LOW COST FLOATING-POINT UNIT DESIGN FOR AUDIO APPLICATIONS

Sung-Won Lee and In-Cheol Park

Division of Electrical Engineering, Department of EECS, KAIST
373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701, Korea

ABSTRACT

This paper presents a low-cost single-cycle floating-point unit
developed for digital audio processing applications. In the unit,
the serial steps of floating-point operations are paralleled to
reduce critical path delay, and hardware resources are shared
with the integer datapath to minimize area overhead. Its area
overhead is as small as 38% of the fixed-point datapath, and the
critical path delay is 6ns in 0.25um CMOS technology, which
makes it well suited to modern audio applications such as MP3
and AAC. The floating-point unit is verified through an efficient
test vector generation method developed to reduce verification
time significantly.

1. INTRODUCTION

Growing demands for high quality digital audio systems have
introduced several techniques. Among them, MPEG Audio
Layer 3(MP3) enjoys general popularity, since music data can be
compressed into 1/10 size while maintaining CD audio quality.
In MP3, complex signal processing algorithms such as adaptive
segmentation and sub-band filtering are employed, which require
considerable processing power to achieve real time decoding of
MP3 stream. So, recent implementations of MP3 decoders in-
clude a high performance DSP cores as their main processing
unit. This kind of DSPs can be categorized into two types. The
first is fixed-point processors [1]. Most of the audio systems use
this type because the cost is low in terms of power and area.
However, programmers and algorithm designers must determine
the dynamic range and precision requirements either analytically
or through simulation, and then add scaling operations if neces-
sary. Therefore, the software development is generally harder
than its counterpart. The second is floating-point processors [2].
The large dynamic range and precision of floating-point arithme-
tic make it easy to program, dispensing with scaling operations.
For applications where audio quality and easy of development
are more important than unit cost, floating-point processors have
an advantage.

To combine the merits of both processors, that is, low cost and
ease of software development, we present in this paper a float-
ing-point unit that consumes small area. It supports three funda-
mental floating-point arithmetic operations including addition,
subtraction, and multiplication [4] based on a 24-bit fixed-point
datapath, which has the same bit-width as the popular commer-
cial DSPs used for audio applications [8]. The floating-point
format employed in our floating-point unit is different from that

This work was supported in part by the Korea Science and Engineering
Foundation through the MICROS center at KAIST, Korea.

0-7803-7448-7/02/$17.00 ©2002 IEEE

I-869

of IEEE 754 standard to facilitate the resource sharing with the
existing fixed-point datapath. A single-cycle operation and short
delay time are chosen as design constraints. The former enables
to retain the current pipeline architecture developed for fixed-
point operations, and the latter impedes the system performance
degradation.

The organization of this paper is as follows. In Section 2, float-
ing-point arithmetic is presented, and the implementations of the
proposed floating-point adder/subtractor and multiplier are de-
scribed in Section 3. The efficient verification scheme is dis-
cussed in Section 4, and results are given in Section 5. Finally
conclusions are made in Section 6.

2. FLOATING-POINT ARITHMETIC

The floating-point format consists of three fields: an exponent
field, a single-bit sign field, and a fraction field. The sign field
and fraction field can be considered as one unit and referred to
as the mantissa field. Unlike IEEE 754 [5] in which a sign field
is found at first and followed by an exponent field and a fraction
field, an exponent field, a sign field and a fraction field are lo-
cated in sequence.

23 18 17 16 0
[Signi Fraction]
| Mantissa |

Exponent

Fig. 1 Floating-point format

Fig. 1 illustrates the floating-point format that will be used
throughout this paper, which conforms to the precision require-
ments in [3]. The value in a floating-point number x is defined as
follows

x=m-2°
0Lf,=1+f ifs=0 M

10.£,==2+f if s=1

In (1), s is the value of the sign bit, £; is the binary value of the
17-bit fraction field, and e is the signed decimal value of the 6-
bit exponent field. The mantissa m represents a normalized 2’s-
complement number, that is, the most significant nonsign bit is
implied. Thus it provides additional precision of one-bit. With
this definition, the mantissa is in the interval me [1,2) if s=0,

and me [-2,-1) if s=1. The reserved value in (2) is used to
represent zero.

e =-2%"=(100000), s =0

S =0=(0_0000_0000_0000_0000),,
where b, is 6, the number of bits in the exponent fields.

We examined the required dynamic range for the MP3 encoder
to check whether the proposed floating-point format is suitable

where, m ={

@

or not. At least 180dB of dynamic range is required to make
MP3 audio stream without audio quality degradation. The dy-
namic range provided by the proposed format satisfies this re-
quirement. Table 1 summarizes the range and precision of the
floating-point format.

TABLE 1 Range and precision of the floating-point format

Case Value D.R.
Most positive | (2-2"7)x2%! = 4.294950912x10°
Least positive | 1x27! = 4.656612873x1071°

190dB

(-1-277) x23! = -4.656648400x10™°
2x23! = -4.294967296x10°

Least negative

Most negative

Numbers not in range are either underflowed or overflowed. If
an underflow occurs, we set the number to 0, and if an overflow
occurs, it is replaced by the most positive or negative value ac-
cording to its sign. Special symbols of the IEEE 754 such as
NaNs, +oo, or -o0 are not considered for the sake of compact im-
plementations. For the same reason, truncation is chosen as the
rounding strategy.

In this paper, floating-point addition, subtraction and multipli-
cation are considered, because they are intensively used in digi-
tal signal processing applications. To define the floating-point
operations, let us consider two floating-point numbers,
a=m,x2% and p=m, x2%.

The sum (or difference) of a and b, s is defined as
s=atb

=(m, 2 m,x 2")x2% if e, > e, &)

=(m,x27%™%) £ m,)x2% ,if e, <e,
The product of a and b, p is defined as
p=axb=m, xm,x2C*
thus, m,=m,xm, @
e =e,te,

In implementing the operations shown above, the 2’s-
complement mantissa representation makes a chance to share the
fixed-point datapath without any format conversion. This is par-
ticularly beneficial in multiplication as the multiplier takes

considerable area. Therefore we can implement the floating-
point unit with small area overhead.

3. IMPLEMENTATION

Typical fixed-point DSP processors are composed of 5 stage
pipelines: instruction fetch (IF), instruction decode (ID), operand
fetch (OF), execution (EX) and write back (WB). Memory ac-
cess arises in IF, OF and WB stage, and complex address genera-
tion occurs in ID stage, and long arithmetic operations such as
multiplication happens in EX stage. Therefore overall clock
speed usually does not exceed 200MHz.

In order to augment a floating-point unit to the fixed-point
processor, two conditions must be satisfied. First, the floating-
point unit must complete its operation within one-cycle. Multi-
cycle instructions usually induce more complex control circuitry,
hence invoking big changes in the control unit, and causing dif-
ficult data forwarding and pipeline control. Second, it must be
fast. If the processor is extremely slowed down by inserting the

1-870

floating-point unit, such modification cannot be accepted. In Fig.
2 the overall architecture is presented. Two floating-point mod-
ules are inserted into execution stages to support three funda-
mental floating-point operations.

Execution Stage

FP
Add/sub

3t bus C

Instruction Decode/
Address Generation

QHLH?F

rm

Instruction Operand Fetch from Write Back
Fetch Register File/Memory} Stage
o Arith./
Logical
i bus B
2 bus A

Fig. 2 Overall Architecture

3.1 Floating-Point Addition and Subtraction (FPAS)

FPAS consists of three steps: mantissa alignment, mantissa com-
putation (add or subtract) and exception handling. Each step also
contains a few small operations. Most of VLSI Implementations
[6,7,9] of FPAS adopt two or more stages pipeline for fast exe-
cution, but we cannot use it to maintain single-cycle execution.
Though each step for the proposed floating-point format is sim-
pler than that of IEEE 754, the serial execution delay of all three
steps is still long, that is to say, about 10ns. In order to minimize
the delay of the single-cycle FPAS, we have optimized the first
two steps. As the last step takes less time and is relatively simple,
we exclude it from optimization. :

ife<e,,d=¢e,-¢e
elsed=e,-¢,

Y

[ife,<e,,m=m>>d

a Compare Exponent

Mantissa Alignment

else my =m, >>d

x € €
' 6-bit compare }
ol '
& m, m
H 6-bit adder 1
Barrel Shifter
X

®)

Fig. 3 Mantissa alignment step for FPAS: (a) operation de-
scription, (b) serial implementation, (¢) proposed implemen-
tation

The mantissa alignment step is composed of comparing expo-
nent and aligning mantissa as shown in Fig. 3(a). After compar-
ing two exponents, we know which one is larger. Then the man-
tissa that has smaller exponent is shifted to right arithmetically
by the difference, d between the larger and the smaller. The se-
rial implementation of these is illustrated in Fig. 3(b), and 3ns is
measured for its delay. For the purpose of shortening the delay,
we replace the 6-bit comparator and the 6-bit adder by one 7-bit
adder and two inverters. Indifferent to the serial implementation,
we subtract e, from e, in advance to determining which one is
larger. If e, is larger, i.e. the sign bit of the 7-bit adder is one, the

difference is inverted. However this value is smaller than the
correct positive value by one, so we shift m, to right by one to
solve this problem. The reason that the 7-bit adder replaces the
6-bit adder is the sign bit of the 7-bit adder is utilized in multi-
plexers to select a proper one and the overflow check circuitry
usually has longer delay than the sum of a 1-bit adder. Fig. 3(c)
illustrates this structure that achieves 1ns delay enhancement.

Mantissa Addition
Leading 0/1 Calculation

Mantissa Normalization

ml "%
8 T $
‘ ([1eon
i i Adder
| ! LZA LOA
& 2
= (Cze)(oe] | = izc) (Toc
| i 3, i
i Barrel k if Barrel X i [Barrel X
1| shifter i|_Shifter i | shifter
X T x T X
®) © @

Fig. 4 Mantissa computation step for FPAS: (a) operation
description, (b) serial implementation with LZC[6], (c) LZA
with SD[7], (d) proposed implementation

The next-step, mantissa computation consists of three small
operations as shown in Fig. 4(a). After mantissa addition, we
need the leading-sign-bit (LSB) count to normalize m,. For the
serial implementation of Fig. 4(b), we always set the result posi-
tive. Then the number of the LSBs is calculated using a leading-
zero-counter (LZC) [6]. Using the value as the input of the barrel
shifter, the normalization is accomplished. As a result, 4.9ns is
measured for delay. To make the 19-bit addition and the LSB
count be parallel, the leading-zero-anticipator (LZA) [6] was
introduced. The sign-detector (SD) [7] for the 19-bit addition
was presented as well. When the length of addition is very long,
the SD works pretty well since the shift amount of the barrel
shifter cannot be prepared until addition is completed. However
the delay of 19-bit addition is close to that of LZA plus LZC, so
the SD can induce area overhead without any delay reduction.
The mantissa computation step based on the SD and the LZA is
shown in Fig. 4(c), and the proposed implementation that does
not include the SD is depicted in Fig. 4(d). The leading-one-
anticipator (LOA) and leading-one-counter (LOC) is also used
for the negative result. The LOA can be implemented by adding
an inverter to each input of the LZA. Though both cases reduce
the delay to 3.1 ns, we choose the latter that requires less area.

In order to support the subtract operation, we have to decide
where is the right place to toggle the sign of an operand. In defi-
nition (3), my, is subtracted from m, after two mantissas are
aligned. This can be implemented using one multiplexer and one
inverter next to m,, and another carry-in control signal for the
19-bit adder in the mantissa computation step. This method has a
problem that the multiplexer and the inverter are inserted in the
critical path, leading to additional delay for the FPAS. We solve
it by moving the multiplexer and the inverter to the next of m, in
the mantissa alignment step. This approach does not change the
critical path delay of FPAS because the select signal of the mul-
tiplexer is arrived after m, has been modified. The equivalence
between two approaches is shown in (5).

I-871

e .oil7 i-17-d,
__2 m”v‘0+Zi=u-d Mg 2 +Zl d, mb‘ 2 M (5)
o7 . oi-iT-d,
m =2 me3+Zt=ll-d My 27+ Y 2 +M

smy 27 =m, 2% "~ ,whered,=e¢,—¢,>0

The last step checks special cases (underflow, overflow, zero)
and converts the result to the appropriate value if required. Due
to the proposed computation steps, 6.0ns is obtained for the

overall delay for FPAS.

3.2 Floating-Point Multiplication (FPMUL)

Like FPAS, FPMUL consists of three steps. The first step is
mantissa multiplication and exponent addition, and the second is
mantissa normalization. The last step deals with the special cases.

[m.=mxm,e,=0+e,] MantissaMultiplication
Exponent Addition

q,,,-20r4 m>>1 e =e,

ifm
otherwise no change for Overflow

i 4, m>>2, 2] . .
Ment =% e o +7 | Mantissa Normalization

@

= m, m, e, ey x

! 19x19 j 1919
wl 6-bitadder | wn!
& Multiplier 5,‘ i
“i mo{37:0) et 012 i

7: ow —— 1 e
o e o
”""j—" i 6-bit adder """3‘_”'

() ©

Fig. § First two steps for FPMUL: (a) detailed description,
(b) serial implementation, (c) proposed implementation

Fig. 5(a) shows a detailed description of the first two steps.
Mantissa multiplication shares the existing fixed-point multiplier,
so no change allowed during this steps. However some parallel-
ism exists in mantissa normalization step, i.e. incrementing the
exponent by 1 or 2 can be done before noticing the actual value
of the increment. In Fig. 5(b) the serial implementation is illus-
trated and its delay is S.2ns. The proposed implementation that
calculate exponent early is shown in Fig. 5(c). The 6-bit counter
is for incrementing by 1, and the 5-bit counter is for adding by 2.
With a little area overhead, we achieve 4.5ns delay. The remain-
ing parts detect the exceptions such as overflow, underflow, and
zero, and perform the corresponding actions.

Overflow
o728 | | Detect
mo{46:28}-

=

Exception Handle

o fix/fp mul.

Fig. 6 FPMUL implementation using the existing 24x24
fixed-point multiplier

Fig. 6 illustrates the final FPMUL implementation, Two multi-
plexers are inserted at the input of the multiplier to select a
proper one from a fixed-point operand and a floating-point man-
tissa. Another multiplexers are placed at the end to choose one of
two outputs. The critical path delay for FPMUL is 5.4ns where
the fixed-point multiplier produces the correct answer in 4.2ns.

4. VERIFICATION

A reference model, which has been verified completely, plays
and important role design verification. As the floating-point
arithmetic considered in this paper is different from others, we
build the reference model from scratch in C language. In order to
examine whether the model works correctly or not, many test
vectors are required. The random vector generation scheme [10]
can be used to test the operation of the fabricated chip, but it is
not acceptable to verify a software implementation that takes
extremely long simulation time. Design errors are hard to found
using ordinary test vectors that do not generate any exceptions.
For the above two reasons, we discover that the random vector
generation using LFSRs is an inefficient method.

23 18 17 16 14 — 2 0
Golctlca]aea|cs G5 {Ge
Exponent Sign Fraction

Fig. 7 Bit grouping for the test vector generation

To make test vectors include exceptions as many as possible,
we propose a new scheme based on the observation that many
errors are related to zero, overflow, and underflow occurrence.
Overflow is probable to appear when two similar numbers of
large absolute value are calculated, and for two numbers that

have small exponent and similar mantissa, underflow is expected.

If two numbers are the same except the sign part, or one operand
is zero in multiplication, zero is generated. As shown in Fig. 7,
three groups are allocated for the exponent. This results in simi-
lar exponents for two operands. One group is used for the sign
field to generate zero cases. Another three groups are used for
the fraction. This also produces similar fraction values. Using
this scheme, 16384 pairs are generated to verify each floating-
point operation, and we can debug the model quickly.

TABLE 2 Synthesis results

Shifter 804 gates
Fixed- | ALU 1238 gates
point Multiplier 7959 gates
datapath | Total gates 10001 gates
Critical path delay | 4.2ns (Multiplier)
] FPMUL 1241 gates
F‘g:;‘:g' FPAS 2567 gates
datapath Total gates 3808 gates (38% overhead)
Critical path delay | 6.0ns (FPAS, 43% overhead)
5. RESULTS

The fixed-point processor including the proposed floating-point
unit is synthesized with UMC 0.25um cell library at typical op-
erating condition. Synthesis results for each datapath are summa-
rized in Table 2. Adding the floating-point results 12% area
overhead with respect to the entire processor and 38% with re-
spect to the fixed-point datapath. In Table 3, the performance of
the proposed floating-point units is compared to other floating-
point processors designed for audio applications in the literature.

TABLE 3 Performance comparison

D(Iellsa;y (;r;z) Technology Psitp;egllt;e
Tsou [11] 20 N/A 0.6um 1
Yamada [9] 6.7 N/A 0.3um 2
IEEE754 1.5 26093 0.35um 3
This 6.0 3808 0.25um 1
6. CONCLUSIONS

A low-cost, single-cycle floating-point unit has been presented
in this paper, which is developed to support audio applications
requiring more dynamic range and precision. Three fundamental .
floating-point operations are supported for easy software devel-
opment by eliminating the careful scaling and rounding that is
indispensable if only fixed-point operations are available. The
area cost is low, as the proposed floating-point arithmetic can be
implemented by sharing hardware resources such as the multi-
plier with the fixed-point unit. Single-cycle floating-point opera-
tions lead to easy integration with the existing fixed-point
datapath. With 38% area overhead, we achieved critical path
delay of 6ns, which is enough to support the state-of-the-art
audio applications.

7. REFERENCES

[1] L. Bergher, X. Figari, F. Frederiksen, M. Froidevaux, J. Gentit,
and O. Queinnec, “MPEG Audio Decoder for Consumer Appli-
cations,” Proc. CICC, pp. 413-416, 1995.

{2] S. Hong, B. Park, Y. Song, H. Seo et al., “A Full Accuracy
MPEG1 Audio Layer 3 (MP3) Decoder with Internal Data
Converters,” Proc. CICC, pp. 563-566, 2000.

{3} Greg Maturi, “Single Chip MPEG Audio Decoder,” IEEE
Trans. Consumer Electronics, vol. 38, no. 3, pp. 348-356, Aug.
1992.

[4] K. Kontro, K. Kallojarvi, and Y. Nuevo, “Use of Short Float-
ing-Point Formats in Audio Applications,” IEEE Trans. Con-
sumer Electronics, vol. 38, no. 3, pp. 200-207, Aug. 1992.

[5]) IEEE standard for binary floating-point arithmetic, ANSI/IEEE
Std 754-1985, New York, NJ, USA, Aug. 1985.

[6] H. Suzuki, H. Morinaka, H. Makino et al., “Leading-Zero An-
ticipatory Logic for High-Speed Floating Point Addition,”
IEEE JSSC, vol. 31, no. 8, pp. 1157-1164, Aug. 1996.

[7]1 K. Lee and Kevin J. Nowka, “1GHz Leading Zero Anticipator
Using Independent Sign-Bit Determination Logic,” Digest of
Technical Papers SOVC, pp. 194-195, 2000.

{8] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals: Architectures and Features, IEEE Press, Pis-
cataway, NJ, 1997.

[9] H. Yamads, T. Hotta, T. Nishiyama F. Murabayashi et al., “A
13.3ns Double-precision Floating-point ALU and Multiplier,”
Proc. ICCD, pp. 466-470, 1995.

[10] N. Sakashita, H. Sawai, E. Teraoka, T. Fujiyama et al., “Built-
In Self-Test in A 24bit Floating Point Digital Processor,” Proc.
ITC, pp. 880-885, 1990.

[11] K. Tsou, O. Chen, and C. Hu, “A Cost-Effective Fixed/Floating-
Point Digital Signal Processor,” Proc. VTSA, pp. 213-216,
1997.

I-872

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

