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Abstract

Given a planar convex setC, we give sublinear approximation algorithms to determine approximations of the largest a
symmetric convex setS contained inC, and the smallest such setS′ that containsC. More precisely, for anyε > 0, we find
an axially symmetric convex polygonQ ⊂ C with area|Q| > (1 − ε)|S| and we find an axially symmetric convex polygonQ′
containingC with area|Q′| < (1 + ε)|S′|. We assume thatC is given in a data structure that allows to answer the following
types of query in timeTC : given a directionu, find an extreme point ofC in directionu, and given a line�, find C ∩ �. For
instance, ifC is a convexn-gon and its vertices are given in a sorted array, thenTC = O(logn). Then we can findQ andQ′ in time
O(ε−1/2TC + ε−3/2). Using these techniques, we can also find approximations to the perimeter, area, diameter, width,
enclosing rectangle and smallest enclosing circle ofC in time O(ε−1/2TC).
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Some problems on convex polygons can be solved in sublinear time when the polygonP is given as an array of th
n vertices in sorted order along the boundary ofP . For instance, given a line�, the two vertices ofP that have tangent
parallel to� can be found in O(logn) time. The shortest line segment connecting two convex polygons can a
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computed in O(logn) time [10]. Schwarzkopf et al. [19] show how to compute a pair of rectangles approxim
a given convex polygon in O(log2 n) time. Kirkpatrick and Snoeyink [14] give a general framework that allow
answer several queries on a convexn-gonP in O(logn) time. Examples are the longest chord (or a chord of g
length) parallel to a query line, or the largest homothet of a query triangle that fits insideP . Chazelle et al. [8] recentl
presented a different framework for obtaining sublinear-time algorithms where the input is not given in sorted
but in linked lists where random nodes can be accessed in constant time. It yields O(

√
n ) time randomized algorithm

for various problems, for instance for detecting intersections between convex polyhedra.
Other problems on convex polygons cannot be solved in sublinear time. For instance, determining the dia

area ofP takes�(n) time. In this paper we show that some of these problems can be solved in O(logn) time if an
approximatesolution is sufficient. We can, for instance, compute the diameter or the area ofP up to a relative erro
of ε in time O((logn)/

√
ε ). In fact, we will give efficient algorithms for arbitrary compact convex sets in the pl

Our only assumption is that a convex setC is given in a data structure that allows to answer the following two ty
of queries in timeTC :

• given a query line�, find C ∩ �,
• given a query directionu, find an extreme point in directionu.

For instance, ifC is a convexn-gon given as an array of its vertices in counter-clockwise order, then we can a
these two types of queries in O(logn) time by binary search, soTC = O(logn).

Our algorithms are based on an approximation of the input convex setC by a convex polygon whose size depen
only onε. This is not a new idea: our approximation is based on a constructive proof by Dudley from 1974 [9]. A
by Agarwal et al. [1] uses this idea as well, some of these results have been improved recently by Chan [7
estingly, these approximations can be computed in logarithmic time, a striking improvement compared, for i
to the result by Lopez and Reisner [17]. They proposed an O(n + (n − k) logn) time algorithm for approximating
convexn-gon by an inscribed polygon withk vertices and relative approximation error O(1/k2). Our method achieve
the same in time O(k logn) (or in time O(n), independent ofk).

In general, if it is possible to compute a certain property of a convexn-gon in time polynomial inn, and this property
is “robust” with respect to approximation of the polygon, then our approximation technique immediately resul
approximation algorithm for an arbitrary planar convex setC of running time roughly O(ε−1/2TC + 1/εO(1)). In the
case whereC is a convexn-gon given in an array, we obtain sublinear O(ε−1/2 logn + 1/εO(1)) time algorithms.

We give some rather immediate applications of this technique, and then turn to our main result. W
logarithmic-time approximation algorithms to determine, for a given convex setC, approximations of the large
axially symmetric convex set contained inC, and the smallest such set that containsC.

There are a number of papers that study the best inner approximation of any convex set by a symmetri
distance to a symmetric set can be considered a measure of its symmetry [11]. Lower bounds for this distance
by the Löwner–John ellipsoid [13]: any planar convex bodyC lies between two homothetic ellipsesE ⊂ C ⊂ 2E with
homothety ratio at most 2. Since any ellipse is axially symmetric, and area(E) = 1

4 area(2E) � 1
4 area(C), any convex

planar setC contains an axially symmetric subset with at least 1/4 of the area ofC. The same lower bound of 1/4
follows from the fact that any planar convex body lies between two homothetic rectangles with homothety
most two [16,19]. The lower bound can be raised to 2/3 [15], a bound that is not known to be tight. Bounds are a
known for specific axis-symmetric inscribed figures, such as isosceles triangles or kites [21].

The largest centrally symmetric set contained in a convex shapeC is the maximum intersection ofC and a translate
of −C. If C is a convexn-gon, this can be computed in O(n logn) time [5]. Approximation by axially symmetric sets
technically more demanding, as the largest axially symmetric set contained inC is the maximum intersection ofC and
arotatedand translated copy ofC′ (with C′ a fixed axially reflected copy ofC). We do not know of any exact algorith
to compute the maximum intersection of two convex polygons under translation and rotation (orientation-pre
rigid motions), indeed it is not clear that such an algorithm can exist within a reasonable model of computatio

Barequet and Rogol [4] propose an algorithm to compute exactly the largest subset of a convexn-gon with an
axial symmetry; but it requires to solve�(n3) optimization problems for which no polynomial time algorithm
known. This is our motivation to give a fast approximation algorithm. We can find a(1 − ε)-approximation in time
O(ε−1/2TC + ε−3/2).
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The problem of outer approximation of a convex polygon by an axially symmetric polygon seems to h
ceived less interest than inner approximation, perhaps because this is equivalent to the inner approximat
lem if one drops the requirement that the axially symmetric polygon has to be convex. The results on
imation by homothetic pairs (ellipses or rectangles) cited above give again simple bounds: for each co
C there is an axially symmetric setD containingC with area(D) � 4 area(C). The constant 4 can be reduc
to 31/16 [15], again this is probably not tight. We give an approximation algorithm for this problem with ru
time O(ε−1/2TC + ε−3/2).

Both algorithms are based on three key ideas.

• First, as discussed before, we replace the input figure by a polygon with a number of vertices dependε
only.

• Second, we discretize the set of directions and sample only directions in a discrete set. This works wel
as the polygon is not long and skinny. Fortunately we can show that for long and skinny polygons, the
an optimal symmetry must be very close to the diameter of the polygon, or must be nearly orthogona
diameter.

• Finally, we use an algorithm to compute the optimal solution for a given direction of the axis of sym
In the inscribed case, this is equivalent to finding the translation ofC′ that maximizes the area ofC ∩ C′. As
mentioned before, this can be done in time O(n logn) [5]. In our case, it suffices to consider a one-dimensio
set of translations, which permits a linear-time solution [3]. We also give a linear-time decimation algorit
the circumscribed case.

As mentioned before, the inscribed case is a special case of the problem of maximizing the overlap of two
polygonsC andC′ under translation and rotation ofC′. Surprisingly little is known about this problem. Alt et al. [
made some initial progress on a similar problem, showing, for instance, how to construct, for a convex polygoP , the
axis-parallel rectangleQ minimizing the symmetric difference ofP andQ. Our solution does not generalize to th
problem. It does not appear to be “robust” under approximation ofC andC′. Furthermore, we do not know how
discretize the set of directions whenC is fat whileC′ is long and skinny.

2. Notations

In this paper, all the convex sets we consider are compact and lie in the plane. So we will simply sayconvex se
instead of planar compact convex set. We let|C| denote theareaof a convex setC, while diam(C) and peri(C) denote
its diameter and perimeter.

We denote byU the set of unit vectors in the plane. We identify a pointM in the plane with the vectorOM , where
O is the origin. We denote by〈a, b〉 the inner product ofa andb. Thedirectional widthof a convex setC in direction
u ∈ U is the minimum width of a slab that containsC and is orthogonal tou. In other words, the directional width o
C in directionu is:

dwidth(u,C) = max
x∈C

〈u,x〉 − min
x∈C

〈u,x〉.

Thewidthof C is the minimum width along all the directions inU , that is:

width(C) = min
u∈U

(
dwidth(u,C)

)
.

We introduce another notion: for a convex setC, let breadth(C) := |C|/diam(C). The name breadth(C) can be
explained as follows: letpq be a diameter ofC. There is then a rectangleR circumscribed toC with one side
parallel topq such thatC touches all four sides ofR. The sides ofR have length diam(C) andw, and we have
diam(C)w/2 = |R|/2 � |C| � |R| = diam(C)w. This implies breadth(C) � w � 2breadth(C), so breadth(C) is an
estimate for the directional width ofC orthogonal to a diameter. (We use the word “breadth” instead of “width
avoid confusion with the usual notion of width, which is explained in the previous paragraph.)

We assume that a convex setC is given in a data structure that allows to answer the following two types of qu
in timeTC :
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• given a line�, find the line segmentC ∩ �.
• given a directionu ∈ U , find a pointx of C that is extreme alongu. In other words,

〈u,x〉 = max
y∈C

〈u,y〉.

For instance, ifC is a convexn-gon whose vertices are given in a sorted array, we can answer these queries by
search in time O(logn), soTC = O(logn).

For two setsA andB such thatA ⊂ B, theHausdorff-distancebetweenA andB is

dH (A,B) := max
b∈B

(
min
a∈A

d(a, b)
)

whered(a, b) is the Euclidean distance betweena andb.

3. Preliminaries

We will make use of the following inequality [22, p. 257, Ex. 7.17a].

Lemma 1. For a convex setC we haveperi(C) � π diam(C).

The following lemma bounds the increase in area when a convex set is enlarged.

Lemma 2. LetC be a convex set, letr > 0, and letC′ be the set of points at distance at mostr fromC (in other words,
C′ is the Minkowski sum ofC and a disk of radiusr). Then|C′| = |C| + r peri(C) + πr2, peri(C′) = peri(C) + 2πr ,
anddiam(C′) = diam(C) + 2r .

Proof. Assume first thatC is a convex polygon. ThenC′ \ C can be decomposed into rectangles of widthr along
each edge ofC, and disk sectors at the vertices ofC. The union of all the disk sectors is a disk of radiusr , which
implies the claim. For generalC, approximate it by a sequence of polygons and take the limit.�

An alternate proof is suggested in Exercise 6 on page 47 of do Carmo [6]. A similar bound is the following “v
of tube” formula. Again one could prove this easily for convex polygons, and take the limit. The lemma also f
directly from the general volume-of-tube formula for smooth curves in any dimension by Hotelling [12] and Wey

Lemma 3. Let C be a convex set, letr > 0, and letC′ be the set of points at distance at mostr from the boundary
of C (in other words,C′ is the Minkowski sum of the boundary ofC and a disk of radiusr). Then|C′| � 2r peri(C).

Finally, we bound the change in area incurred by a rotation around a point inside a convex polygon.

Lemma 4. LetC be a convex set, and letC′ be a copy ofC, rotated by an angleδ around a pointp in C. Then

|C ∩ C′| � |C| − πδ

2
diam(C)2.

Proof. We denote byD the symmetric difference betweenC andC′, in other wordsD = (C ∪ C′) \ (C ∩ C′). We
denote byCm the copy ofC rotated by an angleδ/2 aroundp. Let Tm denote the set of points that are at distanc
mostδ diam(C)/2 from the boundary ofCm. Note that any pointq in D is obtained from a point on the boundary
Cm by a rotation with centerp and angle at mostδ/2 in absolute value. Since the distanced(p,q) is at most diam(C),
it follows thatq ∈ Tm. ThusD ⊂ Tm. By Lemma 3, the area ofTm is at mostδ diam(C)peri(Cm). Since peri(Cm) =
peri(C) and, by Lemma 1, peri(C) � π diam(C) we obtain that|Tm| � πδ diam(C)2. SinceD ⊂ Tm, it implies that
|D| � πδ diam(C)2. The result follows from|D| = |C| − |C ∩ C′| + |C′| − |C ∩ C′| = 2(|C| − |C ∩ C′|). �
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4. Approximating a convex set

A key component of our proofs is a polygon approximation whose size depends only onε. In particular, we will
show that the framework of Agarwal et al. [1] can be implemented efficiently in the case of planar convex s
start with a lemma.

Lemma 5. Given a convex setC, we can find inO(TC) time a rectangleR with sidesa, b containingC such
that C touches all four sides ofR and such thatdiam(C)/

√
2 � a � diam(C), breadth(C) � b � 4breadth(C), and

|R|/(2√
2) � |C| � |R|.

Proof. We can determine a point ofC that is extreme in a given direction in timeTC . By doing this four
times, we can find the axis-parallel bounding boxR′ of C. Let a′ � b′ > 0 be its sides, and pick the ve
tices p,q of C touching the shorter sides ofR′. Then a′ � d(p,q) � diam(C) � diam(R) �

√
2a′. We now

compute the smallest rectangleR containingC with a side parallel topq. The side parallel topq has length
a � d(p,q) � a′ � diam(C)/

√
2. SinceC contains two triangles with common basepq and total heightb, we have

ab = |R| � |C| � d(p,q)b/2� ab/(2
√

2) = |R|/(2√
2). Finally, we haveb � |C|/a � |C|/diam(C) = breadth(C),

andb � 2
√

2|C|/a � 2
√

2|C|/(diam(C)/
√

2) = 4breadth(C). �
Following Agarwal et al. [1], we say that a convex setC′ ⊂ C is anε-kernel ofC if and only if

∀u ∈ U, (1− ε)dwidth(u,C) � dwidth(u,C′).

We give an efficient algorithm to compute a low-complexityε-kernel of a convex setC. It is based on Dudley’
constructive proof [9]. Note that the running time of the linear-time version of the algorithm has no dependenε

at all.

Lemma 6. Given a planar convex setC and ε > 0, one can construct in timeO(TC/
√

ε ) two convex polygonsCε

andC′
ε with O(1/

√
ε ) vertices such thatCε ⊂ C ⊂ C′

ε and |C′
ε \ Cε| � ε|C|. In addition,Cε is anε-kernel ofC, and

C is anε-kernel ofC′
ε. If C is a convexn-gon, then we can computeCε andC′

ε in timeO(n).

Proof. We start by computing a rectangleR as in Lemma 5, and apply a transformation that mapsR to the unit
square. Ratios of area and directional width are invariant under affine transformations. In the following,
therefore assume thatC is inscribed in a unit squareR.

First we prove a lower bound on width(C). By Lemma 5, we have|C| � 1/(2
√

2). Let u0 be a direction such tha
width(C) = dwidth(u0,C) andu1 be a direction orthogonal tou0. Clearly dwidth(u1,C) � diam(R) = √

2. Therefore

1

2
√

2
� |C| � dwidth(u1,C)dwidth(u0,C) �

√
2width(C),

so width(C) � 1/4.
We now discuss the linear-time algorithm for the case thatC is a convexn-gon. We go once aroundC, starting at

an arbitrary vertex, and select edges ofC as we go. We always choose the first edge. Lete = ww′ be the most recentl
chosen edge, lete′ = vv′ be the next candidate edge, and lete′′ = v′v′′ be the edge followinge′. We choosee′ if

• the distanced(w′, v′) >
√

ε/3, or
• the outer normals ofe ande′′ make an angle larger than

√
ε/3.

We observe that the number of edges selected is O(1/
√

ε ). Remember thatC is inscribed in a unit square, so b
Lemma 1, only O(1/

√
ε ) edges can be chosen according to the first rule. The total change of the outer norma

is 2π = O(1), so only O(1/
√

ε ) edges can be chosen according to the second rule.
Let Cε be the convex hull of the selected segments, and letC′

ε be the polygon obtained by extending the selec
edges until they form a convex polygon. ThenCε ⊂ C ⊂ C′

ε.
The differenceC′

ε \Cε consists of O(1/
√

ε ) triangles. Each triangle� is defined by two consecutive selected ed
e = ww′ ande′ = vv′ that are not consecutive inC. If s is the point of intersection of the lines supportinge ande′,
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then� = �w′vs. By construction, the supporting lines make an angle of at most
√

ε/3 and so the angle� w′sv � π −√
ε/3. Also by construction, the distanced(w′, v) � √

ε/3. Together this implies that the height of� is at mostε/9,
and sodH (Cε,C

′
ε) � ε/9. In particular, sinceCε ⊂ C ⊂ C′

ε, it follows thatdH (Cε,C) � ε/9 anddH (C,C′
ε) � ε/9.

So for all directionsu ∈ U , we have dwidth(u,C)−2ε/9 � dwidth(u,Cε), and dwidth(u,C′
ε)−2ε/9 � dwidth(u,C).

Remember that width(C) > 1/4, so dwidth(u,C) > 1/4. Therefore(1 − ε)dwidth(u,C) � dwidth(u,Cε), andCε is
an ε-kernel forC. Since dwidth(u,C′

ε) � dwidth(u,C) > 1/4, we also have(1 − ε)dwidth(u,C′
ε) � dwidth(u,C),

andC is anε-kernel forC′
ε.

We have just observed thatC′
ε \Cε consists of triangles with height at mostε/9 and such that the sum of the leng

of their bases is at most peri(Cε). SinceCε is contained in a unit square, its perimeter is at most 4. So|C′
ε \ Cε| �

2ε/9< ε/2
√

2� ε|C|.
Let now C be a (not necessarily polygonal) convex set. We will show how to computeCε and C′

ε in time
O(TC/

√
ε ). We will select a sequence of pointsp1,p2, . . . , ps on the boundary ofC such that the following hold

(let p0 := ps ):

• p1,p2, . . . , ps is sorted in counter-clockwise order along the boundary ofC,
• s = O(1/

√
ε ),

• for i = 1, . . . , s, there are tangents toC in pi−1 andpi that make an angle of at most
√

ε/3, and
• for i = 1, . . . , s, the distance betweenpi−1 andpi is at most

√
ε/3.

Let Cε be the convex hull ofp1, . . . , ps , and letC′
ε be the polygon formed by the at most 2s tangents toC in

p1, . . . , ps . ThenCε ⊂ C ⊂ C′
ε, andC′

ε \ Cε consists ofs = O(1/
√

ε ) trianglespi−1piv. The approximation bound
now follow as in the polygon case.

To computeCε, we first select the boundary points ofC that are extreme in a set of 6π/
√

ε equally spaced
directions. We then consider a set of equally spaced horizontal and vertical lines at distance

√
ε/18, and select th

points of intersection between the boundary ofC and these lines. This takes O(1/
√

ε ) queries on the convex setC,
and results in a sequence of points as required above. We obtainCε as the convex hull of the selected point sequen

The outer approximationC′
ε takes a little more work: the difficulty is that we do not know the tangents in

boundary points obtained by line intersection queries. We therefore first compute the inner approximationCε/4 (that
is, with ε′ = ε/4). For each edgepi−1pi of Cε/4, let ui be the outer normal ofpi−1pi . We compute the pointqi ∈ C

extreme in directionui . The sequenceq1, q2, . . . now fulfills the requirements above, and we easily obtainC′
ε given

the points and the tangent directions.�
Following Agarwal et al. [1], we definefaithful measuresfor convex sets. A functionµ is a faithful measure i

µ(C) � 0 for any convex setC and if there exists a constantc > 0 such that, for anyε-kernelCε of C, we have
(1− cε)µ(C) � µ(Cε) � µ(C). We list a few measures that were shown to be faithful by Agarwal et al. [1].

Lemma 7 [1, Section 6.1]. The following measures are faithful: diameter, width, area, perimeter, the radius of t
smallest enclosing disk, and the area of the smallest enclosing rectangle.

5. Simple applications

We give a few simple applications of our approximation technique to optimization problems for convex se
lowing Agarwal et al. [1], we first compute a kernel of the convex input set, and then we apply known algo
on the kernel. For a number of problems, this provides an approximate solution to the optimization problem
original convex set.

Theorem 8. Given a planar convex setC, we can compute a(1 − ε)-approximation of its area, diameter, perimet
and width in timeO(TC/

√
ε ). In particular, if C is a convexn-gon and its vertices are given in a sorted array o

balanced binary search tree, then we can compute these approximations in timeO(logn/
√

ε ). We can also comput
(1+ ε)-approximations of the smallest area enclosing rectangle and the smallest enclosing disk ofC within the same
time bounds.
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Proof. The area and perimeter of a convexn-gon can be easily computed in O(n) time. Its diameter, width and sma
est area enclosing rectangle can also be computed in O(n) time using, for instance, the rotating callipers techniqu
Toussaint [20]. The smallest enclosing disk can also be found in O(n) time [18].

By Lemma 7, all these measures are faithful, and so there is a constantc > 0 such that anε/c-kernelCε/c for
C provides(1 − ε)-approximations of diameter, width, area, and perimeter ofC. We can computeCε/c in time
O(TC/

√
ε ). It has O(1/

√
ε ) vertices, and so we can compute its diameter, width, area, and perimeter within th

time bound.
For the smallest enclosing rectangle and disk, we use the outer approximationC′

ε/c for a suitablec > 0 instead.
SinceC is anε/c-kernel ofC′

ε/c, the smallest enclosing rectangle and disk ofC′
ε/c are(1+ ε)-approximations of the

smallest enclosing rectangle and disk ofC. Again, they can be computed in time O(TC/
√

ε ). �
6. The largest axially symmetric inscribed set

In the following we denote by refl(·, �) the reflection at line�, so that refl(C, �) is the reflected image ofC under
reflection at�. Let C be a convex set in the plane and let� be a line. The setC ∩ refl(C, �), if it is not empty, is an
axially symmetric convex subset ofC, the largest axially symmetric subset with reflection axis�. Our goal is to find,
for a convex setC, a line�opt(C) that maximizes the area of this set:∣∣C ∩ refl

(
C,�opt(C)

)∣∣ = max
�⊂R2

∣∣C ∩ refl(C, �)
∣∣.

As we discussed in the introduction, Lassak proved the following lower bound [15]:

Lemma 9.
∣∣C ∩ refl

(
C,�opt(C)

)∣∣ � 2

3
|C|.

In this section we show that at least anε-approximation�ε with

(1− ε)
∣∣C ∩ refl

(
C,�opt(C)

)∣∣ <
∣∣C ∩ refl(C, �ε)

∣∣
can be found fast.

If the direction of� is known, we can compute the optimal line using the following lemma.

Lemma 10. Given a convexn-gonP and a line�, one can find inO(n) time the line�′ parallel to � that maximizes
|P ∩ refl(P, �′)|.

Proof. Let Q := refl(P, �), and lett be a vector orthogonal to�. For any line�′ parallel to�, refl(P, �′) is a translation
of Q by a multiple oft , and so the problem is equivalent to findingλ ∈ R such that|P ∩ (Q + λt)| is maximized.
A linear-time algorithm to solve this problem has been given by Avis et al. [3].�

We will apply this algorithm to a set of O(1/ε) directions. The following two lemmas show how to find this se
directions.

Lemma 11. Let � and �′ be two lines intersecting in a pointp with an angleδ, and letC be a convex set. Ifp ∈
C ∩ refl(C, �), then∣∣C ∩ refl(C, �′)

∣∣ �
∣∣C ∩ refl(C, �)

∣∣ − πδ diam(C)2.

Proof. The concatenation of the reflection at� and the reflection at�′ is a rotation aroundp by the angle 2δ. Let
Q := C ∩ refl(C, �). SinceQ is symmetric with respect to�, the set refl(Q,�′) = refl(refl(Q,�), �′) is a copy ofQ
rotated aroundp by 2δ. Sincep ∈ Q, Lemma 4 implies that∣∣Q ∩ refl(Q,�′)

∣∣ � |Q| − πδ diam(Q)2.
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Fig. 1. Case whereC is long and skinny. We sample directions from the shaded area.

SinceQ ⊂ C, we have

C ∩ refl(C, �′) ⊃ Q ∩ refl(Q,�′),

and by the above that implies∣∣C ∩ refl(C, �′)
∣∣ � |Q| − πδ diam(Q)2 �

∣∣C ∩ refl(C, �)
∣∣ − πδ diam(C)2. �

The occurrence of diam(C)2 instead of|C| is a problem. In the following lemma, we will need to give spec
consideration to the case where the setC is long and skinny, that is, when diam(C)2 is much larger than|C|. Intuitively,
whenC is fat we will just sample the space of directions uniformly. WhenC is long and skinny, we will sample mor
densely, but we will only sample near the two axes of symmetry of a bounding rectangleR that is parallel to a
diametral segmentab (see Fig. 1).

Lemma 12. Given a convexn-gonP andε > 0, one can construct in timeO(n + 1/ε) a setDε of O(1/ε) directions
such that(

1− 1

2
ε

)∣∣P ∩ refl
(
P,�opt(P )

)∣∣ � max
{∣∣P ∩ refl(P, �)

∣∣: � has a direction fromDε

}
.

Proof. By Lemma 11 and Lemma 9 it is sufficient to choose the setDε such that it contains a line that makes an an
δ of at mostε|P |/(3π diam(P )2) with �opt.

We start by computing, in time O(n), a diameterpq of P , and the area|P |. We then distinguish two cases.
If diam(P )2 � 20|P |, then we generateDε by sampling the direction space uniformly, choosing multip

of ε/30π . Sinceε/60π � ε|P |/3π diam(P )2, this is sufficient.
If, on the other hand, diam(P )2 > 20|P |, then we sample uniformly the directions within 3π |P |/2 diam(P )2 of

the direction of the diameterab, choosing multiples of 2ε|P |/3π diam(P )2. We do the same around the direction t
is orthogonal toab. To show that this is sufficient we have to demonstrate that�opt(P ) does not make an angle larg
than 3π |P |/2 diam(P )2 with the direction of the diameter or with the direction that is orthogonal to the diamete

As in the argument at the beginning of Section 3, letR be the rectangle circumscribed toP with a side paralle
to pq. The longer side ofR has length diam(P ), andP touches all four sides ofR. This implies that|R| � 2|P |,
and so its widthw is at most 2|P |/diam(P ) = 2breadth(P ). It follows thatP lies in an infinite strip of width at mos
2breadth(P ). Let γ ∈ [0,π/2] be the angle made by the lines�opt(P ) andpq. The set refl(P, �opt) is contained in a
congruent strip, intersecting the strip ofP at an angle 2γ . The setP ∩ refl(P, �opt) is contained in the intersection
the two strips, which has area 4breadth(P )2/sin2γ . By Lemma 9, we know that|P ∩ refl(P, �opt(P ))| � 2|P |/3, so
the angleγ must satisfy

4breadth(P )2

sin 2γ
� 2

3
|P |,

thus sin 2γ � 6|P |/diam(P )2. It means that we are in one of the following two cases:γ � 3π |P |/2 diam(P )2 or
π/2− γ � 3π |P |/2 diam(P )2. �

We can now state the result of this section.
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Theorem 13. LetC be a planar convex set. Givenε > 0, we can find a setQ ⊂ C with axial symmetry and

area(Q) � (1− ε)max
{
area(Q∗) | Q∗ ⊂ C andQ∗ axially symmetric

}
in timeO(ε−1/2TC + ε−3/2).

Proof. We first construct the outer approximating polygonC′
ε1

of Lemma 6 withε1 := ε/6, obtain for this polygon a
set of O(1/ε) directions from Lemma 12, and determine for each of them the optimal line by Lemma 10.

It takes time O(ε−1/2TC) to constructC′
ε1

, time O(1/
√

ε + 1/ε) = O(1/ε) to constructDε, and for each of the
O(1/ε) directions it takes time O(1/

√
ε ) to find the optimal line of that direction. Together this is the claimed c

plexity of O(ε−1/2TC + ε−3/2).
It remains to show that the line�ε with the largest intersection gives an approximation as claimed.

(
1− 1

2
ε

)∣∣C ∩ refl
(
C,�opt(C)

)∣∣ �
(

1− 1

2
ε

)∣∣C′
ε1

∩ refl
(
C′

ε1
, �opt(C)

)∣∣

�
(

1− 1

2
ε

)∣∣C′
ε1

∩ refl
(
C′

ε1
, �opt(C′

ε1
)
)∣∣

�
∣∣C′

ε1
∩ refl

(
C′

ε1
, �ε

)∣∣
�

∣∣C ∩ refl(C, �ε)
∣∣ + 2|C′

ε1
\ C|

�
∣∣C ∩ refl(C, �ε)

∣∣ + 1

3
ε|C|

�
∣∣C ∩ refl(C, �ε)

∣∣ + 1

2
ε
∣∣C ∩ refl

(
C,�opt(C)

)∣∣.
In the last inequality we used Lemma 9. It follows that

(1− ε)
∣∣C ∩ refl

(
C,�opt(C)

)∣∣ �
∣∣C ∩ refl(C, �ε)

∣∣,
which completes the proof.�
7. The smallest axially symmetric circumscribed convex set

Consider again a convex setC in the plane and a line�. Let conv(X) denotes the convex hull of a planar setX.
Then the set conv(C ∪ refl(C, �)) is an axially symmetric convex superset ofC, the smallest axially symmetric conve
superset with reflection axis�. We want to find a line�opt(C) that minimizes the area of this set:∣∣conv

(
C ∪ refl

(
C,�opt(C)

))∣∣ = min
�⊂R2

∣∣conv
(
C ∪ refl(C, �)

)∣∣.
As we discussed in the introduction, Lassak proved the following upper bound [15] (in fact, he proved a

stronger bound):

Lemma 14.∣∣conv
(
C ∪ refl

(
C,�opt(C)

))∣∣ � 2|C|.

The result of this section shows that at least anε-approximation�ε with

(1+ ε)
∣∣conv

(
C ∪ refl

(
C,�opt(C)

))∣∣ >
∣∣conv

(
C ∪ refl(C, �ε)

)∣∣
can be found fast. As in the previous section, we make use of a subroutine to find the optimal solution for
direction of�:

Lemma 15. Given a convexn-gonP and a line�, one can find inO(n) time the line�′ parallel to � that minimizes
|conv(P ∪ refl(P, �′))|.
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Fig. 2. Proof of Lemma 15.

Proof. We use a coordinate system such that� is thex-axis. For anyt ∈ R, we denote byPt the polygon obtained
from P by a reflexion at the liney = t . We denote byHt the part of conv(P ∪ Pt ) that lies on or above the liney = t

(see Fig. 2). We want to minimize the area of conv(P ∪ Pt ) for t ∈ (−∞,∞). Since exactly half of the area is abo
the liney = t , this reduces to minimizing|Ht |. We also note that the minimum necessarily occurs fort in the interval
[ym,yM ], whereym is the minimumy-coordinate of a vertex ofP , andyM is the maximum.

Imagine moving the liney = t from t = ym to t = yM . The polygonPt moves vertically upward. The region
interest,Ht , is (essentially) the upper convex hull of the stationaryP and the movingPt . An edge of the upper hull o
Ht (that is, any edge but the vertical left and right edge and the horizontal bottom edge) is either an edge ofP (type 0),
or an edge ofPt (type 2), or is determined by one vertex fromP and one vertex fromPt (type 1). Fort = ym all edges
of Ht are type 0 edges, while fort = yM all edges are type 2 edges.

Consider an edgee of the upper hull ofP . This edge appears as a type 0 edge ofHt if and only if no vertex ofPt

lies above the supporting line�e of e. SincePt moves vertically upwards, there is a uniqueedge eventfor e where a
vertex ofPt “hits” �e. This vertex is necessarily a vertexve of Pt that is extreme in the direction of the normal oe
(it has a tangent parallel to�e). Let t (e) be the “time” of this event, that is, the value oft such thatve ∈ �e. Clearly,e
appears as a type 0 edge onHt for t < t (e), and does not appear fort > t (e) (and may or may not appear fort = t (e)).

Similarly, consider an edgee′ of the upper hull of the movingPt . If we imagine time running backwards—th
is, Pt is moving vertically downwards—there is an edge event fore′ where the supporting line ofe′ touches the firs
vertex of the stationaryP . Again, this is necessarily a vertex extreme in the direction normal toe′. If t (e′) is the time
of this edge event, thene′ appears as a type 2 edge onHt for t > t (e′), and does not appear fort < t (e′).

By scanning the upper hulls ofP andPt in parallel, we can compute a list of all edge events in time O(n) (we
are basically merging the slopes of edges of the two chains). Note, though, that not every combinatorial chanHt

needs to be an edge event. For instance, a vertex of the movingPt may hit a moving type 1 edge ofHt from below.
We will see below that we can nevertheless restrict our attention to edge events.

Let Li(t), wherei = 0,1,2, be the summed up length of the projections of edges ofHt of type i onto thex-axis.
Clearly,L0(t) + L1(t) + L2(t) = xM − xm, wherexm is the minimumx-coordinate of a vertex ofP , andxM is the
maximum.

Since an edgee of P appears as a type 0 edge if and only ift < t (e) (or t � t (e)), L0(t) is a monotonically
decreasing function oft . It is piecewise constant, changing value only at edge events. Similarly,L2(t) is a piecewise
constant, monotonically increasing function. It follows thatL(t) := L2(t) − L0(t) is an increasing function. Sinc
L2(ym) = L0(yM) = 0, we haveL(ym) < 0, L(yM) > 0.

Consider now a small movement of the liney = t , say fromy = t to y = t + δ. If the combinatorial structure o
Ht does not change in between, then|Ht | changes as follows: the bottom edge ofHt moves upwards byδ, sweeping
over areaδ(xM − xm) = δ(L0(t) + L1(t) + L2(t)). An edge of type 0 doesn’t move at all. An edge of type 2 mo
upwards a distance 2δ, and so all such edges sweep over area 2δL2(t). Finally, the edges of type 1 sweep over a
δL1(t) in total. It follows that

|Ht+δ| = |Ht | + δ
(
2L2(t) + L1(t)

) − δ
(
L0(t) + L1(t) + L2(t)

) = |Ht | + δL(t).

If follows that |Ht | is unimodular: it decreases whileL(t) < 0, and increases onceL(t) > 0. Our task is to find a valu
t∗ such thatL(t) � 0 for t < t∗ andL(t) � 0 for t > t∗. We know that then|Ht∗ | has attained the minimum valu
SinceL(t) changes value at edge events only, we can restrict our search fort∗ to edge events.
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We avoid having to check whether or not an edge appears onHt for t the exact time of an edge event by worki
only with values ofL(t) just beforeandjust aftersuch an event. Let us defineL−

i (t) := limε→0 Li(t −ε) andL+
i (t) :=

limε→0 Li(t + ε) (whereε > 0), and similar forL−(t) = L−
2 (t) − L−

0 (t) andL+(t) = L+
2 (t) − L+

0 (t). With this
notation, our goal is to find a timet∗ such thatL−(t∗) � 0 andL+(t∗) � 0.

We now give a recursive decimation algorithm to findt∗. At each stage, we maintain an open interval(t0, t1), the
valuesL+

0 (t0), L−
0 (t1), L+

2 (t0), andL−
2 (t1), and an unordered listL of all edge events occuring in the open tim

interval(t0, t1) (that is, occuring strictly aftert0 and strictly beforet1). We maintain the invariant thatL+(t0) < 0 and
L−(t1) > 0. The invariant guarantees thatL contains at least one event, and in particular one with timet∗ such that
L−(t∗) � 0 andL+(t∗) � 0.

We initialize the recursion by lettingt0 = ym and t1 = yM . We setL+
0 (t0) = L−

2 (t1) = xM − xm andL+
2 (t0) =

L−
0 (t1) = 0. As we observed above, we can compute the unordered list of all edge events in linear time.
In a recursive step, we first compute a median element ofL in time linear in the size ofL. Let t2 be the time of this

median event. We computeL−
0 (t2), L−

2 (t2), L+
0 (t2), andL+

2 (t2) by starting withL+
0 (t0) andL+

2 (t0) and scanning th
list L for all edge events occurring betweent0 andt2. If L−(t2) � 0 andL+(t2) � 0, we returnt2 as t∗. Otherwise,
L−(t2) andL+(t2) are both non-zero and have the same sign. If it is negative, then we scanL once more to create
list of events occuring strictly betweent2 andt1, and recurse on the interval(t2, t1). Otherwise, that is ifL−(t2) > 0,
we similarly recurse on the interval(t0, t2).

Since the size ofL decreases to half its previous size in each recursive call, the overall running time of our alg
is O(n). This completes the proof.�

Again, we apply the subroutine to a set of directions that we obtain using the following two lemmas.

Lemma 16. Let � and�′ be two lines intersecting in a pointp with an angleδ, and letC be a convex set. Ifp ∈ C,
then ∣∣conv

(
C ∪ refl(C, �′)

)∣∣ �
∣∣conv

(
C ∪ refl(C, �)

)∣∣ + 4π(1+ π/2)δ diam(C)2.

Proof. Let Q := conv(C ∪ refl(C, �)) andQ′ := conv(C ∪ refl(C, �′)). As in Lemma 4, we argue that any point
refl(C, �′) has distance at most 2δ diam(C) from some point of refl(C, �). This implies thatQ′ is contained in the
Minkowski-sum ofQ with a disk of radius 2δ diam(C). By Lemma 2, this implies

|Q′| � |Q| + 2δ diam(C)peri(Q) + π
(
2δ diam(C)

)2
.

Sincep ∈ C, we haveC ∩ refl(C, �) �= ∅, and so diam(Q) � 2 diam(C). This implies peri(Q) � 2π diam(C), and we
obtain

|Q′| � |Q| + 4π(δ + δ2)diam(C)2 � |Q| + 4π(1+ π/2)δ diam(C)2. �
Lemma 17. Given a convexn-gonP andε > 0, one can construct in timeO(n + 1/ε) a setDε of O(1/ε) directions
such that(

1+ 1

3
ε

)∣∣conv
(
P ∪ refl

(
P,�opt(P )

))∣∣ � min
{∣∣conv

(
P ∪ refl(P, �)

)∣∣: � has a direction fromDε

}
.

Proof. By Lemma 16 it is sufficient to choose the setDε such that it contains a line that makes an angleδ of at most
ε|P |/(12π(1+ π/2)diam(P )2) with �opt. Again we distinguish two cases, depending on the ratio|P |/diam(P )2.

If diam(P )2 � 10|P |, then we generateDε by sampling the direction space uniformly, choosing multiples
ε/1000.

If diam(P )2 > 10|P |, then we generateDε as follows. We sample uniformly the directions withinπ |P |/diam(P )2

of the direction of the diameterpq, choosing multiples ofε|P |/100 diam(P )2. We also sample in the same w
around the direction orthogonal topq (see Fig. 1).

To show that this is sufficient, notice that if�opt(P ) intersectspq at an angleγ ∈ [0,π/2], then conv(P ∪
refl(P, �opt(P ))) contains the diametral pairpq together with its reflected versionp′q ′, andpq makes an angl
2γ with p′q ′. Therefore

2|P | � ∣∣conv
(
P ∪ refl

(
P,�opt(P )

))∣∣ �
∣∣conv

({p,q,p′, q ′})∣∣ � 1
diam(P )2 sin 2γ.
2
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Here we used Lemma 14. It follows that sin 2γ � 4|P |/diam(P )2, and so we are in one of the following two cas
γ � π |P |/diam(P )2 or π/2− γ � π |P |/diam(P )2. �

In order to replace the given input figure by a kernel, we need to show that the area of the smallest axially sy
convex set containingC is a faithful measure. We use the following lemma.

Lemma 18. Let � be a line in the plane. Then the following measure is faithful:

µ(C) := ∣∣conv
(
C ∪ refl(C, �)

)∣∣.
Proof. Let Cε be anε-kernel ofC. It is not hard to see that then conv(Cε ∪ refl(Cε, �)) is a 2ε-kernel of conv(C ∪
refl(C, �)). The claim now follows from Lemma 7.�

We can now prove the main result of this section.

Theorem 19. Let C be a convex set in the plane. Givenε > 0, we can find a convex setQ ⊃ C with axial symmetry
and

area(Q) < (1+ ε)min
{
area(Q∗) | Q∗ ⊃ C andQ∗ convex and axially symmetric

}
in timeO(ε−1/2TC + ε−3/2).

Proof. We first construct the inner approximating polygonCε1 of Lemma 6 withε1 = ε/c for a suitable constan
c > 0, obtain for this polygon a set of O(1/ε) directions from Lemma 17, and determine for each of them the opt
line by Lemma 15. The procedure takes time O(ε−1/2TC + ε−3/2) in total.

The constantc > 0 is chosen such that

(1− ε/3)
∣∣conv

(
C ∪ refl(C, �)

)∣∣ �
∣∣conv

(
Cε1 ∪ refl(Cε1, �)

)∣∣
for any line�. This is possible by Lemma 18.

It remains to show that the line�ε minimizing |conv(Cε1 ∪ refl(Cε1, �ε))| among all lines with directions fromDε

is the required approximation.(
1+ 1

3
ε

)∣∣conv
(
C ∪ refl

(
C,�opt(C)

))∣∣ �
(

1+ 1

3
ε

)∣∣conv
(
Cε1 ∪ refl

(
Cε1, �

opt(C)
))∣∣

�
(

1+ 1

3
ε

)∣∣conv
(
Cε1 ∪ refl

(
Cε1, �

opt(Cε1)
))∣∣

�
∣∣conv

(
Cε1 ∪ refl(Cε1, �ε)

)∣∣
�

(
1− 1

3
ε

)∣∣conv
(
C ∪ refl(C, �ε)

)∣∣.
For ε small enough, it follows that

(1+ ε)
∣∣conv

(
C ∪ refl

(
C,�opt(C)

))∣∣ >
∣∣conv

(
C ∪ refl(C, �ε)

)∣∣. �
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