangles. For any two pointsp,q in the union of the rectangles, th
dilation is now the ratio of the length of the shortest rectilinear path in the network betweenp andq and
their L1-distance. Here a path in the network is a path that stays within the union of the rectang
the connecting segments. The dilation of the network is the maximum dilation over all pairsp,q. Again,
our aim is to construct a network whose dilation is small. To illustrate the concept, imagine one is
a number of rectangular buildings, which have to be connected by footbridges. It is quite frustratin
walk to a room opposite ones own room in an adjacent building, one has to walk all the way to the
a long corridor, then along the footbridge, and then back again along the corridor in the other bu
Hence, one would usually place the footbridge in the middle between buildings. Following this an
we will call the rectangles in the inputbuildingsfrom now on, and the connecting segmentsbridges. We
call the underlying graph of the network thebridge graph.

T. Asano et al. / Computational Geometry 30 (2005) 59–77 61

of a
one

we
ur only

s

ts. The
ertical
ch other
s that

that the

m can

wed to

m.
Fig. 1. A bridge graph and a bridge configuration.

The generalization we study introduces one important additional difficulty in the construction
spanner: for points one only has to decidewhichedges to choose in the spanner, but for buildings,
also has to decidewhereto place the bridge between a given pair of buildings. It is the latter problem
focus on in this paper: we assume the topology of the network (the bridge graph) is given, and o
task is to place the bridges so as to minimize the dilation.

Formally, our problem can be stated as follows: we are given a setS of axis-parallel disjoint rectangle
(buildings) in the plane, a graphG with node setS, and for each arce of G a bridge regionΛe, an axis-
aligned rectangle connecting the two buildings. Buildings may degenerate to segments or poin
bridge graphG must only have arcs between buildings that can be connected by a horizontal or v
segment, and may not have multiple edges or loops. The bridge regions must be disjoint from ea
and the buildings. Our goal is to find a set of horizontal or vertical bridges lying in the bridge region
has minimum dilation.

Fig. 1 shows a bridge graph (the bridge regions are shaded) and a set of possible bridges. Note
bridge regionsΛ2 andΛ3 simply allow any bridge between the two buildings, but bridge regionΛ1 has
been chosen so as to avoid intersectings3 or the bridge betweens2 ands3.

Our results are as follows.

• In general, the problem is NP-hard.
• If the bridge graph is a tree, then the problem can be solved by a linear program with O(n2) variables

and constraints.
• If the bridge graph is a path, then the problem can be solved in O(n3 logn) time.
• If the bridge graph is a path and the buildings are sorted vertically along this path, the proble

be solved in time O(n2). A (1+ ε)-approximation can be computed in linear time.

2. The bridge graph is arbitrary

In this section we show that the bridge-placement problem is NP-hard if the bridge graph is allo
be arbitrary. We prove this by a reduction from PARTITION. The input to PARTITION is a setB of n posi-
tive integers, and the task is to decide whetherB can be partitioned into two subsets of equal su
PARTITION is NP-hard [5, Problem SP12].

Theorem 1. It is NP-hard to decide whether the bridges in a given bridge graph onn rectangular
buildings can be placed such that the dilation is at most2.

62 T. Asano et al. / Computational Geometry 30 (2005) 59–77

Let B := {β0, . . . , βn−1} be an instance of PARTITION. For 0� i < n, we define

αi := βi

/(
2

∑
βj

)
.

fixed
as gray

orem.
0�j<n

Note that
∑

0�j<n αj = 1/2, and thatB can be partitioned equally if and only if{α0, . . . , αn−1} can be
partitioned into two subsets of sum 1/4. We create a bridge graphG(B) with 8n+2 buildings, as follows:

• for each 0� i < n, we have two point-shaped buildings, namelyPi := (4i,0) andQi := (4i + 2 −
2αi,0);

• for each 0� i < n, we have four segment-shaped buildings, namelyRi := {4i} × [1 − αi,1] and
Si := {4i + 2 − 2αi} × [1 − αi,1], and their mirrored imagesR′

i := {4i} × [−1, αi − 1] andS ′
i :=

{4i + 2− 2αi} × [−1, αi − 1];
• for each 0< i < n, we have two point-shaped buildings, namelyTi := (4i − 1,1) andT ′

i := (4i − 1,
−1);

• we have two more point-shaped buildingsS−1 := (0,2n + 3/4) andS ′
−1 := (0,−2n − 3/4), and two

more segment buildingsRn := {4n} × [1,2n + 3/4] andR′
n := {4n} × [−2n − 3/4,−1].

The arcs inG(B) are as follows:

• for each 0� i < n, we have arcs(Pi,Ri), (Pi,R
′
i), (Qi, Si), (Qi, S

′
i), (Ri, Si) and(R′

i , S
′
i);• for each 0< i < n, we have arcs(Si−1, Ti), (Ti,Ri), (S ′

i−1, T
′
i), (T ′

i ,R
′
i) and(Ti, T

′
i);• we have arcs(S−1,R0), (S ′

−1,R
′
0), (Sn−1,Rn), (S ′

n−1,R
′
n), (Rn,R

′
n).

Observe that(Ri, Si) and(R′
i , S

′
i) are the only bridges that can still be moved; all other bridges are

by the geometry. The construction is illustrated in Fig. 2; the bridges to be placed are indicated
segments or rectangles. For the sake of clarity, we chose different scales on thex- andy-axis.

The reduction can clearly be done in polynomial time. The following lemma now implies the the

Fig. 2. An instance of the bridge decision problem.

T. Asano et al. / Computational Geometry 30 (2005) 59–77 63

Lemma 2. The setB can be partitioned into two subsets of equal sum if and only if the bridges inG(B)

can be placed such that the dilation is at most2.

he

t

h
uld
visit

we

l

d

lity

ost

is at

ly 2 and
Proof. “If” Suppose we can place the bridges inG(B) such that the dilation is at most 2. Then t
dilation must be at most 2 for any pair(Pi,Qi), which implies that either the bridge(Ri, Si) must be
placed in its bottommost position or(R′

i , S
′
i) must be placed in its topmost position. LetI denote the se

of indices for which the former holds, andI ′ the set of indices for which the latter holds.
Now considerS−1 and the top vertex ofRn. TheL1-distance between them is 4n. The shortest pat

between them inG(B) cannot visit any point on thex-axis, because the length of such a path wo
be at least 4n + 2(2n + 3/4) so its dilation would be larger than 2. Hence, the shortest path must
R0, S0, T1, . . . ,Rn−1, Sn−1 in order from left to right. Anyi ∈ I induces an extra vertical distance 2αi .
Adding the vertical distance betweenS−1 andR0 and alongRn, and the horizontal distance traversed,
get a total length of at least

∑
i∈I (2αi) + 2(2n − 1/4) + 4n. Hence,

∑
i∈I αi � 1/4. A similar argument

for S ′
−1 and the bottom vertex ofR′

n shows that
∑

i∈I ′ αi � 1/4. It follows thatI andI ′ induce an equa
partition ofB.

“Only if” Suppose there is an equal partition ofB. Then there are disjoint sets of indicesI andI ′
with I ∪ I ′ = {0, . . . , n − 1} such that

∑
i∈I αi = ∑

i∈I ′ αi = 1/4. For i ∈ I place the bridges(Ri, Si)

and(R′
i , S

′
i) in their bottommost position, and fori ∈ I ′ place the bridges(Ri, Si) and(R′

i , S
′
i) in their

topmost position.
Consider two pointsp,q, each lying on a building, withpx � qx . If px = qx , thenq can be reache

without any detour. Otherwise, we distinguish two cases.

• The first case is thatp or q (or both) have non-zeroy-coordinate. Assume without loss of genera
thatpy > 0 or thatpy = 0 andqy > 0. Consider the path that goes up or down fromp until reaching
y = 1, then goes to the right while staying above thex-axis until thex-coordinate ofq is reached,
and then goes straight down or up toq.
If p = S−1 andq ∈ Rn, then the length of the path is bounded by

4n +
∑
i∈I

(2αi) + 2(2n − 1/4) = 8n.

Since|px − qx | = 4n, the dilation is at most 2.
If p �= S−1 or q /∈ Rn, the length of the path is bounded by

|px − qx | + 2
∑
i∈I

αi + |1− py | + |1− qy | = |px − qx | + 1/2+ |1− py | + |1− qy|.

If py andqy are not both� 1, then|1− py | + |1− qy | = |py − qy |, otherwise,|1− py | + |1− qy | =
|py − qy | + 2|1 − max(py, qy)| � |py − qy | + 1/2. In both cases the length of the path is at m
|px − qx | + |py − qy | + 1, and from|px − qx | � 1 it follows that the dilation is at most 2.

• The second case is thatpy = qy = 0. Now the vertical distance traversed by the shortest path
most 2+ ∑

i∈I (2αi) = 5/2. Hence, if|px − qx | � 5/2, the dilation is at most 2. But|px − qx | < 5/2
implies thatp = Pi andq = Qi for some 0� i < n or thatp = Qi andq = Pi+1 for some 0� i < n.
In the former case the dilation is 2 because either(Ri, Si) is bottommost or(R′

i , S
′
i) is topmost.

In the latter case the dilation is less than 2 because the vertical distance traversed is exact
|px − qx | > 2. �

64 T. Asano et al. / Computational Geometry 30 (2005) 59–77

3. The bridge graph is a tree

In this section we will show that the bridge-placement problem can be solved by a linear program if
g some

se
r only

th.
ect

at are

are

l-

t at
uilding
heir
We
e

and
e

the bridge graph is a tree. We start by introducing some terminology and notation, and by provin
basic lemmas.

As before, we denote the bridge graph byG. Any set of bridges realizingG will be called aconfigura-
tion.

Given a configurationB and two pointsp andq in the union of all buildings, we useπ(p, q,B) to
denote the family of rectilinear shortest paths fromp to q within the configuration (that is, paths who
links lie inside buildings or on bridges). The paths of this family are essentially the same, they diffe
in how they connect two points inside the same building, and so we will simply speak aboutthe unique
path π(p, q,B). Thedilation of the pathπ = π(p, q,B) is dil(π) := |π |/‖pq‖, where|π | is the total
length ofπ and‖pq‖ is theL1-distance ofp andq. Fig. 3 shows a configuration and an example pa

Thedilation dil(B) of a configurationB is defined as the maximum dilation of any path with resp
to B. Our aim is to find a configuration of minimum dilation. We first characterize pairs of points th
responsible for the dilation of a given configuration.

Lemma 3. Let σ be the dilation of a configurationB whose underlying graph is a tree. Then there
pointsp andq with dil(π(p, q,B)) = σ such that the closed bounding box ofp andq does not contain
any point of a building other thanp andq, and at least one of the pointsp andq is a building corner.

Proof. Among all pairs of points(p, q) that have maximum dilation with respect toB, consider the
subset of pairs where‖pq‖ is minimum. Choose a pair(p, q) from this subset wherep is lexicographi-
cally smallest. Letβ be the closed bounding box ofp andq, and assume there is a pointr ∈ β distinct
from p andq that belongs to a building. By our choice of(p, q), we have|π(p, r,B)| < σ‖pr‖ and
|π(r, q,B)| < σ‖rq‖. Sincer ∈ β we have‖pq‖ = ‖pr‖ + ‖rq‖. Combining with the triangle inequa
ity we obtain∣∣π(p, q,B)

∣∣ �
∣∣π(p, r,B)

∣∣ + ∣∣π(r, q,B)
∣∣ < σ‖pr‖ + σ‖rq‖ = σ‖pq‖ = ∣∣π(p, q,B)

∣∣,
a contradiction, so no such pointr ∈ β exists.

It immediately follows thatp andq are on the boundary of their buildings. It remains to prove tha
least one of them is a building corner. Assume to the contrary that both are on the interior of a b
edge. Then eitherp and q have the samex-coordinate and lie on the top and bottom edge of t
buildings, or they have the samey-coordinate and lie on the left and right edge of their buildings.
discuss the first case, the second case is analogous. Clearly, moving bothp andq the same distance to th
left or right does not change‖pq‖. But what about|π(p, q,B)|? Let� be the vertical line throughp and
q, and lete andf be the points whereπ(p, q,B) leaves the buildings containingp andq, respectively.
If e andf lie on opposite sides of� as in Fig. 4, we can movep andq slightly to the left without changing
dil(π(p, q,B)), a contradiction to the assumption thatp is lexicographically smallest. It follows thate
andf lie on the same side of� (including � itself), and so|π(p, q,B)| increases if we movep andq

into the opposite direction, a contradiction to the assumption that dil(π(p, q,B)) is maximal. �
A point pair (p, q) as in the lemma—its bounding box contains no other point of any building

at least one ofp andq is a building corner—will be called avisible pair—see Fig. 5 for examples. W

T. Asano et al. / Computational Geometry 30 (2005) 59–77 65

there
rior of

airs

They
et of

dratic

ced

ng
so

and

ma 4,
rm
Fig. 3. Fig. 4. Fig. 5. Fig. 6.

denote the set of all visible pairs byV . Note that the second statement of the lemma does not hold if
are cycles in the bridge graph—the maximum dilation may occur between two points in the inte
building edges, as in Fig. 6.

Lemma 4. For any set ofn buildings, there are at mostO(n2) visible pairs and they involve at most12n
points. These points can be computed inO(n logn) time.

Proof. Clearly there are at most O(n2) visible pairs where both points are building corners. These p
involve only the at most 4n building corners. Consider a visible pair(p, q) where onlyp is a building
corner. Thenq can be found by shooting a vertical or horizontal ray fromp until it hits another building.
It follows that for each building cornerp there are at most two choices forq, so there are at most 8n such
visible pairs, and at most 8n candidates for non-corner points that can be involved in a visible pair.
can be found in O(n logn) time by computing a vertical and a horizontal decomposition of the s
buildings [2]. �

Lemmas 3 and 4 allow us to compute the dilation of a given configuration efficiently. The qua
bound is tight: even if the bridge graph is a path, there can be�(n2) visible pairs.

Given a bridge graphG, our goal is to minimize

max
(p,q)∈V

dil
(
π(p, q,B)

)

over all configurationsB realizingG. We will now reformulate this problem as a linear program.

Theorem 5. If the bridge graphG is a tree, finding a minimum-dilation bridge placement can be redu
in O(n3) time to solving a linear program withO(n2) variables and constraints, wheren is the number
of bridges in the bridge graph.

Proof. For each edgee of G, we introduce a variableXe specifying the position of the correspondi
bridge;Xe is thex-coordinate of a vertical bridge or they-coordinate of a horizontal bridge. We al
introduce a variableZ. Our linear program will be such that a variable assignment is feasible if
only if the bridge assignment prescribed by theXe is a configuration realizingG with dilation � Z.
Minimizing Z will then solve the bridge-placement problem.

We will need a number of extra variables. We first define a set of pointsU by taking all points that may
be involved in a visible pair (in the sense of Lemma 4), as well as all bridge endpoints. By Lem
the size ofU is O(n). Some of the points inU , namely the points in a visible pair, are of the fo
(const,const), where “const” means: any constant. Other points inU are of the form(const,Xe) (the

66 T. Asano et al. / Computational Geometry 30 (2005) 59–77

endpoints of a horizontal bridge) or(Xe,const) (the endpoints of a vertical bridge). For each pair of
pointsu andv from U that lie in the same building, we introduce an extra variableDuv.

We can now describe the linear program. For eachXe, we need two simple constraints of the form

s:

l

te

scribed

e
le

l

e case
fficients,
Xe � const andXe � const, ensuring that the bridge indeed lies in the bridge region. For eachDuv,
we add constraints enforcingDuv � ‖uv‖, as follows. Letu = (xu, yu), v = (xv, yv) (recall that each
coordinate is either a constant, or one of the variablesXe, for some edgee). Then we add the constraint

Duv � xu − xv + yu − yv,

Duv � xv − xu + yu − yv,

Duv � xu − xv + yv − yu,

Duv � xv − xu + yv − yu.

Clearly, these four constraints together guarantee thatDuv � ‖uv‖.
Finally, we introduce one constraint for each pairp,q ∈ U . Let bl(p, q) be the total length of al

bridges traversed byπ(p, q,B). SinceG is a tree, the buildings and bridges traversed byπ(p, q,B) are
independent of the configuration, and sobl(p, q) is a constant. We can now write∣∣π(p, q,B)

∣∣ = bl(p, q) +
∑
uv

‖uv‖,

where the sum is over the entry and exit pointsu andv of π(p, q,B) for each building traversed. No
thatu, v ∈ U , andu andv lie in the same building. We introduce the constraint

bl(p, q) +
∑
uv

Duv � Z · ‖pq‖.

We now argue that if a variable assignment is feasible in this LP, then the bridge assignment pre
by theXe is a configuration realizingG with dilation� Z. Indeed, consider a visible pair(p, q). We have∣∣π(p, q,B)

∣∣ = bl(p, q) +
∑
uv

‖uv‖ � bl(p, q) +
∑
uv

Duv � Z · ‖pq‖,

and so dil(π(p, q,B)) � Z.
On the other hand, assume there is a configurationB realizingG. Let Xe be the placement of th

bridge e in B, let Duv = ‖uv‖, and letZ be the dilation ofB. It is now easy to see that this variab
assignment is feasible.

It follows that the bridge-placement problem can be solved by minimizingZ with respect to the LP
described.

The LP can be constructed in O(n3) time: establishingU costs O(n logn) time (Lemma 4), and O(n2)

constraints are generated. Listing the O(n) variables in the constraint for a pairp,q ∈ U boils down to
finding the path in the bridge tree fromp to q. This can be done in O(n) time per constraint, for a tota
time of O(n3). �

4. The bridge graph is a path

In the previous section we have given a linear program for the bridge-placement problem for th
where the bridge graph is a tree. Linear programs can be solved in practice, and for integer coe

T. Asano et al. / Computational Geometry 30 (2005) 59–77 67

It is
model
re the

,

than

ng

the link

d by
e link.

lies
urns
Fig. 7. U-turns and their outer sides.

interior-point methods can solve them in time polynomial in the bit-complexity of the input [6].
not known, however, if they can be solved in polynomial time on the real RAM, the standard
of computational geometry. In this section, we give polynomial time algorithms for the case whe
bridge graph is a path.

Since the bridge graphG is a path, we can number the buildings and bridges so that bridgebi connects
buildings si−1 and si , for 1 � i � n (so there aren + 1 buildings andn bridges). Before we continue
we need to introduce some more terminology. We consider a pathπ = π(p, q,B) to be oriented fromp
to q. After traversing a bridgeb, the path can continue straight on to traverse the next bridgeb′ if b andb′
are collinear. In all other cases, it has to turn.

Given a pathπ , a link � of π is a maximal straight segment of the path. A link can contain more
one bridge if they are collinear. For example, in Fig. 7 there is a link containingb1 andb2, and another
link containingb8, b9 andb10.

The pathπ turns at both ends of a link (except for the first and last link). The link is aright U-turn if π

turns right before and after the link. Aleft U-turn is defined symmetrically. In Fig. 7, the links containi
bridges(b1, b2), (b4, b5) andb12 are right U-turns, while the links containingb7, (b8, b9, b10), b11 and
(b13, b14) are left U-turns. Note that there can be U-turns that do not contain any bridges, such as
of π inside buildings6 in Fig. 7.

The inner sideandouter sideof a U-turn are rectangular regions infinite on one side, and bounde
the line supporting the link and the two lines orthogonal to it through the first and last points of th
The outer side lies locally to the left of a right U-turn, or to the right of a left U-turn, the inner side
locally to the right of a right U-turn or to the left of a left U-turn. In Fig. 7, the outer sides of all U-t
are shaded.

U-turns are the links of a path that determine its dilation, as the following lemma shows.

Lemma 6. Let B and B ′ be configurations,(p, q) a visible pair, andπ := π(p, q,B) and π ′ :=
π(p, q,B ′) the paths betweenp and q with respect to the two configurations. Ifdil(π ′) < dil(π) then
there exists a U-turn� containingbi . . . bj of π such that the corresponding bridgesb′

i , . . . , b
′
j of B ′ lie

strictly on the inner side of�.

68 T. Asano et al. / Computational Geometry 30 (2005) 59–77

Proof. For each U-turn� of π , shade the outer side of� as in Fig. 7. It is easy to see thatπ is a shortest
rectilinear path fromp to q that visits all the shaded regions in order. Now suppose that the pathπ ′ has
smaller dilation thanπ and that there is no U-turn� of π such that the corresponding bridges ofπ ′ lie

ch

not

s

e

strictly on the inner side of�. Thenπ ′ visits the shaded regions in the same order asπ , and is therefore
at least as long asπ , a contradiction to dil(π ′) < dil(π). �
4.1. The decision problem

We will give an algorithm that takes as input the set of buildingss0, . . . , sn and a real numberσ > 1,
and computes a configurationB with dil(B) � σ , or determines that no such configuration exists.

The algorithm computesn setsI1, I2, . . . , In, whereIi is a set of possible bridges betweensi−1 andsi .
The sets are defined recursively as follows. Assume thatI1, . . . , Ii−1 have already been defined. For ea
visible pair(p, q) with p ∈ ⋃i−1

j=0 sj andq ∈ si we defineI (p, q) as the set of bridgesbi connectingsi−1

andsi such that the following holds: there is a set of bridgesb1 ∈ I1, b2 ∈ I2, . . . , bi−1 ∈ Ii−1 such that
dil(π(p, q, (b1, . . . , bi))) � σ . Finally, Ii is the intersection of allI (p, q).

Note that for each visible pair(p, q) we can choose the bridges inI1, . . . , Ii−1 independently. This
makes it possible to computeIi efficiently, as we will see below. On the other hand, it implies that
every sequence of bridges chosen from the sets will be a configuration with dilation at mostσ—our main
lemma will be to show that such a sequence does indeed exist.

The opposite direction is nearly trivial: if a configuration with dilation at mostσ exists, it can be found
in the sets we constructed, as we show now.

Lemma 7. LetB = (b1, b2, . . . , bn) be a configuration such thatbi /∈ Ii for somei. Thendil(B) > σ .

Proof. Let i be the smallest index withbi /∈ Ii . Sincebi /∈ Ii , there exists a visible pair(p, q) with p ∈ sj ,
j < i, andq ∈ si such that for any set of bridges chosen fromI1, . . . , Ii−1 the path betweenp andq that
uses thesei − 1 bridges and the bridgebi has dilation larger thanσ . Since by our choice ofi we have
bk ∈ Ik for k < i, we have indeed dil(π(p, q,B)) > σ . �

We first argue that the setsIi can be represented and managed easily.

Lemma 8. Let I1, I2, . . . , In be defined as above. Then thex-coordinates(y-coordinates) of the bridges
in each set form an interval.

Proof. It is sufficient to show that the setsI (p, q) are intervals. Consider a visible pair(p, q) with p ∈ sj

andq ∈ si . Without loss of generality, assume the bridges inI (p, q) to be vertical. Take three bridge
a, b, c with x-coordinatesax < bx < cx anda, c ∈ I (p, q). We will show thatb ∈ I (p, q).

Due to symmetry, we can assumeqx � bx . Sincea ∈ I (p, q), a pathπ = π(p, q, (b1, . . . , bi−1, a))

exists (fat gray in Fig. 8) with dil(π) � σ that uses bridgesb1 ∈ I1, . . . , bi−1 ∈ Ii−1. Now we can exchang
the part ofπ from whereπ entersa to whereπ reachesq by a piece that usesb instead ofa (dashed
black in Fig. 8). This new path is at most as long asπ , which shows thatb ∈ I (p, q). �

Once we knowI1, . . . , In, we can recursively compute a configuration with dilation at mostσ : choose
an arbitrary bridgebn ∈ In. If bridgesbn−1, bn−2, . . . , bi+1 have been computed, choose a bridgebi ∈ Ii

T. Asano et al. / Computational Geometry 30 (2005) 59–77 69

t.

ion
in

e

that

e

Fig. 8. Proof of Lemma 8. Fig. 9. Proof of Lemma 9.

whose distance frombi+1 is minimal. SinceIi is an “interval of bridges”, this implies that eitherbi and
bi+1 are collinear, orbi is one of the extreme bridges inIi . We now prove that this approach is correc

Lemma 9. Let I1, . . . , In be given as defined above. A configurationB with dilation dil(B) � σ exists if
and only ifIn �= ∅. If it exists, it can be computed inO(n) time from the intervals.

Proof. The “only if” part follows from Lemma 7. We show the “if” part by proving that the configurat
B = (b1, . . . , bn) defined above has dilation� σ . Since this configuration can clearly be computed
linear time from the intervals, the last statement of the lemma will follow at the same time.

Assume that dil(B) > σ . Then there is a visible pair(p, q), such that dil(π(p, q,B)) > σ . Let π =
π(p, q,B), and letsu, st be the buildings containingp andq. Without loss of generality we can assum
u < t . Sincebt ∈ It , there is a sequence of bridgesb′

1, . . . , b
′
t−1 with b′

k ∈ Ik, such that the pathπ ′ =
π(p, q, (b′

1, . . . , b
′
t−1, bt)) has dilation at mostσ .

We have dil(π ′) � σ < dil(π). By Lemma 6 there is a U-turn� = (bi, . . . , bj) of π (without loss of
generality assumed to be a left U-turn) such that all the bridgesb′

i , . . . , b
′
j lie strictly to the left of�, see

Fig. 9.
The last bridge of bothπ andπ ′ is bt , soj < t . It follows thatπ passes throughbj+1. Since� is a left

U-turn, the bridgebj+1 is strictly to the left ofbj . By definition ofbj , however, this implies thatbj is the
left endpoint ofIj , andb′

j /∈ Ij , a contradiction. �
Given a pointp in a building su, we can define a configurationBp that is, in a sense, optimal forp

by choosing bridgesbp

1 , . . . , b
p
n as follows. Fork � u, choose an arbitrary bridgebp

k ∈ Ik. Choose bridge
b

p

u+1 as close as possible top. The remaining bridges are chosen recursively, by choosingb
p

k ∈ Ik to be
as close tobp

k−1 as possible. Letmp

i denote the endpoint ofbp

i on the buildingsi . The following lemma
shows thatBp is indeed optimal forp.

Lemma 10. Let intervalsI1, . . . , In be as defined above, letp ∈ su and q ∈ st , with u < t . Further-
more, letB = (b1, . . . , bn) be a configuration withbi ∈ Ii for i < t , and letB ′ be the configuration
(b1, . . . , bu, b

p

u+1, . . . , b
p

t−1, bt , . . . , bn). Thendil(p, q,B ′) � dil(p, q,B).

Proof. Let π = π(p, q,B) andπ ′ = π(p, q,B ′). Assume that dil(π ′) > dil(π). By Lemma 6 there is
then a U-turn� = (b

p

i , . . . , b
p

j) of π ′ (without loss of generality assumed to be a left U-turn) such
the corresponding bridges ofπ lie strictly to the left of�. Since� is a left U-turn, the bridgebp

i−1 (or the
point p, if i − 1 = u) lies to the left ofbp

i . The definition ofbp

i implies thatbp

i is then the leftmost bridg
in Ii , a contradiction withbi ∈ Ii . �

70 T. Asano et al. / Computational Geometry 30 (2005) 59–77

The following lemma shows that optimal paths are helpful in computing the intervalsIi.

Lemma 11. Let p ∈ su, q ∈ si , with u < i − 1. The intervalI (p, q) can be computed in constant time

s

an

in

-

pute

s

h

i-

r.

em
if b
p

i−1 and |π(p,m
p

i−1,B
p)| are known.

Proof. Recall thatI (p, q) is defined as the set of all bridgesbi connectingsi−1 andsi , such that there i
a set of bridgesb1 ∈ I1, b2 ∈ I2, . . . , bi−1 ∈ Ii−1 with dil(π(p, q, (b1, . . . , bi))) � σ . By Lemma 10 this
is equivalent to dil(π(p, q, (b

p

1 , b
p

2 , . . . , b
p

i−1, bi))) � σ . This path coincides withπ(p, q,Bp) up to and
including bridgebp

i−1, which is the pathπ(p,m
p

i−1,B
p). Since the length of this path is known, we c

computeI (p, q) in constant time. �
Lemma 12. The intervalsI1, . . . , In defined above can be computed inO(n2) time andO(n) space.

Proof. Let P denote the set of all building corners and all pointsp such that there is a visible pair(p, q)

with p ∈ su, q ∈ st andu < t . By Lemma 4,P contains at most 12n points and it can be computed
O(n logn) time.

For each buildingst , we create a list of visible pairs(p, q) with q ∈ st andp ∈ ⋃t−1
u=0 su such that not

bothp andq are building corners. This can be done during the same computation.
The computation then proceeds inn stages, with stagei computing intervalIi . Throughout, we main

tain for each pointp ∈ P the bridgebp

i , as well as the length of the pathπ(p,m
p

i ,B
p).

Consider stagei. We compute the intervalsI (p, q), for all pairs(p, q) with p ∈ ⋃i−1
u=0 su andq ∈ si that

are either visible pairs or where bothp andq are building corners. (This avoids the need to precom
and store O(n2) visible pairs.) Note that all the pointsp appearing in such pairs are inP , and so there
are at most 12n such pairs.

By Lemma 11, it takes constant time to computeI (p, q) using the information from the previou
stage. We can determinebp

i and update the stored length forπ(p,m
p

i ,Bp) in constant time as well.
It takes O(n) time to compute the intersection intervalIi , so the total time spent per stage is O(n). �
Lemmas 12 and 9 imply the following theorem.

Theorem 13. Given a bridge graphG on a set ofn + 1 buildings that is a path and a real numberσ > 1,
we can in timeO(n2) compute a configurationB realizingG with dil(B) � σ or determine that no suc
configuration exists.

It seems hard to improve this result when there are	(n2) visible pairs that could determine the d
lation. In fact, we do not even know how to decide in o(n2) time whether agiven configuration has
dilation � σ .

If the number of visible pairs of the given set of buildings is o(n2/ logn), it is possible to do bette
The difficulty is that the size of the setP is still linear, and we cannot maintainbp

i for all pointsp ∈
P explicitly. Instead, we storebp

i and |π(p,m
p

i ,B
p)| in data structures that allow us to update th

efficiently. We will need the simple data structure described in the following lemma.

Lemma 14. There is a data structure that storesm real numbersa1, . . . , am, can be built in timeO(m),
and supports the following operations in timeO(logm):

T. Asano et al. / Computational Geometry 30 (2005) 59–77 71

• given an indexj ∈ {1, . . . ,m}, returnaj ;
• given two indicesj ′, j ′′ ∈ {1, . . . ,m} and a real numberb, replace the value ofaj by aj + b for all

j ′ � j � j ′′.

leaves

s
nt

all
s

s.
m-
Berg

s,
Proof. The data structure is basically a segment tree [2]. It is a balanced binary tree, whose
correspond to the indices 1, . . . ,m in order. Each nodev of the tree contains a real numberbv , and the
value ofaj for a leafj is the sum ofbv over the nodes on the path from the root toj . Clearly it can be
returned in time O(logm). For the last operation, we find all the nodesv of the tree such that the indice
of all leaves in the subtree rooted atv lie within the interval[j ′, j ′′], while the subtree rooted at the pare
of v contains at least one leaf outside this interval. For all such nodesv, we addb to bv . �

Let againΛi be the bridge region connectingsi−1 and si . Let b and b′ be two bridges inΛi , and
consider them directed fromsi−1 to si . We letb ≺ b′ if and only if b lies left of b′. Now letP be the set
of points defined in Lemma 12, and letPi := P ∩ ⋃i

j=0 sj . Consider the union of all rectangles and
bridge regions. This is a single rectilinear polygon. We order the points ofP along the boundary of thi
polygon, in counter-clockwise order starting and ending onsn (note that there are no points ofP in sn)
and denote this order again by≺.

Lemma 15. Letp,p′ ∈ Pi−1. If b
p

i ≺ b
p′
i thenp ≺ p′.

Proof. If p′ ≺ p while b
p

i ≺ b
p′
i , then the pathsπ(p,m

p

i ,B
p) andπ(p′,mp′

i ,Bp′
) have to cross, which

is impossible. �
Theorem 16. Given a bridge graphG on a set ofn+ 1 buildings that is a path, and a real numberσ > 1,
we can in timeO(k logn) compute a configurationB realizingG with dil(B) � σ or determine that no
such configuration exists, wherek is the number of visible pairs.

Proof. It is sufficient to show how to compute the intervalsIi . We start by computing all visible pair
This can be done in time O(k logn) (note thatk � n), by computing both vertical and horizontal deco
positions [2], and a modified version of the algorithm for reporting all direct visibility pairs by de
et al. [1]. For each buildingst we build a list of visible pairs(p, q) with q ∈ st andp ∈ Pt−1.

The algorithm proceeds again inn stages, computingIi in stagei. We maintain two data structure
P (paths) andB (bridges).P is the data structure of Lemma 14. It stores for eachp ∈ P a valueap,
with the points sorted by≺. If p ∈ su, thenap = 0 up to stageu + 1, andap = |π(p,m

p

i−1,B
p)| when

stagei � u+2 is about to start.B is a dictionary. At the beginning of stagei, it stores all the bridgesbp

i−1,
for p ∈ Pi−2, in the order≺. A bridge shared by several points is only stored once. For each bridgeb, we
store thex- or y-coordinate, and two pointsp′,p′′ ∈ Pi−2 such thatbp

i−1 = b if and only if p′
 p
 p′′.
This is possible by Lemma 15.

In stagei, we retrieve the list of visible pairs(p, q) with q ∈ si . For each pair, we computeI (p, q).
If p ∈ si−1, this is done directly, in constant time. Otherwisep ∈ Pi−2, and we computeI (p, q) from
b

p

i−1 and|π(p,m
p

i−1,B
p)| in constant time by Lemma 11. We can find the bridgeb

p

i−1 in O(logn) time
in B—by Lemma 15B is sorted by points as well as by bridges. The value|π(p,m

p

i−1,B
p)| is stored

in P . It follows that the total time, over all stages, for this computation is O(k logn).

72 T. Asano et al. / Computational Geometry 30 (2005) 59–77

It remains to discuss the updating ofP andB to prepare them for the next stage. Let’s first discussB.
Consider the intervalIi−1. The part ofIi−1 that continues straight on intoIi doesn’t need to be touched.
The bridgesbp

i−1 on the left or right ofIi−1 that cannot continue straight on (all bridges, if the orientation
t
s
mber of

f points
ease
nt
dating

fig-
f

nd any

e

rized
of

nges

own
-

etrized

guration
of Ii−1 andIi is different) are removed, and replaced by bridges on the edges ofIi . In addition, we inser
new bridges for allp ∈ P ∩ si−1. This can be done in time O(d logn), whered is the number of bridge
being removed and created. We charge the cost of removing a bridge to its creation. Since the nu
bridges created during the course of the algorithm is|P |+2n = O(n), the total time for this is O(n logn).

Finally, we discuss the updating ofP . For all the bridges ofIi−1 that go straight on toIi , we need to
increase the path length by the same value. By Lemma 15, they correspond to a single interval o
of P , and so this can be done in time O(logn). For each bridge that has been removed, we incr
the path length for its interval of points, in time O(logn) per bridge removed. Finally, for each poi
p ∈ P ∩ si−1 inserted in this stage, we set its path length to the correct value. The total cost of up
is O(n logn) according to Lemma 14. �
4.2. The optimization problem

We can now solve the original optimization problem using Megiddo’s parametric search [7].

Theorem 17. Given a bridge graph on a set ofn + 1 buildings that is a path, we can compute a con
uration with the optimal dilation in timeO(n3 logn), or in timeO(nk log2 n), wherek is the number o
visible pairs.

Proof. We run the algorithm of Lemma 12 with inputσ ∗, whereσ ∗ is the optimal dilation. Sinceσ ∗ is
not known, we parameterize all coordinates used by the decision algorithm in the formaσ + b. One can
verify that all calculations performed by the algorithm are linear functions on the coordinates, a
linear combination of expressions of the formaσ + b is again of this form.

Whenever the algorithm needs to compare two “numbers”aσ + b anda′σ + b′, we compute the valu
σ0 whereaσ0 + b = a′σ0 + b′. We then run the decision algorithm of Theorem 13 usingσ0, which tells
us whetherσ ∗ � σ0. The answer implies which of the two “numbers” is larger, and the paramet
algorithm can proceed. Note that ifσ ∗ = σ0, the outcome of the comparison is arbitrary—inspection
the algorithm shows that this is not a problem.1

When the parametrized algorithm finishes, it has computed a set of non-empty intervalsI1, . . . , In,
since a configuration with dilation� σ ∗ exists. Since the outcome of the parametrized algorithm cha
for σ = σ ∗, the algorithm must have made a comparison againstσ ∗. It follows thatσ ∗ is the smallestσ0

tested during the algorithm that resulted in a positive answer of the decision algorithm.
During the algorithm we maintain an interval of dilation values in which the optimal value is kn

to lie. Whenever a comparison requires answeringσ ∗ � σ0 for a σ0 outside this interval, we can imme
diately return the correct answer without running the decision algorithm. At the end of the param
algorithm, we can report the upper end of the interval asσ ∗.

1 The reader may wonder why we do not simply augment the algorithm of Theorem 13 to report whether a confi
with dilation strictly less thanσ exists. This is indeed possible, for instance by allowing open and half-open intervalsIi , but
seems to be more complex than the observation that tests for equality are not actually needed.

T. Asano et al. / Computational Geometry 30 (2005) 59–77 73

Following Megiddo [7], we organize the parametric algorithm as a “parallel” algorithm, using batches
of independent computations. Recall that the algorithm of Lemma 12 proceeds inn stages, with stagei
computingI (p, q) for O(n) pairs (p, q) with q ∈ si . The computations for each pair are independent,

r
er-
two

ing

n
s.

h,

ven

visible
h
e

ible

ds
, with
tage
and take time O(1). It follows that we can implement them in total time O(n logn) plus O(logn) calls to
the decision algorithm [7].

Forming the intersectionIi is equivalent to the computation of a maximum and a minimum ofn “num-
bers” of the formaσ + b. Consider the “number”aσ + b as the liney = ax + b. We compute the uppe
and lower envelope of alln lines, in time O(n logn) [2]. We can now perform binary search on the v
tices of the envelopes, using O(logn) calls to the decision algorithm, to determine between which
verticesσ ∗ falls. This allows us to return the largest and smallest “number”.

Each stage takes time O(n logn) plus O(logn) calls to the decision algorithm, so the total runn
time is O(n3 logn). We can also use Theorem 16 to obtain total running time O(nk log2 n). �
4.3. The case of vertically sorted buildings

There is one interesting case where we can prove that there are only O(n) visible pairs, namely whe
the buildings are sorted vertically along the path, that is, all bridges are directed vertically upward

Lemma 18. If the bridge graph is a path, and then + 1 buildings are sorted vertically along the pat
then there are at mostO(n) visible pairs.

Proof. A visible pair appears in the vertical decomposition of the set of buildings.�
Theorem 16 now leads to an O(n logn)-time decision algorithm for this case. It is possible to do e

better, as we will show in this section.
The improvement is based on a bracket structure formed by the visible pairs. Consider a

pair (p, q). The segmentpq is vertical. Without loss of generality, letp be its bottom end. The pat
π(p, q,B) is y-monotone, and since it cannot intersectpq, it lies either completely to the left or to th
right of pq. We call a visible pair(p, q) where the path lies completely to the right ofpq a left-hand
visible pair, otherwise aright-handvisible pair.

Lemma 19. Given a set ofn + 1 vertically sorted buildings as defined above, and two left-hand vis
pairs (p, q) and (p′, q ′), with p ∈ su, q ∈ st , p′ ∈ su′ , q ′ ∈ st ′ . Assume thatu � u′. Then either the pairs
are independent andt � u′, or (p, q) is bracketed around(p′, q ′), that is,px < p′

x andu � u′ < t ′ � t .

Proof. If u′ < t , then the buildingsu′ lies completely to the right of the segmentpq, and so we have
px < p′

x . The pathπ(p′, q ′,B) lies completely to the right of the segmentp′q ′, and so it cannot reachst

before reachingst ′ . This impliesu � u′ < t ′ � t . �
In a left-hand visible pair(p, q), eitherp is the top-left corner of a building andq is on a bottom

edge of a building, orq is a bottom-left corner andp is on the top edge of a building. Lemma 19 lea
to a simple algorithm to compute all left-hand visible pairs in linear time. (The same procedure
opposite orientation, can be used to find all right-hand visible pairs.) All we need is a stack. In si,
we repeatedly check whetherpx � qx , wherep is the top element of the stack andq is the bottom-left

74 T. Asano et al. / Computational Geometry 30 (2005) 59–77

corner ofsi . While that is true, we report(p, (px, qy)) as a visible pair and popp from the stack. Finally,
either the stack is empty, orpx < qx . In the latter case, we report((qx,py), q) as a visible pair. Finally,
we push the top-left corner ofsi onto the stack, and proceed to the next stage.

s.

the
rners.

s

(which
thus
t

a
e stored

ath
rval of
to the

s a
h each
inter to

st and
oints.

ends
paring

st the
of the

ing

es

ion
Theorem 20. Given a set ofn + 1 vertically sorted buildings as defined above and a real numberσ > 1.
We can compute inO(n) time a configurationB with dilation dil(B) � σ , or determine that none exist

Proof. Again, we compute the intervalsI1, . . . , In in n stages. The visible pairs are computed during
process, using a “left-side stack” for the top-left corners and a “right-side stack” for the top-right co
During the course of computation, we again maintain two data structuresP andB to store path length
and optimal bridges. Define the index of the top-left corner of buildingsu to be−(u + 1), and the index
of the top-right corner ofsu to beu + 1.

P is implemented as a doubly-linked list. In this list, we store the path lengths|π(p,m
p

i ,B
p)| for all

pointsp currently in the two stacks. The points are ordered by increasing index as defined above
is the same as ordering them by the relation≺ as defined before). The points on top of the stacks are
found at the ends of the list. We store the path lengths by storing thedifferencebetween two adjacen
values on the edges of the list. Only for the first and the last point in the list, we store|π(p,m

p

i ,B
p)|

explicitly. Note that we do not explicitly store path lengths for pointsp that are not the corner of
building. However, these path lengths can be derived in constant time from path lengths that ar
in P : if p on a building with top-left cornerl is part of a left-hand visible pair, then|π(p,m

p

i ,B
p)| is

simply |π(l,ml
i,B

l)| − |pl|; similarly, if p is part of a right-hand visible pair, we can derive the p
length from that of a top-right corner. Note that we can easily increase the path lengths for an inte
points inP in constant time by adjusting two difference or end values, provided we have pointers
first and the last point of the interval.

B stores the optimal bridgesbp

i for all pointsp currently in the two stacks, and is implemented a
doubly-linked list as well. As before, a bridge shared by several points is stored only once. Wit
bridge, we store the index of the first and last point using it. For each point index, we store a po
the node ofP that represents it.

A stage is now implemented as follows:

1. Using the two stacks, compute left-hand and right-hand visible pairs. Accessing the leftmo
rightmost nodes inB andP , we can obtain path length values and bridge positions for these p
With these values, we compute the new intervalIi .

2. Remove from the ends ofP all nodes for points popped from the two stacks. Remove from the
of B all bridges that are not used by any point anymore (these bridges can be identified by com
the index of the point on top of the stack with the indices of the points using the bridge). Adju
interval of points used by the leftmost and rightmost bridge to end at the points on the top
stacks.

3. For each bridgeb in Ii−1 that cannot go straight intoIi , update the path lengths for the correspond
interval of points inP (using the indices of the points forb and the pointers for these indices intoP).

4. Finally, remove all these bridges, update inP the interval of all points that use the remaining bridg
(the bridges that do continue straight intoIi), add the top-left and top-right corner ofsi−1 to P and
add new bridges at the left and right margin ofIi , set the point interval of these bridges to the un

T. Asano et al. / Computational Geometry 30 (2005) 59–77 75

of what was just deleted and the new corner points, and push the top-left and top-right corner ofsi

on the two stacks.

e in
list,

at the
ime per

ke no

u-

an

lly

l
f
n

Observe that all queries and updates ofB andP are done at the ends of the lists and can be don
constant time each. Only updating path lengths inP requires access to an edge in the interior of the
but this edge is found in constant time through the indices stored with the corresponding bridge
end ofB. As before, the removal of bridges is charged to their creation. We thus spend constant t
stage, plus constant time per visible pair.�

Parametric search now leads directly to the following theorem. Unlike in Theorem 17, we ma
attempt to parallelize the parametric algorithm.

Theorem 21. Given a bridge graph on a set ofn + 1 buildings that is a path, we can compute a config
ration with the optimal dilation in timeO(n2).

Finally, we can compute a(1+ ε)-approximation in linear time. We first show a quality bound for
arbitrary placement of the bridges. For completeness, we cover the general case as well.

Lemma 22. Given a bridge graphG on a set ofn + 1 buildings that is a path, and any configurationB
realizingG. Thendil(B) � (σ ∗)2, whereσ ∗ is the optimal dilation. If the buildings are sorted vertica
along the path, then we havedil(B) � 2σ ∗.

Proof. Let B∗ = (b∗
1, b

∗
2, . . . , b

∗
n) be an optimal configuration, that is dil(B∗) = σ ∗. Consider the interva

of possible bridges betweensi−1 andsi , see Fig. 10. Letdi be the distance ofb∗
i to the farther endpoint o

the interval, and lethi be the length ofb∗
i . The pair of points(p′, q ′) indicated in the figure has dilatio

(2di + hi)/hi � σ ∗, which implies 2di � (σ ∗ − 1)hi .
Now consider any visible pair(p, q). If π(p, q,B) uses bridgesbu, . . . , bt , we have

∣∣π(p, q,B)
∣∣ �

∣∣π(p, q,B∗)
∣∣ +

t∑
i=u

2di �
∣∣π(p, q,B∗)

∣∣ + (σ ∗ − 1)

t∑
i=u

hi

�
∣∣π(p, q,B∗)

∣∣ + (σ ∗ − 1)
∣∣π(p, q,B∗)

∣∣ � σ ∗∣∣π(p, q,B∗)
∣∣ � (σ ∗)2‖pq‖.

If the buildings are sorted vertically along the path, we can observe that‖pq‖ �
∑t

i=u hi , and so we
have

∣∣π(p, q,B)
∣∣ �

∣∣π(p, q,B∗)
∣∣ +

t∑
i=u

2di � σ ∗‖pq‖ + (σ ∗ − 1)

t∑
i=u

hi � 2σ ∗‖pq‖. �

Fig. 10. Proof of Lemma 22.

76 T. Asano et al. / Computational Geometry 30 (2005) 59–77

The lemma leads directly to a PTAS for the vertically ordered case: start with an arbitrary configura-
tion, compute its dilationσ , and approximateσ ∗ by a binary search in the interval〈σ/2, σ]. This gives us
a (1+ ε)-approximation ofσ ∗ after O(log(1/ε)) calls to the decision algorithm, leading to the following

ura-

is a
necting
cannot
an
e the
ial-

inimum
ervation
not

ances?
bridge

cribed,
iven a
that the
ents of
ation

ects by
for the

74–296.
tions,

19.
, Elsevier,
result.

Theorem 23. Given a set ofn + 1 buildings sorted vertically along a path. We can compute a config
tion with dilation at most(1+ ε) times the minimum dilation in timeO(n log(1/ε)).

5. Concluding remarks

We posed the following question: givenn non-intersecting rectangles and a bridge graph—that
graph describing which pairs of rectangles are to be connected—how fast can we find the con
segments that minimize the dilation? We found that if the graph may contain cycles, this problem
generally be solved in polynomial time (unless P= NP), but if the graph is a path, the problem c
be solved in O(n3 logn) time. For the case of trees, the question is still open: so far, we can solv
problem by linear programming on O(n2) variables and constraints, but we have no strongly polynom
time algorithm, that is, we have no polynomial-time algorithm for the real RAM model.

Concerning approximations, we have shown that any bridge placement has at most twice the m
dilation in case the bridge graph is a path and buildings are stacked on top of each other. This obs
gives rise to a fast(1 + ε)-approximation algorithm. If the bridge graph is a path but buildings do
have a vertical order, we could only show that any bridge placement has dilation(σ ∗)2, whereσ ∗ is the
minimum dilation of the instance. Is there a constant-factor-approximation algorithm for such inst
Or more important: is there a constant-factor-approximation algorithm for the case of general
graphs?

Having gained some insight in the bridge placement problem when the bridge graph is pres
it may now be interesting to study the problem with the bridge graph not given. For example: g
set of non-intersecting rectangles, find a set of connecting segments of given total length such
dilation is minimized. Or: given a set of non-intersecting rectangles: find a set of connecting segm
minimum total length such that a given dilation is achieved. We might have to settle for approxim
algorithms in this case.

When starting this research, we originally asked about how to connect convex polygonal obj
line segments unrestricted in orientation. It will be interesting to see to what extent the techniques
axis-aligned case carry over to (approximation) algorithms for the unaligned case.

References

[1] M.T. de Berg, S. Carlsson, M.H. Overmars, A general approach to dominance in the plane, J. Algorithms 13 (1992) 2
[2] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms and Applica

Springer, Berlin, 1997.
[3] L.P. Chew, There are planar graphs almost as good as the complete graph, J. Comput. Syst. Sci. 39 (1989) 205–2
[4] D. Eppstein, Spanning trees and spanners, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry

Amsterdam, 2000, pp. 425–461.

T. Asano et al. / Computational Geometry 30 (2005) 59–77 77

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York,
1979.

[6] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–395.
865.
[7] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30 (4) (1983) 852–

[8] D. Peleg, A. Schäffer, Graph spanners, J. Graph Theory 13 (1989) 99–116.

