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Abstract

Given a planar convex sét, we give sublinear approximation algorithms to determine approximations of the largest axially
symmetric convex sef contained inC, and the smallest such st that containsC. More precisely, for any > 0, we find
an axially symmetric convex polygo@ C C with area|Q| > (1 — ¢)|S| and we find an axially symmetric convex polyg@i
containingC with area|Q’| < (1+ ¢)|S’|. We assume that is given in a data structure that allows to answer the following two
types of query in timelc: given a directioru, find an extreme point of in direction«, and given a line, find C N £. For
instance, ifC is a convex:-gon and its vertices are given in a sorted array, thee= O(logn). Then we can find) andQ’ in time
0(871/2TC +79/2), Using these techniques, we can also find approximations to the perimeter, area, diameter, width, smalles
enclosing rectangle and smallest enclosing circl€ af time O(e—l/zTC).
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Some problems on convex polygons can be solved in sublinear time when the p#lyggiven as an array of the
n vertices in sorted order along the boundaryPof-or instance, given a ling the two vertices oP that have tangents
parallel to¢ can be found in @ogn) time. The shortest line segment connecting two convex polygons can also be
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computed in Qogn) time [10]. Schwarzkopf et al. [19] show how to compute a pair of rectangles approximating

a given convex polygon in @bg?n) time. Kirkpatrick and Snoeyink [14] give a general framework that allows to
answer several queries on a convegon P in O(logn) time. Examples are the longest chord (or a chord of given
length) parallel to a query line, or the largest homothet of a query triangle that fits is{deazelle et al. [8] recently
presented a different framework for obtaining sublinear-time algorithms where the input is not given in sorted arrays,
but in linked lists where random nodes can be accessed in constant time. It yiglds @me randomized algorithms

for various problems, for instance for detecting intersections between convex polyhedra.

Other problems on convex polygons cannot be solved in sublinear time. For instance, determining the diameter ol
area of P takes® (n) time. In this paper we show that some of these problems can be solvegbigr®time if an
approximatesolution is sufficient. We can, for instance, compute the diameter or the areapto a relative error
of ¢ in time O((logn)/+/¢). In fact, we will give efficient algorithms for arbitrary compact convex sets in the plane.
Our only assumption is that a convex géts given in a data structure that allows to answer the following two types
of queries in timel¢:

e given a query ling, find C N ¢,
e given a query direction, find an extreme point in directian

For instance, iiC is a convex:-gon given as an array of its vertices in counter-clockwise order, then we can answer
these two types of queries in(logn) time by binary search, sBi- = O(logn).

Our algorithms are based on an approximation of the input convex bgta convex polygon whose size depends
only one. This is not a new idea: our approximation is based on a constructive proof by Dudley from 1974 [9]. A paper
by Agarwal et al. [1] uses this idea as well, some of these results have been improved recently by Chan [7]. Inter-
estingly, these approximations can be computed in logarithmic time, a striking improvement compared, for instance,
to the result by Lopez and Reisner [17]. They proposed @nH(n — k) logn) time algorithm for approximating a
convexi-gon by an inscribed polygon withvertices and relative approximation erro¢kpk?2). Our method achieves
the same in time @& logn) (or in time Qn), independent of).

Ingeneral, if itis possible to compute a certain property of a convgan in time polynomial im, and this property
is “robust” with respect to approximation of the polygon, then our approximation technique immediately results in an
approximation algorithm for an arbitrary planar convex@aif running time roughly @ ~Y/27¢ + 1/¢°D). In the
case wher& is a convex:-gon given in an array, we obtain sublineagz0'/2logn + 1/¢°) time algorithms.

We give some rather immediate applications of this technique, and then turn to our main result. We give
logarithmic-time approximation algorithms to determine, for a given convexCsetpproximations of the largest
axially symmetric convex set containeddh and the smallest such set that contains

There are a number of papers that study the best inner approximation of any convex set by a symmetric set; the
distance to a symmetric set can be considered a measure of its symmetry [11]. Lower bounds for this distance are give
by the Léwner—John ellipsoid [13]: any planar convex badljes between two homothetic ellips&sc C ¢ 2E with
homothety ratio at most 2. Since any ellipse is axially symmetric, ancdﬁ}ea%1 areq2kE) > ;11 areg(C), any convex
planar setC contains an axially symmetric subset with at legst of the area of”. The same lower bound of/2
follows from the fact that any planar convex body lies between two homothetic rectangles with homothety ratio at
most two [16,19]. The lower bound can be raised 8 PL5], a bound that is not known to be tight. Bounds are also
known for specific axis-symmetric inscribed figures, such as isosceles triangles or kites [21].

The largest centrally symmetric set contained in a convex sfidp¢he maximum intersection @f and a translate
of —C. If C is a convex:-gon, this can be computed in@logn) time [5]. Approximation by axially symmetric sets is
technically more demanding, as the largest axially symmetric set contaideid ihe maximum intersection @f and
arotatedand translated copy @’ (with C’ a fixed axially reflected copy @f). We do not know of any exact algorithm
to compute the maximum intersection of two convex polygons under translation and rotation (orientation-preserving
rigid motions), indeed it is not clear that such an algorithm can exist within a reasonable model of computation.

Barequet and Rogol [4] propose an algorithm to compute exactly the largest subset of ac@uorexvith an
axial symmetry; but it requires to solv@(n®) optimization problems for which no polynomial time algorithm is
known. This is our motivation to give a fast approximation algorithm. We can fi(id-a¢)-approximation in time
O(e~12T¢ +£79/2),
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The problem of outer approximation of a convex polygon by an axially symmetric polygon seems to have re-
ceived less interest than inner approximation, perhaps because this is equivalent to the inner approximation pro!
lem if one drops the requirement that the axially symmetric polygon has to be convex. The results on approx:
imation by homothetic pairs (ellipses or rectangles) cited above give again simple bounds: for each convex se
C there is an axially symmetric sdd containingC with aredD) < 4aredC). The constant 4 can be reduced
to 31/16 [15], again this is probably not tight. We give an approximation algorithm for this problem with running
time O(e V2T 4 £79/2).

Both algorithms are based on three key ideas.

e First, as discussed before, we replace the input figure by a polygon with a number of vertices depending on
only.

e Second, we discretize the set of directions and sample only directions in a discrete set. This works well as lon
as the polygon is not long and skinny. Fortunately we can show that for long and skinny polygons, the axis of
an optimal symmetry must be very close to the diameter of the polygon, or must be nearly orthogonal to this
diameter.

e Finally, we use an algorithm to compute the optimal solution for a given direction of the axis of symmetry.
In the inscribed case, this is equivalent to finding the translatioi’dhat maximizes the area @f N C’. As
mentioned before, this can be done in timg:@g#) [5]. In our case, it suffices to consider a one-dimensional
set of translations, which permits a linear-time solution [3]. We also give a linear-time decimation algorithm for
the circumscribed case.

As mentioned before, the inscribed case is a special case of the problem of maximizing the overlap of two conve
polygonsC andC’ under translation and rotation 6f. Surprisingly little is known about this problem. Alt et al. [2]
made some initial progress on a similar problem, showing, for instance, how to construct, for a convex pylirgon
axis-parallel rectangl® minimizing the symmetric difference @ and Q. Our solution does not generalize to this
problem. It does not appear to be “robust” under approximatiofi ahdC’. Furthermore, we do not know how to
discretize the set of directions whéhis fat while C’ is long and skinny.

2. Notations

In this paper, all the convex sets we consider are compact and lie in the plane. So we will simpbngay set
instead of planar compact convex set. Wedgtdenote theareaof a convex se€, while diam(C) and per{C) denote
its diameter and perimeter.

We denote by/ the set of unit vectors in the plane. We identify a pdinin the plane with the vecto® M, where
O is the origin. We denote by, b) the inner product of andb. Thedirectional widthof a convex set in direction
u € U is the minimum width of a slab that contai@sand is orthogonal ta. In other words, the directional width of
C in directionu is:

dwidth(u, C) = max{u, x) — min{u, x).
xeC xeC

Thewidth of C is the minimum width along all the directionsdn that is:

width(C) = miLr}(dWidth(u, 0)).
ue

We introduce another notion: for a convex sitlet breadtidC) := |C|/diam(C). The name bread{li’) can be
explained as follows: lepg be a diameter ofC. There is then a rectanglR circumscribed toC with one side
parallel to pg such thatC touches all four sides oR. The sides ofR have length diaifC) and w, and we have
diam(C)w/2 = |R|/2 < |C| < |R| = diam(C)w. This implies breadttC) < w < 2breadtiC), so breadtfC) is an
estimate for the directional width @ orthogonal to a diameter. (We use the word “breadth” instead of “width” to
avoid confusion with the usual notion of width, which is explained in the previous paragraph.)

We assume that a convex $&is given in a data structure that allows to answer the following two types of queries
intime T¢:
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e given a linet, find the line segment N ¢.
e given a direction: € U, find a pointx of C that is extreme along. In other words,
(v, x) = maxu, y).
yeC
For instance, i{C is a convex:-gon whose vertices are given in a sorted array, we can answer these queries by binary

search in time @ogn), soT¢ = O(logn).
For two setsA and B such thatA C B, theHausdorff-distancéetweenA andB is

du(A, B) :=max(mind(a, b))
beB ‘acA
whered(a, b) is the Euclidean distance betweeandb.
3. Preliminaries
We will make use of the following inequality [22, p. 257, Ex. 7.174].
Lemma 1. For a convex se€ we haveperi(C) < w diam(C).
The following lemma bounds the increase in area when a convex set is enlarged.

Lemma?2. LetC be a convex set, let> 0, and letC’ be the set of points at distance at mo$tom C (in other words,
C’ is the Minkowski sum af and a disk of radiug). Then|C’| = |C| + r peri(C) + r?, peri(C’) = peri(C) + 2rr,
anddiam(C’) = diam(C) + 2r.

Proof. Assume first that is a convex polygon. Thed@’ \ C can be decomposed into rectangles of widthlong
each edge o’, and disk sectors at the vertices©f The union of all the disk sectors is a disk of radiysvhich
implies the claim. For generdl, approximate it by a sequence of polygons and take the linmit.

An alternate proof is suggested in Exercise 6 on page 47 of do Carmo [6]. A similar bound is the following “volume
of tube” formula. Again one could prove this easily for convex polygons, and take the limit. The lemma also follows
directly from the general volume-of-tube formula for smooth curves in any dimension by Hotelling [12] and Weyl [23].

Lemma 3. Let C be a convex set, let> 0, and letC’ be the set of points at distance at mestom the boundary
of C (in other wordsC’ is the Minkowski sum of the boundary®fand a disk of radiug). Then|C’| < 2r peri(C).

Finally, we bound the change in area incurred by a rotation around a point inside a convex polygon.

Lemma 4. LetC be a convex set, and |€f be a copy of”, rotated by an anglé around a pointp in C. Then

5
Icnc’| > |C|— %dlam(C)z.

Proof. We denote byD the symmetric difference betweghandC’, in other wordsD = (C U C’) \ (C N C’). We
denote byC,, the copy ofC rotated by an angl&/2 aroundp. Let T,, denote the set of points that are at distance at
mosts diam(C)/2 from the boundary of’,,,. Note that any poing in D is obtained from a point on the boundary of
C,, by a rotation with centep and angle at most/2 in absolute value. Since the distankig, ¢) is at most dianC),

it follows thatg € T,,. ThusD C T,,. By Lemma 3, the area df, is at mosts diam(C) peri(C,,). Since pefiC,,) =
peri(C) and, by Lemma 1, peit”) < 7 diam(C) we obtain thai7},| < 78 diam(C)2. SinceD C T,,, it implies that

|D| < w8 diam(C)2. The result follows fromD| = |C| — |C N C'|+|C'|—|CNC'|=2(C|—|CNC]). O
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4. Approximating a convex set

A key component of our proofs is a polygon approximation whose size depends oalyroparticular, we will
show that the framework of Agarwal et al. [1] can be implemented efficiently in the case of planar convex sets. We
start with a lemma.

Lemma 5. Given a convex sef, we can find inO(T¢) time a rectangleR with sidesa, b containingC such
that C touches all four sides ak and such thatliam(C)/+/2 < a < diam(C), breadthiC) < b < 4breadtliC), and
IRI/(2v/2) <IC| <R

Proof. We can determine a point of that is extreme in a given direction in timE-. By doing this four
times, we can find the axis-parallel bounding b@k of C. Let a’ > b’ > 0 be its sides, and pick the ver-
tices p, ¢ of C touching the shorter sides at’. Thenda' < d(p,q) < diam(C) < diam(R) < +/24’. We now
compute the smallest rectangke containing C with a side parallel topg. The side parallel tgpg has length
a>d(p,q)>d >diam(C)/+/2. SinceC contains two triangles with common bageg and total height, we have
ab=|R|>|C|>d(p,q)b/2>ab/(2+/2) = |R|/(2+/2). Finally, we have> > |C|/a > |C|/ diam(C) = breadthiC),
andb < 2v/2|C|/a < 24/2|C|/(diam(C)/~/2) = 4breadthC). O

Following Agarwal et al. [1], we say that a convex §BtC C is ane-kernel of C if and only if
Yuel, (1- e)dwidth(u,C) <dwidth(u, C’).

We give an efficient algorithm to compute a low-complexitkernel of a convex sef. It is based on Dudley’s
constructive proof [9]. Note that the running time of the linear-time version of the algorithm has no dependence on
at all.

Lemma 6. Given a planar convex s&t and ¢ > 0, one can construct in tim&(7¢/./¢) two convex polygon€,
andC} with O(1/4/¢) vertices such thaf, Cc C c C, and|C. \ C,| < ¢|C|. In addition,C, is ane-kernel ofC, and
C is ane-kernel ofC.. If C is a convexz-gon, then we can compué and C. in time O(n).

Proof. We start by computing a rectangk as in Lemma 5, and apply a transformation that m&p® the unit
square. Ratios of area and directional width are invariant under affine transformations. In the following, we will
therefore assume thatis inscribed in a unit squark.

First we prove a lower bound on widifi). By Lemma 5, we havéC| > 1/(2+/2). Letug be a direction such that
width(C) = dwidth(uo, C) andu1 be a direction orthogonal ty. Clearly dwidthu1, C) < diam(R) = +/2. Therefore

1 <
22
so width(C) > 1/4.
We now discuss the linear-time algorithm for the case ¢hi a convex:-gon. We go once around, starting at

an arbitrary vertex, and select edge<ods we go. We always choose the first edge eletww’ be the most recently
chosen edge, let = v’ be the next candidate edge, anddét= v'v” be the edge following’. We choose’ if

C| < dwidth(uq, C)dwidth(ug, C) < v/2width(C),

e the distancel/(w’, v') > \/¢/3, or
o the outer normals of ande” make an angle larger thayle /3.

We observe that the number of edges selected(ly Je ). Remember tha€ is inscribed in a unit square, so by
Lemma 1, only @1/./¢) edges can be chosen according to the first rule. The total change of the outer normal angles
is 2r = O(1), so only Q1/.,/¢) edges can be chosen according to the second rule.

Let C. be the convex hull of the selected segments, and]die the polygon obtained by extending the selected
edges until they form a convex polygon. Thépc C C CJ.

The differenceC] \ C, consists of @Q1/./¢) triangles. Each triangla is defined by two consecutive selected edges
e =ww’ ande’ = vv’ that are not consecutive ifi. If s is the point of intersection of the lines supportingnde’,
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thenA = Aw’vs. By construction, the supporting lines make an angle of at @g8 and so the angléw’sv > 7 —
J/€/3. Also by construction, the distandéw’, v) < /¢/3. Together this implies that the height &fis at mosts /9,
and sody (Ce, C}) < /9. In particular, sinc&, c C c C., it follows thatdy (C., C) < ¢/9 anddy (C, C}) < /9.
So for all directions: € U, we have dwidtlu, C) — 2¢ /9 < dwidth(u, C,), and dwidtlu, C;) — 2¢ /9 < dwidth(u, C).
Remember that widitC') > 1/4, so dwidthu, C) > 1/4. Thereforg(1l — ¢)dwidth(u, C) < dwidth(u, C.), andC; is
ane-kernel forC. Since dwidtltu, C.) > dwidth(u, C) > 1/4, we also havél — e)dwidth(u, C;) < dwidth(u, C),
andC is ane-kernel forC;.

We have just observed théf \ C. consists of triangles with height at megt9 and such that the sum of the length
of their bases is at most pétl.). SinceC, is contained in a unit square, its perimeter is at most 4|20, C.| <
2:/9 < e/242 < €|C).

Let now C be a (not necessarily polygonal) convex set. We will show how to com@utand C, in time
O(Tc/+/¢). We will select a sequence of points, p2, ..., ps on the boundary o€ such that the following holds

(let po := py):

p1, p2, ..., ps is sorted in counter-clockwise order along the boundary ,of

s =0(1//¢),

fori=1,...,s, there are tangents © in p;_1 and p; that make an angle of at mogt:/3, and
fori=1,...,s, the distance between_; andp; is at most,/c/3.

Let C. be the convex hull ofpy, ..., ps, and letC. be the polygon formed by the at most fangents toC in
P1,..., ps. ThenC, C C C C}, andC, \ C, consists ok = O(1//¢) trianglesp;_1 p;v. The approximation bounds
now follow as in the polygon case.

To computeC,, we first select the boundary points 6f that are extreme in a set oft6./¢ equally spaced
directions. We then consider a set of equally spaced horizontal and vertical lines at digkgfi& and select the
points of intersection between the boundaryCoind these lines. This takeg1),/¢) queries on the convex set,
and results in a sequence of points as required above. We @htaisithe convex hull of the selected point sequence.

The outer approximatiol’, takes a little more work: the difficulty is that we do not know the tangents in the
boundary points obtained by line intersection queries. We therefore first compute the inner approxiatitimat
is, with ¢’ = ¢ /4). For each edgp; _1p; of C¢,4, letu; be the outer normal op; _1 p;. We compute the poinj; € C
extreme in direction;. The sequencey, qo, ... now fulfills the requirements above, and we easily ob@&jrgiven
the points and the tangent directionsa

Following Agarwal et al. [1], we defin&ithful measuregor convex sets. A functiom is a faithful measure if
w(C) > 0 for any convex se€ and if there exists a constant>- 0 such that, for ang-kernel C, of C, we have
(L—ce)u(C) < u(Cy) < n(C). We list a few measures that were shown to be faithful by Agarwal et al. [1].

Lemma 7 [1, Section 6.1] The following measures are faithfudiameter, width, area, perimeter, the radius of the
smallest enclosing disk, and the area of the smallest enclosing rectangle.

5. Simple applications

We give a few simple applications of our approximation technique to optimization problems for convex sets. Fol-
lowing Agarwal et al. [1], we first compute a kernel of the convex input set, and then we apply known algorithms
on the kernel. For a number of problems, this provides an approximate solution to the optimization problem on the
original convex set.

Theorem 8. Given a planar convex s, we can compute €l — ¢)-approximation of its area, diameter, perimeter
and width in timeO(T¢/+/¢). In particular, if C is a convexa-gon and its vertices are given in a sorted array or a
balanced binary search tree, then we can compute these approximations i@dioge:/,/< ). We can also compute
(1+ ¢)-approximations of the smallest area enclosing rectangle and the smallest enclosingdigktbin the same
time bounds.



158 H.-K. Ahn et al. / Computational Geometry 33 (2006) 152—-164

Proof. The area and perimeter of a convexgon can be easily computed in(£) time. Its diameter, width and small-
est area enclosing rectangle can also be computedihtine using, for instance, the rotating callipers technique of
Toussaint [20]. The smallest enclosing disk can also be foundyin tme [18].

By Lemma 7, all these measures are faithful, and so there is a comstafitsuch that arz/c-kernel C; . for
C provides(1 — g)-approximations of diameter, width, area, and perimete€ ofVe can compute, . in time
O(Tc/+/¢). Ithas Q1/./¢) vertices, and so we can compute its diameter, width, area, and perimeter within the same
time bound.

For the smallest enclosing rectangle and disk, we use the outer approxirﬁ‘g}j,ofmr a suitablec > 0 instead.
SinceC is ang/c-kernel ofCQ/C, the smallest enclosing rectangle and dileQ)‘C are(1+ ¢)-approximations of the
smallest enclosing rectangle and diskcafAgain, they can be computed in time®/./¢). O

6. Thelargest axially symmetricinscribed set

In the following we denote by refl, £) the reflection at line, so that reflC, ¢) is the reflected image af under
reflection at¢. Let C be a convex set in the plane and debe a line. The sef Nrefl(C, ¢), if it is not empty, is an
axially symmetric convex subset 6F, the largest axially symmetric subset with reflection &i®ur goal is to find,
for a convex set, a line¢°P{(C) that maximizes the area of this set:

|C Nrefl(C, £°PY(C))| = max|C Nrefl(C, ¢)|.
LCR2
As we discussed in the introduction, Lassak proved the following lower bound [15]:

Lemma.

| nrefl(C, €°PY0))| > §|C|.

In this section we show that at least asapproximatior?, with
(L—e)|Cnrefl(C, £°PYC))| < |C Nrefl(C, €,
can be found fast.

If the direction of¢ is known, we can compute the optimal line using the following lemma.

Lemma 10. Given a convex-gon P and a line¢, one can find ifD(n) time the line?’ parallel to ¢ that maximizes
|P Nrefl(P, ).

Proof. Let Q :=refl(P, £), and lett be a vector orthogonal th For any line?’ parallel to¢, refl(P, £') is a translation
of Q by a multiple ofz, and so the problem is equivalent to findikg R such that P N (Q + At)| is maximized.
A linear-time algorithm to solve this problem has been given by Avis et al. [8].

We will apply this algorithm to a set of Q/¢) directions. The following two lemmas show how to find this set of
directions.

Lemma 11. Let £ and ¢’ be two lines intersecting in a point with an angles, and letC be a convex set. Ip €
Cc nrefl(C, ¢), then

|c nrefl(C, ¢)| > |C nrefl(C, ¢)| — 78 diam(C)?.
Proof. The concatenation of the reflection abnd the reflection at’ is a rotation aroung by the angle 2. Let

0 :=Cnrefl(C, £). SinceQ is symmetric with respect t, the set reflQ, ¢') = refl(refl(Q, £), £') is a copy ofQ
rotated aroung by 25. Sincep € Q, Lemma 4 implies that

|0 Nrefl(Q, ¢)] > 10| — 78 diam(Q)?.
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Fig. 1. Case wher€ is long and skinny. We sample directions from the shaded area.

SinceQ c C, we have
cnrefl(C,¢) > gnrefl(Q, £,
and by the above that implies
|c nreflC, )| > 10| — w8 diam(Q)? > |C Nrefi(C, 0)| — wsdiam(C)?. O

The occurrence of diat@)? instead of|C| is a problem. In the following lemma, we will need to give special
consideration to the case where the@ég long and skinny, that is, when dia@y)? is much larger thatC|. Intuitively,
whenC is fat we will just sample the space of directions uniformly. Widgis long and skinny, we will sample more
densely, but we will only sample near the two axes of symmetry of a bounding rectRnilat is parallel to a
diametral segmentb (see Fig. 1).

Lemma 12. Given a convex-gon P ande > 0, one can construct in tim®(n + 1/¢) a setD, of O(1/¢) directions
such that

(1 - %g)\P Nrefl(P, ¢°P(P))| < max{| P Nrefl(P, ¢)|: ¢ has a direction fronD, }.

Proof. By Lemma 11 and Lemma 9 it is sufficient to choose thexesuch that it contains a line that makes an angle
8 of at moste| P|/ (37 diam(P)?) with ¢°Pt,

We start by computing, in time @), a diametepqg of P, and the aredP|. We then distinguish two cases.

If diam(P)2 < 20/P|, then we generaté, by sampling the direction space uniformly, choosing multiples
of £/30r. Sincee/60r < ¢|P|/37 diam(P)?2, this is sufficient.

If, on the other hand, dia(®)2 > 20| P|, then we sample uniformly the directions within [@|/2 diam(P)? of
the direction of the diameterb, choosing multiples of & P|/3x diam(P)?. We do the same around the direction that
is orthogonal tazb. To show that this is sufficient we have to demonstrate 4#%¢P) does not make an angle larger
than 3r|P|/2 diam(P)? with the direction of the diameter or with the direction that is orthogonal to the diameter.

As in the argument at the beginning of Section 3,Rebe the rectangle circumscribed Powith a side parallel
to pg. The longer side oR has length diartP), and P touches all four sides aR. This implies thatR| < 2| P|,
and so its widthw is at most 2P|/ diam(P) = 2breadtliP). It follows that P lies in an infinite strip of width at most
2breadtliP). Let y € [0, /2] be the angle made by the liné¥(P) and pg. The set reflP, £°P!) is contained in a
congruent strip, intersecting the strip Bfat an angle 2. The setP Nrefl(P, £°PY) is contained in the intersection of
the two strips, which has area 4breadth?/ sin2y. By Lemma 9, we know thatP N refl(P, £°PY(P))| > 2|P|/3, so
the angley must satisfy

4breadtliP)? 2
sin2y 3

thus sing < 6P|/ diam(P)2. It means that we are in one of the following two cases< 3w |P|/2 diam(P)? or
n/2—y < 37|P|/2diam P)2. O

We can now state the result of this section.
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Theorem 13. Let C be a planar convex set. Given> 0, we can find a sep c C with axial symmetry and
aredQ) > (1—¢) max{aredQ*) | 0* C C and 0* axially symmetri¢

intimeO(e ~Y2T¢ + ¢73/2).

Proof. We first construct the outer approximating polygdf) of Lemma 6 withe; := /6, obtain for this polygon a
set of O1/¢) directions from Lemma 12, and determine for each of them the optimal line by Lemma 10.

It takes time @e~Y/2T¢) to constructC;,, time O(1/4/z + 1/&) = O(1/¢) to constructD,, and for each of the
O(1/e¢) directions it takes time 1/./¢) to find the optimal line of that direction. Together this is the claimed com-
plexity of O(e ~Y2T¢ + ¢73/2).

It remains to show that the ling with the largest intersection gives an approximation as claimed.

(1 - %8) |C Nrefi(C, £°PYC))| < (1 B %8> |Ce, nrefi(Cy,, £°P0))|

1
< (1 - 58) L, nrefi(c,. €P(CLy)|
|cl, nrefi(Cy,. L)

|C nreflC. £.)| +2/C;, \ C|

NN

1
< |cmef|(c,e£)|+§s|C|

1
<|cnrefiC, £.)] + ze|c nrefl(C, ¢PY0))].
In the last inequality we used Lemma 9. It follows that

(1—e)|C Nrefl(C, e°PYC))| < |C Nrefl(C, ¢,)

’

which completes the proof.O
7. Thesmallest axially symmetric circumscribed convex set

Consider again a convex s€tin the plane and a liné. Let conX) denotes the convex hull of a planar sét
Then the set con€ Urefl(C, ¢)) is an axially symmetric convex superset@fthe smallest axially symmetric convex
superset with reflection axés We want to find a ling°P(C) that minimizes the area of this set:

|conv(C U refl(C, £°PY(C)))| = m]ian|conv(C urefi(C, 0))].
c

As we discussed in the introduction, Lassak proved the following upper bound [15] (in fact, he proved a slightly
stronger bound):

Lemma 14.

|cony(C U refl(C, ¢PY(C)))| < 2IC].

The result of this section shows that at least aapproximatior?, with
(1+ &)|[conv(C U refl(C, £°PY(C)))| > |[conv(C U refi(C, ¢,))]

can be found fast. As in the previous section, we make use of a subroutine to find the optimal solution for a giver
direction of¢:

Lemma 15. Given a convex-gon P and a line¢, one can find ifD(n) time the line¢’ parallel to £ that minimizes
|conu P Urefl(P, £'))].
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Fig. 2. Proof of Lemma 15.

Proof. We use a coordinate system such thag the x-axis. For anyr € R, we denote byP; the polygon obtained
from P by a reflexion at the ling = . We denote byH, the part of conyP U P,) that lies on or above the ling=1¢
(see Fig. 2). We want to minimize the area of caPw P;) for ¢t € (—o0, 00). Since exactly half of the area is above
the liney = ¢, this reduces to minimizingH;|. We also note that the minimum necessarily occurs farthe interval
[vm, ym], wherey,, is the minimumy-coordinate of a vertex aP, andy,, is the maximum.

Imagine moving the ling =t from ¢t = y,, to r = yy;. The polygonP, moves vertically upward. The region of
interest,H;, is (essentially) the upper convex hull of the stationBrgind the moving?;. An edge of the upper hull of
H; (thatis, any edge but the vertical left and right edge and the horizontal bottom edge) is either anR ypeD),
or an edge of, (type 2), or is determined by one vertex fraPmand one vertex fron®; (type 1). Forr = y,, all edges
of H, are type 0 edges, while for= y,, all edges are type 2 edges.

Consider an edge of the upper hull ofP. This edge appears as a type 0 edgélpif and only if no vertex ofP,
lies above the supporting ling of e. Since P, moves vertically upwards, there is a unicgage evenfor e where a
vertex of P, “hits” £,. This vertex is necessarily a vertex of P; that is extreme in the direction of the normaleof
(it has a tangent parallel #). Let ¢ (e) be the “time” of this event, that is, the valuero$uch that, € £,. Clearly,e
appears as a type 0 edge Hnfor ¢ < t(e), and does not appear for- 7(e) (and may or may not appear foe=z(e)).

Similarly, consider an edgé€ of the upper hull of the moving;. If we imagine time running backwards—that
is, P; is moving vertically downwards—there is an edge evenkfavhere the supporting line ef touches the first
vertex of the stationary’. Again, this is necessarily a vertex extreme in the direction normal bz (¢’) is the time
of this edge event, theri appears as a type 2 edge Bpfor r > 1(¢’), and does not appear fok 7 (¢’).

By scanning the upper hulls @t and P; in parallel, we can compute a list of all edge events in tin{e)Jwe
are basically merging the slopes of edges of the two chains). Note, though, that not every combinatorial cHange of
needs to be an edge event. For instance, a vertex of the méyimgy hit a moving type 1 edge @f; from below.
We will see below that we can nevertheless restrict our attention to edge events.

Let L;(¢), wherei =0, 1, 2, be the summed up length of the projections of edges, alf typei onto thex-axis.
Clearly, Lo(¢) + L1(t) + L2(t) = xp — x,, Wherex,, is the minimumx-coordinate of a vertex oP, andx,, is the
maximum.

Since an edge of P appears as a type 0 edge if and only i ¢(e) (or ¢t < t(e)), Lo(z) is a monotonically
decreasing function of It is piecewise constant, changing value only at edge events. Similaily), is a piecewise
constant, monotonically increasing function. It follows that) := L2(¢) — Lo(¢) is an increasing function. Since
L2(ym) = Lo(yn) =0, we havel (y,) <0, L(ym) > 0.

Consider now a small movement of the line=¢, say fromy =+ to y =t + §. If the combinatorial structure of
H, does not change in between, théfi| changes as follows: the bottom edgeH)fmoves upwards by, sweeping
over areas (xy — x;,) = 8(Lo(t) + L1(t) + L2(¢)). An edge of type 0 doesn’t move at all. An edge of type 2 moves
upwards a distances2and so all such edges sweep over a2 ). Finally, the edges of type 1 sweep over area
8L1(¢) in total. It follows that

|Hytsl = [Hi| +8(2L2(1) + L1(t)) — 8(Lo(t) + L1(t) + La(1)) = | H| + 8L (1).

If follows that | H,| is unimodular: it decreases whilgr) < 0, and increases ondgr) > 0. Our task is to find a value
t* such thatL(r) < 0 fort < * andL(¢r) > 0 for r > t*. We know that thenH;«| has attained the minimum value.
SinceL(t) changes value at edge events only, we can restrict our searchtéoedge events.
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We avoid having to check whether or not an edge appea¥$, dar r the exact time of an edge event by working
only with values ofL(¢) just beforeandjust aftersuch an event. Let us defig (¢) := lim. o L;(t —¢) andL;r(t) =
lim.oL;(t + ¢) (wheree > 0), and similar forL=(t) = L, (1) — Ly (t) and LT (t) = L3 (t) — L{ (). With this
notation, our goal is to find a time such thatL = (t*) < 0 andL*(t*) > 0.

We now give a recursive decimation algorithm to firfd At each stage, we maintain an open interivglz1), the
vaIuesLar(to), Ly (t1), L2+(t0>, andL; (1), and an unordered lisf of all edge events occuring in the open time
interval (1o, t1) (that is, occuring strictly aftey and strictly before;). We maintain the invariant thdt™ (o) < 0 and
L~ (1) > 0. The invariant guarantees thatcontains at least one event, and in particular one with titr&ich that
L=(*) <0andL*t(t*) > 0.

We initialize the recursion by lettingy = y,, andt; = yy. We setL{ (to) = L, (t1) = xp — x,» and L3 (o) =
Ly (11) = 0. As we observed above, we can compute the unordered list of all edge events in linear time.

In a recursive step, we first compute a median elemeftioftime linear in the size of. Let#, be the time of this
median event. We compute; (t2), L, (t2), L§ (t2), andL} (t2) by starting withL{ (t0) and L} (t0) and scanning the
list £ for all edge events occurring betwegnandz,. If L™ (t,) <0 andL™(¢p) > 0, we returne, ast*. Otherwise,
L~ (tp) and L™ (tp) are both non-zero and have the same sign. If it is negative, then weCsmace more to create a
list of events occuring strictly betweesnandr;, and recurse on the intervap, t1). Otherwise, that is if.~ (z2) > 0,
we similarly recurse on the intervédp, 12).

Since the size of decreases to half its previous size in each recursive call, the overall running time of our algorithm
is O(n). This completes the proof.O

Again, we apply the subroutine to a set of directions that we obtain using the following two lemmas.

Lemma 16. Let ¢ and ¢’ be two lines intersecting in a poipt with an angles, and letC be a convex set. I € C,
then

|conv(C UTrefl(C, £))| < [conM(C U refi(C, ©)) | + 4 (1 + 7/2)8 diam(C)?.

Proof. Let Q :=con\C U refl(C, £)) and Q' := conuC U refl(C, £)). As in Lemma 4, we argue that any point of
refl(C, £) has distance at mos# @iam(C) from some point of reflC, £). This implies thatQ’ is contained in the
Minkowski-sum of Q with a disk of radius 2diam(C). By Lemma 2, this implies

10| <101 + 25 diam(C) peri(Q) + 7 (28 diam(C))?.

Sincep € C, we haveC Nrefl(C, ¢) # @, and so diarQ) < 2diam(C). This implies periQ) < 27 diam(C), and we
obtain

1Q'] < |Q + 47 (8 + 6% diam(C)? < |Q| + 4n(1+ /s diam(C)%. O

Lemma 17. Given a convex-gon P ande > 0, one can construct in tim&(n + 1/¢) a setD, of O(1/¢) directions
such that

(1+ %s) |cony( P U refl(P, £°P((P)))| = min{|cony P U refl(P, £))|: ¢ has a direction fromD, }.

Proof. By Lemma 16 it is sufficient to choose the g2t such that it contains a line that makes an adghé at most
e|P|/(127 (1 + 7 /2) diam(P)?) with ¢£°Pt. Again we distinguish two cases, depending on the raig diam( P)2.

If diam(P)2 < 10/P|, then we generat®, by sampling the direction space uniformly, choosing multiples of
£/1000.

If diam(P)? > 10| P|, then we generatB, as follows. We sample uniformly the directions withinP |/ diam( P)?
of the direction of the diametepg, choosing multiples of|P|/100 dian{P)2. We also sample in the same way
around the direction orthogonal jg; (see Fig. 1).

To show that this is sufficient, notice that 4PP'(P) intersectspg at an angley e [0, /2], then conyP U
refl(P, £°PY(P))) contains the diametral papg together with its reflected versiop’q’, and pg makes an angle
2y with p’q’. Therefore

2|P| > |cony(P Urefl(P, ¢°P'(P)))| = [conv({p. q. P, q'})| = % diam(P)?sin2y.
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Here we used Lemma 14. It follows that sip Z 4| P|/ diam(P)2, and so we are in one of the following two cases:
y <x|P|/diam(P)2 or/2 — y <m|P|/diam(P)2. O

In order to replace the given input figure by a kernel, we need to show that the area of the smallest axially symmetric
convex set containing is a faithful measure. We use the following lemma.

Lemma 18. Let£ be a line in the plane. Then the following measure is faithful
u(C) := [con(C Urefl(C, 0))].

Proof. Let C, be ans-kernel of C. It is not hard to see that then caii U refl(C,, £)) is a Z-kernel of conyC U
refl(C, ¢£)). The claim now follows from Lemma 7.0

We can now prove the main result of this section.

Theorem 19. Let C be a convex set in the plane. Gives- 0, we can find a convex s€ > C with axial symmetry
and

aredQ) < (1+¢9) min{aree(Q*) | 0* D C and Q* convex and axially symmetl}ic
intimeO(e~Y2T¢ + £7%/2).
Proof. We first construct the inner approximating polyg6p, of Lemma 6 withe; = ¢/c for a suitable constant
¢ > 0, obtain for this polygon a set of(@/¢) directions from Lemma 17, and determine for each of them the optimal

line by Lemma 15. The procedure takes time &/2T¢ + ¢~%/2) in total.
The constant > 0 is chosen such that

(1—e/3)|conMC UTefl(C, 0))| < [con(C,, UTefl(Cy,, 0))|

for any lineZ. This is possible by Lemma 18.
It remains to show that the ling minimizing |conC,, U refl(Cs,, £¢))| among all lines with directions fror,
is the required approximation.

<1 + %8) |conv(C U refl(C, ¢PY(C)))| = <1 + %s) |con(C,, Urefl(Ce,, £°PY(C)))|

> <1 + %s) |con(C., Urefl(Ce,, €°P(Cey)))|
> |conv(Cy, Urefl(Cy,, £,))|
> <1 - %s) |conv(C U refl(C, ¢,))].
For ¢ small enough, it follows that
(1+ &)|[con(C Urefl(C, £°PY(C)))| > |[con(C UTefl(C, ¢))|. O
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