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A B S T R A C T   

Chemical recognition using machine learning based on detection by gas sensors relies on the accuracy and 
sensitivity of the sensors at capturing the key features of target classes. In some cases, however, the electronic 
signal transduced from the detection of analytes does not completely represent the key attributes, resulting in 
inaccurate classification results when trained from signal data alone. To overcome this shortcoming, we propose 
a novel “chemistry-informed” machine learning framework composed of two modules. From available sensor 
response data, Module 1 identifies and predicts the chemical properties of the analytes that give rise to the 
sensitivity and selectivity of the sensors, and Module 2 performs final classifications using the dataset concat
enating predicted chemical properties and raw sensor responses. To evaluate the performance and generaliz
ability of our methodology, we conducted experiments with three gas sensor array datasets for gas detection. In 
all the cases, the performance of gas species classification was improved when the raw features were combined 
with the predicted chemical property features. The main contribution of our framework is that it bridges the gap 
between the gas sensor signals and the target analytes, thereby improving classification performance beyond that 
of models trained exclusively on sensor response data.   

1. Introduction 

A chemical sensor is a device that transforms chemical information, 
ranging from the concentration of a particular component to a complete 
compositional analysis, into an analytically useful signal [1]. Gaseous 
analytes need to be detected in numerous fields including medical di
agnostics, food quality control, industrial monitoring for safety, house
hold applications, and environmental monitoring [2]. Data-driven 
approaches to chemical sensing have become essential technologies for 
modern industries emerging in the fourth industrial revolution [3–5]. 
Numerous attempts have been made to apply machine learning based on 
signal data obtained from chemical sensors to extract useful patterns 
from the electrical signal to predict the information of analytes. For 
example, Jurs et al. reviewed supervised and unsupervised machine 
learning techniques for pattern recognition using chemical sensors [6]. 
Pardo et al. proposed a classification method using hybrid sensor array 
data based on feature selection by principal component analysis (PCA) 

[7]. Cho et al. applied deep learning to detect low-concentration ana
lytes using chemical sensors [3]. Ye et al. used the alternating noise 
spectrum of gas sensors to enhance classification power for chemically 
and structurally similar gases [8]. Krivetskiy et al. improved the selec
tivity of gas detection using statistical shape analysis preprocessing 
instead of conventional signal preprocessing methods [9]. Acharyya 
et al. enhanced the selectivity of sensing by applying high sensitive 
microstructure, and using classification models in which the multiple 
features such as temperature, response, and concentration are fed in 
Ref. [10]. They also applied gas sensing kinetics, and used fitted pa
rameters for discrimination of VOCs [11]. A competition for predicting 
the intensity and pleasantness of odors from different molecules was 
held recently [12]. 

Detecting the variations in sensor signal patterns generated by 
different analytes is critical for successful chemometric analysis, 
particularly for gas classification using sensor data. Among the various 
attributes of signals and techniques, the magnitude of the change in 
signal intensity is most commonly extracted and used for pattern 
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recognition, which relies strongly on the concentration and unique 
physicochemical characteristics of the analyte [13]. In particular, spe
cific chemical properties of analytes lead to different chemical reactions 
on the surfaces of gas sensors attuned to those analytes, generating 
characteristic output signals that form the foundation of gas sensor 
selectivity. Therefore, these signals contain information that is impor
tant for explaining the differences between analytes. 

However, intrinsic gaps remain between a sensor’s signal and an 
analyte’s chemical properties because in a real-world application of gas 
classification, the sensor response does not directly represent the actual 
chemical properties of the analyte. Instead, it represents the combined 
output of the concentration, chemical properties of the analyte, and 
external factors. Because targets in machine learning models are defined 
on the basis of observable differences between substances having dis
similar chemical properties or concentrations, predictions made exclu
sively using sensor response data inherently involve the noise and 
information loss created by the gaps in the electrical sensing of chem
icals. Consequently, this limited and naïve approach may provide 
inaccurate results. 

In this study, we propose a novel chemistry-informed machine 
learning framework for gas classification that is designed to bridge the 
gap between observable gas sensor responses and unobservable 

chemical properties of target analyte classes inherent in the sensor 
response. As shown in Fig. 1, the framework consists of two modules: a 
regression or classification model that predicts chemical properties to 
identify new features and concatenates them (Module 1), and a final 
classifier with concatenated features of predicted chemical properties 
and raw sensor responses (Module 2). Module 1 requires knowledge- 
based identification of chemical property features which are chemi
cally explainable and are linked to the sensor response. Based upon this 
information, the module predicts the presence (by classification) or 
magnitude (by regression) of chemical properties. Then, Module 2 per
forms classification for predicting target substances using the concate
nated data that includes raw features and newly predicted features. In 
short, the framework incorporates domain knowledge to generate in
termediate outputs (i.e., chemical knowledge about sensors and analy
tes, which can be estimated or calculated but cannot be directly 
measured by the sensors) that are used to improve the final classification 
performance from sensor data. 

To evaluate the performance and generalizability of our method, we 
made empirical use of three gas datasets: a twin gas sensor arrays dataset 
[14] (Gas dataset 1), data from a gas sensor array exposed to turbulent 
gas mixtures [15] (Gas dataset 2), and an experimental gas sensor array 
dataset obtained from the Taesung Environmental Research Institute 

Abbreviations 

ADC analog–digital converter 
BA butyl acetate 
BD mixture of butyl acetate and dimethyl sulfide 
BDE bond-dissociation energy 
C carbon monoxide 
CE mixture of carbon monoxide and ethylene 
CNN convolutional neural network 
D dimethyl sulfide 
Ea Ethanol 
EDE electron-donation effect 
EM mixture of ethylene and methane 
Ey ethylene 
GBM Gradient Boosting Machine 
IP Relative abundance of substances with low ionization 

potential 

KNN K-nearest neighbors 
Me methane 
MOX metal oxide 
PCA principal component analysis 
PID photoionization detector 
SHAP Shapley Additive exPlanations 
SUL the concentration of sulfur or sulfide in a sample 
SVC support vector classifier 
SVM support vector machine 
SVR support vector regressor 
T toluene 
TB mixture of toluene and butyl acetate 
TD mixture of toluene and dimethyl sulfide 
TDB mixture of toluene, dimethyl sulfide, and butyl acetate 
TSEI Taesung Environmental Research Institute 
LightGBM Light Gradient Boosting machine  

Fig. 1. Overview and contribution of this work.  
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(TSEI) in South Korea (Gas dataset 3). Considering that gas sensor out
puts are strongly influenced by the concentrations and chemical prop
erties of the analytes, these are suitable experimental datasets. However, 
although the aforementioned datasets contain sensor response data, 
they have relatively small populations. To overcome this, we extracted 
chemical property information from a small number of samples and 
utilized these properties as new features. We demonstrated the 
improvement in classification performance when chemical property 
features are concatenated with raw sensor features. 

In relation to our work, two conventional methodologies—feature 
engineering and knowledge-based learning—have been used to mini
mize inaccurate results. However, those methods are incapable of 
retrieving important but hidden information buried beneath the original 
data. More rigorous feature engineering techniques have been empha
sized as a way to improve the robustness of prediction models [16–18]. 
Numerous studies beyond the scope of chemical sensors have utilized 
feature engineering techniques to enhance the performance of predic
tion models. For example, Schroeder et al. performed feature selection 
by determining the optimal features via independent selector classifi
cation and a combinatorial scan of all possible feature combinations for 
food classification from sensor array data [19]. Diaz et al. proposed a 
feature selection technique, which selects generalizable variables across 
domains [20]. Varzaneh et al. proposed a feature selection technique 
using Entropy-based and Lévy flight to improve the performance of 
Equilibrium Optimization, thereby enhancing classification perfor
mance [21]. Acharyya et al. proposed the Discrete wavelet transform 
(DWT) based preprocessing techniques to achieve selective discrimina
tion of VOCs [22]. 

Other than chemistry fields, some methodological studies have 
developed feature engineering methods for practical use with existing 
data to enhance prediction performance. For instance, Liu et al. [23] 
proposed a feature generation method for enhancing the accuracy of 
predicting click-through rates using a convolutional neural network 
(CNN), and Chen et al. proposed a method of integrating heterogeneous 
features for wind power prediction using a predictive stacked autoen
coder [24]. Zhao et al. proposed a two-module framework, including 
multi-modal neural networks and sparse-group LASSO for grouped 
heterogeneous feature selection, designed to improve classification 
performance [25]. DeVries and Taylor proposed a data-augmentation 
method based on feature spaces instead of input spaces using an 
autoencoder [26]. Wang et al. attempted to augment features based on 
logarithm marginal density ratio transformations [27]. As demonstrated 
by these studies, the literature of feature engineering has focused mainly 
on feature extraction, selection, and embedding. However, interpreting 
the outcomes of feature extraction is difficult. Feature selection inher
ently involves loss of information, and the classification performance 
depends on the selection criteria [27]. Essentially, existing studies focus 
on maximally exploiting the information in the original raw features. 
However, our work attempts to extend the available information per se. 

Meanwhile, attempts have also been made to import external sci
entific knowledge into machine learning models to improve the machine 
learning performance. For example, physics-informed neural networks 
have been proposed [28], which utilize existing domain knowledge 
represented by partial differential equations as regularization terms in 
loss functions. Such models aim to enhance prediction performance by 
approximating the physical laws governing the domains of the data. 
However, although this approach enhanced the regression performance, 
it required large datasets to train neural networks. In addition, this 
approach regularizes a loss function that utilizes governing laws of 
physics in the form of ordinary differential equations, which are un
available or unrealistic to derive in many cases. A different approach 
was proposed [29] to predict the compressive strengths of 
alkali-activated materials. It used simple feature engineering to 
construct the derived variables that represented chemical properties. 
Another study used given physics and chemical property features to 
predict the properties of glass [30]. However, these existing approaches 

used calculation-based feature aggregation to prepare chemical property 
features used in the final prediction. However, in many cases, particu
larly for sensors, calculating the chemical properties from sensor re
sponses is complicated or difficult in real-time inference problems. 

In contrast, our chemistry-informed machine learning method at
tempts to predict and use hidden but significant chemical information 
that influences gas sensor selectivity, but has not been used to date, 
thereby expanding the list of features beyond those available from 
domain knowledge. The hidden properties identified and utilized by our 
model are not directly reported during the electrical sensing of chem
icals, nor are they calculable from conventional statistical methods. 
Therefore, we identified and predicted these properties in Module 1, and 
used them as additional features (dimensions) in the final predictions. 
Because the framework entails domain-knowledge-based labeling of the 
new chemical property features before they are concatenated with the 
original datasets with sensor response features, we can alleviate the 
noise and information loss from the gaps in electrical sensing of chem
icals and expand the available information for machine learning. To the 
best of our knowledge, this is the first study that explores and exploits 
chemical property features for gas classification. Specifically, we aimed 
to utilize both electrical signals and chemical property features to 
enhance classification performance. As shown in Fig. 1, our main con
tributions are as follows. Recognizing the importance of chemical 
recognition using machine learning, we developed a knowledge-based 
method for feature identification to improve sensor data classification 
performance. Although this study illustrates three application cases with 
small sized training datasets, we show that the proposed framework can 
improve the performance of gas recognition. The framework is appli
cable to the gas recognition system where the domain knowledge on 
training analytes are available, even when the number of gas species to 
recognize is limited to the certain scope, such as the e-nose implemented 
on food production facilities for detecting the spoilage of certain toxic 
chemical products. 

2. Material and methods 

In this section, we describe our framework for the identification of 
chemical property features, including Modules 1 and 2, in detail. Table 1 

Table 1 
Notation.  

Name Meaning 

Xs ∈ Rn×m Matrix including sensor response of all features 
C ∈ ℝn×q Concentration matrix of mixture components (ppm) 
P ∈ ℝl×q Chemical property matrix of mixture components (per unit 

component) 
Xc ∈ Rn×l Total chemical property matrix for mixture 

X̂c ∈ Rntest×l Features generated by Module 1 

Xs+ĉ ∈ Rntest×(m+l) Concatenation of Xs and X̂c data 
Xs+c ∈ Rn×(m+l) Concatenation of Xs and Xc data 

Xs+random ∈ Rn×(m+l) Concatenation of Xs and l random Gaussian noise feature 
xs,i ∈ ℝn A vector including response from sensor i for all samples (i =

1 to m)

xc,j ∈ ℝn A vector including chemical property j for all samples (j =
1 to l)

y ∈ Rn Target variable (Gas species) 
L Loss function: Mean squared error (LMSE), Cross entropy loss 

(LCE) 
l Number of chemical property features 
m Number of sensors 
ntrain Training set size 
ntest Test set size 
n Number of samples (n = ntrain + ntest) (k = 1 to n) 
q Number of components in a mixture of analytes 
θ Model parameters 
ε Error vector 
f(•) Sensor response function 
g(•) : Xs→Xc Module 1 function 
h(•) : Xs+c→y Module 2 function  
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details the notation used in this study, and Fig. 2 shows an overview of 
the architecture of the framework. 

2.1. Module 1 

The primary function of Module 1 is to extract inherent chemical 
property features from sensor response Xs, which is accomplished by 
pre-defining hidden chemical property labels Xc and obtaining predicted 
properties X̂c. The identification of chemical properties involves tracing 
sensor signals back to ascertain their origin. For example, the selectivity 
and sensitivity of metal-oxide gas sensors are strongly influenced by the 
specific traits of each sensor in the array and the quantities and unique 
chemical properties of the analytes [31]. 

In short, Module 1 focuses on capturing the relationship between the 
given sensor response (Xs) and the hidden chemical properties of sensors 
and analytes (Xc). This can be accomplished using two typical super
vised learning methods: regression and classification. The choice be
tween regression (numerical labels) and classification (categorical 
labels) depends on the user’s definition of Xc. In this study, we imple
ment both techniques and encourage researchers and engineers to select 
the appropriate strategy for their purpose. We implemented regression 
for two gas sensor array datasets obtained from UCI machine learning 
repository [14,15] and classification for the TSEI gas sensor array 
dataset (see Section 3 for further details). 

Following this prediction step (Module 1), the predicted value X̂c of 
the test set is used for the inference phase in Module 2 because Xc has 
pre-defined labels and is non-observable in the test-and-use phases. 

Meanwhile, in terms of the choice of Module 1 model to predict Xc 
from Xs, for gas dataset 1 and 2 using continuous Xc variables, we used 
LightGBM regressor, because, in contrast to conventional GBM, 
LightGBM prevents overfitting via strong regularization while preser
ving its performance and provides fast computations [32]. For gas 
dataset 3 using discrete Xc variables, we used random forest classifier, as 
it is an effective machine learning technique for discretely distributed 
data. For continuous data, an efficient discretization algorithm is 
applied prior to the learning step [33,34]. 

2.1.1. Regression for Module 1 
A regression-type model is eligible for Module 1 if Xc is defined to be 

in continuous space. Several studies have constructed quadratic models 
for quantifying and representing the sensor response from analyte con
centrations in a mixture [35–37]. Therefore, we define the signal func
tion to include concentration C and chemical properties P summed with 
error ε, which consists primarily of noise from external environmental 
factors, as 

xs,i = fi
(
c1, c2,…, cq, p1, p2,…, pl,

)
+ ε (1)  

where xsi is an element of Xs, which consists of the combination of 
feature vectors of sensor responses: 

Xs =
[
xs,1, xs,2,…, xs,m

]
(2)  

For simplicity, we represent the chemical property matrix Xc as a linear 
combination of concentration C and unit chemical properties P, with an 
error term. For the parameter-based model, Xc is denoted as in Eq. (3). 

Xc =CPT = g
(
Xs
⃒
⃒θg

)
+ ε (3) 

Xc and x̂c,j can also be denoted as 

Xc =
[
xc,1, xc,2,…, xc,l

]
∈ ℝn×l (4)  

LMSE, j =
1

ntrain

∑ntrain

k=1

(
xc,k,j − x̂c,k,j

)2 (5)  

x̂c,j = gj

(
Xs,test

⃒
⃒
⃒θ*

g,j

)
∈ ℝntest (6)  

where gj( • ) : Xs→xc,j denotes the prediction model for jth chemical 
property in Module 1, whose independent and dependent variables are 
Xs and xc,j, respectively, and θ*

g,j denotes the optimal parameter set of 
gj( • ) : Xs→xc,j. θ*

g,j is obtained by minimizing the loss function, i.e., the 
mean-squared error LMSE,j (5). 

2.1.2. Classification for Module 1 
For classification applications, discrete one-hot labels xc,k,j are 

defined and assigned by users according to the presence or abundance of 
analytes having particular chemical properties (i.e., C and P). Therefore, 
the element of Xc is labeled as 

xc,k,j =

⎧
⎪⎨

⎪⎩

a0 if
condition 0

⋮
ar if

condition r

(7)  

where k and j range from 1 to n and l, respectively. Thereafter, for a 
parameter-based model, x̂c,j is obtained by minimizing the cross-entropy 
loss LCE,j (8): 

LCE,j = −
∑ntrain

k=1
xc,k,j log

(
x̂c,k,j

)
(8)  

x̂c,j = gj

(
Xs,test

⃒
⃒
⃒θ*

g,j

)
∈ ℝntest (9)  

2.2. Module 2 

Module 2 is the final classifier for predicting the target variable y. For 
this process, X̂c, the predicted chemical property of the test set, is ob
tained from Module 1, and concatenated with sensor response data Xs to 

Fig. 2. The proposed framework for chemistry-informed machine learning.  
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obtain Xs+ĉ, which includes the sensor responses as well as the predicted 
chemical properties of the samples: 

Xs+ĉ =
[
xs,1,test, xs,2,test,…, xs,m,test, x̂c,1,test, x̂c,2,test,…, x̂c,l,test

]
∈ ℝntest×(m+l)

(10) 

Module 2 acts on these concatenated data according to 

ŷ = h
(
Xs+ĉ

⃒
⃒θ*

h

)
∈ Rntest (11)  

where h(•) : Xs+c→y, whose classification algorithms work similarly to 
those of Module 1. 

Algorithm 1 presents the pseudocode summarizing the framework, 
including both modules. 

Algorithm 1. Pseudocode for identification of chemical property fea
tures and classification  

1 procedure (Module 1 and Module 2) 
2 Input: Training set (Xs,train,Xc,train,ytrain); Test set (Xs,test); Module 1 g(•

⃒
⃒θg) :

Xs→Xc; Module 2 h(•|θh) : Xs+c→y; 
3 Output: Best model h(•

⃒
⃒θ*

h)

4 for j = 1→l do 
5 Train gj(Xs

⃒
⃒θg,j) with Xs,train and xc,j,train 

6 θ*
g,j = argmin

θg,j

L(gj(Xs,train),xc,j,train)

7 x̂c,j = gj(Xs,test

⃒
⃒
⃒θ*

g,j)

8 end for 
9 Xs+c,train←concatenate(Xs,train,Xc,train)

10 Xs+ĉ,test←concatenate(Xs,test , X̂c,test)

11 Train h(Xs+c,train
⃒
⃒θh) with Xs+c,train and ytrain 

12 θ*
h = argmin

θh

LCE(h(Xs+c,train),ytrain)

13 Test ŷ = h(Xs+ĉ,test
⃒
⃒θ*

h)

14 return ŷ 
15 end procedure   

2.3. Dataset descriptions 

In this section, we describe the experimental procedures and vali
dation results of our proposed framework with three datasets: 1) twin 
gas sensor arrays dataset [14], 2) data from a gas sensor array exposed to 
turbulent gas mixtures, which are publicly available in the UCI machine 
learning repository [15], and 3) a gas sensor array dataset obtained from 
TSEI (Ulsan, South Korea). Using the three gas sensor datasets, we finally 
predict the presence of gas components of unknown gas mixtures. The 
details of the datasets are summarized in Table S9. 

2.3.1. Twin gas sensor arrays dataset 
Gas dataset 1 [14] was collected from a sensor array consisting of 8 

MOX sensors (Figaro USA, Inc., Glenview, IL, USA) of four types. The 
experimental protocol consisted of 5 chemical detection units having the 
same experimental setting, and each sensor unit was tested several times 
over a period of 22 days. For each test, four different target volatiles 
(Ethylene, Ethanol, Carbon Monoxide, Methane) mixed with dry air was 
passed through a sensing chamber at 10 different concentrations, while 
the total flow rate was maintained at 400 mL/min. The total duration of 
each experiment was 600 s. Air was circulated through the sensing 
chamber for 50 s, whereafter the target gas was circulated for 100 s. 
Finally, at 150 s, the gas was purged, and clean air was circulated 
through the chamber. The total number of samples was 640, and they 
were equally distributed between the four classes (i.e., 160 samples per 
class). Detailed information is available in Fonollosa et al., 2016 [14]. 

2.3.2. Gas sensor array exposed to turbulent gas mixtures 
Gas dataset 2 [15,38] was collected from chemo-resistive gas sensors 

exposed to turbulent gas mixtures of carbon monoxide, methane, and 
ethylene in a wind tunnel. The sensor array consisted of eight 

commercial MOX sensors (Figaro USA, Inc., Glenview, IL, USA) of six 
types, whose selectivity and sensitivity to target gases varied. The 
complete time-series dataset consisted of 180 sample measurements, 
and the total duration for each sample was 300 s. At t = 60 s, the gases 
were released and persisted for 180 s. In the final 60 s, the gases were 
purged and the system recovered. Tables S3 and S4 (Supplementary 
Material) list the details of the sensor array and the distribution of 
samples according to gas concentrations, respectively. See Fonollosa 
et al., 2014 [15] for detailed information. 

2.3.3. TSEI dataset 
From TSEI, we obtained 104 time-series data samples including 

saturation and recovery phases for mixtures of two or more gases 
(collected April–June 2020). The sensor array consisted of seven sen
sors, including MOX sensors, electrochemical sensors, and a photoioni
zation detector (PID), whose manufacturers and target gases were 
different. Toluene (T), butyl acetate (BA), and dimethyl sulfide (D) were 
selected as the target gases because the dataset aims to build e-nose 
system which is served in refrigerators, and three gases are the most 
likely to cause the odors due to food spoilage. Tables S6 and S7 list the 
details of the sensor array and the distribution of samples according to 
gas concentrations, respectively, and Fig. S12 describes a schematic 
diagram of gas sensing setup of the experiment of TSEI dataset. 

For each data sample, the total duration was 420 s. For the first 140 s, 
no gas flowed, and from t = 141 s, the gas mixture was flowed turbu
lently until all the sensors in the array were saturated. The signal was 
converted to 0–4000, corresponding to 0–5 V, using an analog–digital 
converter (ADC). The experiment was conducted at room temperature 
(25 ± 2 ◦C) and ambient humidity (60 ± 5% RH). 

2.4. Data preprocessing 

In this study, we focus on the extraction of chemical properties from 
maximum steady-state change, for application in real-world conditions. 
Maximum steady-state change is the most popular feature used in 
chemo-sensory data processing. Previously, Nallon et al. [39] extracted 
parameters by fitting the saturation recovery curve to reflect physico
chemical relationships such as adsorption and desorption rates. In order 
to prepare Xs, we extracted three parameters from the sensor curve. The 
first and second parameter are the maximum change in resistance (ΔR =

Rmax − Rmin) or voltage (ΔV = Vmax − Vmin), which are the raw feature in 
the time-series data for a sample because we assumed that the chemical 
properties Xc inherent in the analytes are most clearly and maximally 
revealed in the saturated steady-state phase, during which the flow of 
electrons through the circuit is maximized. The third parameter is the 
coefficient of the curve fitting the saturation phase. According to Nallon 
et al. [39], the saturation phase can be fitted to a curve Eq. (14), and αs, 
the coefficient of the exponential term in the equation of the curve, is 
closely related to the molar mass of the analyte (see Section 2.5 for 
detailed explanation). Fig. 3 shows the saturation and recovery curve of 
the sensor signal, and the preparation of Xs. 

Thereafter, we deleted some abnormal samples having unusual 
sensor data. Among various types of data preprocessing methods used in 
chemical sensor array response processing [6,40], we performed robust 
scaling for the as-obtained Xs as described in Eq. (12): 

xscaled
s,k,i =

xs,k,i − Q2
(
xs,i

)

Q3
(
xs,i

)
− Q1

(
xs,i

) (12)  

in which Q1,Q2, and Q3 represent the 1st, 2nd and 3rd quartile, 
respectively. 

2.5. Xc preparation and Module 1 

We identify five chemical property features in total. Among them, for 
sensors with ZnO/Al2O3 MOX sensors (Table S1), we defined three 
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major chemical property candidates for Xc with which the selectivity of 
the sensors is closely related: the molar mass function of the analytes 
[39], the bond dissociation energy (BDE) [41], and the 
electron-donation effect [42] (Table 3). These properties were also 
applied to gas dataset 2 (see Section 3.2). For the other properties, 
Ionization potential (IP) and the concentration of sulfur or sulfide in a 
sample (SUL) are defined as binary variables, which are applied in gas 
dataset 3. Here, we listed the description of five properties.  

- Bond dissociation Energy (BDE): The strengths of the chemical bonds 
existing in substances during chemical reactions are critical param
eters because the extent to which a reaction proceeds is closely 
related to the energy required to break the original bonds in the 
reactants [41]. The smaller the BDE of the gas molecule, the more 
readily the redox reaction with O−

2 (ads) occurs on the sensor surface 
and the greater is the number of electrons likely to be released. 
Considering the tendency that high BDE causes low sensitivity, and 
low BDE causes high sensitivity, we simply defined pBDE as the 
reciprocal of the BDE for each component (13).  

- Molar mass function (M− 1
2): The molar mass function can be derived 

and estimated from the rate of adsorption. It is driven by the Lang
muir kinetic equation (15), in which (1 − θ) is the fraction of sites not 
covered, s* is a sticking coefficient term, Pr is the pressure, NA is the 
Avogadro constant, T is temperature, R is the gas constant, M is the 
molar mass, and Eads is the activation energy of adsorption. Ac
cording to Nallon et al. [39], Eq. (15) can be fitted onto hypothesis 
curve Eq. (14), in which αs, βs, γs are the trainable parameters of the 
saturation curve (Saturation phase on Fig. 3). Because the surface 
area and all other variables are fixed, the rate of adsorption varies 
with 1̅̅̅

M
√ and is strongly correlated with αs, the coefficient of the 

exponential term in Eq. (14) [39]. 

pBDE =

[
1

BDE1
,

1
BDE2

, ..,
1

BDEq

]

∈ ℝ1×q (13)  

Rs(t) =αs
(
1 − e− βst)+ γs (14)  

rate of adsorption =
PrNA
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πMRT

√ (1 − θ)s*e− Eads/RT (15)    

- Electron-donation effect (EDE): The number of electrons released per 
target gas molecule was calculated. The larger the EDE, the greater 
the number of electrons released during chemical reactions, which 
induces a stronger sensor response [42]. With different oxygen spe
cies (O− ,O−

2 , O2− ), O−
2 is mostly available on the sensor surface at 

room temperature, due to low activation energy [43–46]. Here, our 
calculation is based on using O−

2 , as all the experiments of our 
datasets were conducted at room temperature.  

- Relative abundance of substances with low ionization potential (IP): 
The main advantage of the PID is selectivity toward gases having low 
ionization potentials [47], based on the difference between the 
ionization potential of the analytes (VOC) and photons (hν) released 
from the photon discharge source (a 10.6-eV krypton UV lamp), 
where h is Planck’s constant (h = 6.6262× 10− 34J • s), and ν is the 
frequency (Hz). If hν exceeds the analyte’s ionization potential, an 
excited molecule is produced (16), which subsequently produces a 
cation and an electron (17). The cations and electrons are drawn 
toward the cathode and anode respectively, generating current in the 
circuit [48–50]. 

VOC + hν →VOC* (16)  

VOC* → VOC+ + e− (17) 

In gas dataset 3, Sensor 3 is capable of detecting VOCs having ioni
zation potentials lower than 10.6 eV (Table S6). The ionization po
tentials of its target gases: butyl acetate, dimethyl sulfide, and 
toluene are 10.01, 8.69, and 8.82 eV, respectively [53]. Although the 
ionization potential of butyl acetate (10.01 eV) is lower than the 
upper limit of detectability, the sensitivity was much lower than that 
for the other two target gases. Therefore, for kth sample (k = 1 to n), 
we assigned xc,k,IP = 1 to samples whose total concentration of 
toluene and dimethyl sulfide exceeded 1000 ppm (76 of 104 samples) 
and assigned xc,k,IP = 0 to the other samples. 

- The concentration of sulfur or sulfide in a sample (SUL): A semi
conductor sensor and an electrochemical sensor (e.g., Sensor 2 and 5 
in gas dataset 3) capture sulfurous compounds. Since dimethyl sul
fide is a sulfurous gas, xc,k,SUF = 1 was assigned for the samples 
whose total concentration of dimethyl sulfide exceeded 500 ppm, 
and xc,k,SUL = 0 to the remaining samples. For example, if a sample 
xs,k contains 1000, 2000, and 1000 ppm of dimethyl sulfide, toluene, 
and butyl acetate, respectively, the sum of concentration of dimethyl 
sulfide and toluene is 3000 ppm, and consequently, xc,k,IP = 1, and 
xc,k,SUL = 1 for the sample. 

The process of preprocessing and Xs, Xc preparation, implementation 
specifications have been summarized in Table 2. 

3. Result 

In this section, we describe the experimental procedures and vali
dation results of our proposed framework with three datasets: 1) twin 
gas sensor arrays dataset [14], 2) data from a gas sensor array exposed to 
turbulent gas mixtures, which are publicly available in the UCI machine 
learning repository [15,38], and 3) a gas sensor array dataset obtained 
from TSEI (Ulsan, South Korea). Using the three gas sensor datasets, we 
finally predict the presence of gas components of unknown gas mixtures. 
The details of the datasets are summarized in Table S9. 

The random train/test splitting was performed as follows: the 
training set comprised 75% of the entire dataset, and the test set 
comprised the remaining 25% of it. We repeated the sampling for 100 
times, shuffling the dataset each time. In the process, we stratified the 
classes, but did not consider the detection units. For both modules, we 
conducted Bayesian hyper parameter tuning (Table S10) for each 
repetition of random sampling via 3-fold cross-validation, then took the 
average of the test score for each task. 

For Module 2, we focused on ascertaining the improvement created 
by our approach, comparing the performance of h(Xs) and h(Xs+ĉ). We 
also compared the result of h(Xs+random), on which Xs and two or three 
random Gaussian noise features xrandom,j ∼ N(0, 12) are concatenated 

Fig. 3. The saturation and recovery curve of sensor signal and Xs preparation.  
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(Here, the number of xrandom,j is the same as the number of chemical 
property features: l). We report the F1 score as the evaluation metric 
because it is a sensitive tool for measuring classification performance in 
imbalanced datasets. 

3.1. Twin gas sensor arrays dataset (Gas dataset 1) 

In this experiment, we used three properties in total: the EDE and 
BDE obtained from input ΔR, and the molar mass function obtained 
from input αs. The final total population of the training and test sets were 
480 and 159, respectively. The distribution of samples is detailed in 
Table S2. 

We predicted and generated X̂c for the test set, whereafter we 
calculated the mean and standard deviation of the correlation coefficient 
(R2) of the test set. The results are presented in Table 4 and visualized in 
Fig. S4, which shows an example of the distribution of original Xc and 
generated X̂c for each model. 

3.1.1. Module 2 and target prediction 
For generating the classification models in Module 2, we used six 

different classifiers: elastic net, random forest, extra trees, LightGBM, K- 
nearest neighbors (KNN), and support vector classifier (SVC). We used Δ 
R instead of αs as the input for Model 2 because ΔR and αs extracted from 
the same sensor exhibited high correlation, which may have led to multi- 
collinearity if both of them were provided as inputs to Module 2. 

We performed a Bayesian hyperparameter search (see Table S11 for 
detailed information) and selected the hyperparameter set that pro
duced the lowest loss, and finally tested it using the test set. As the 
evaluation metric, we used the F1 score, which is defined as the har
monic mean of precision and recall. Table 5 shows the average F1 score 
(and standard deviation thereof) of 100 random samplings for each 
model. We also present the win rate of F1 score, which is the number of 
win from 100 random train/test splittings. If multiple candidates gained 
the same highest score, then the win rate of all of them are counted. 

As a result, the highest average F1 score of h(Xs+ĉ) was 0.910 (elastic 
net). Also, for five out of six models, h(Xs+ĉ) outperformed h(Xs). 

3.2. Data from gas sensor array exposed to turbulent gas mixtures (Gas 
dataset 2) 

Using the LightGBM regressor, we predicted and generated X̂c for the 
test set and calculated the mean and standard deviation of Test R2. The 
results are presented in Table 6 and visualized in Fig. S5, which shows an 
example of distribution of original Xc and generated X̂c for each model. 

3.2.1. Module 2 and target prediction 
Table 7 shows the average F1 score of 100 random samplings for 

each model and task. The highest average F1 score of three tasks were 
achieved for h(Xs+ĉ), with the values being 0.946 for carbon monoxide 
classification (SVC), 0.972 for ethylene classification (SVC), and 0.930 
for methane classification (Random forest classifier). 

3.3. TSEI gas sensor array dataset (Gas dataset 3) 

We used random forest classifier to perform classification for Module 
1. The final population of the training set was 76, and that of test set was 
28, stratifying the components. 

The F1 score was selected as the criterion for the binary classification 
of Module 1. Table 8 presents the results (mean and standard deviation) 
for the generation of X̂c. The results indicate that the average F1 score of 
the level of ionization potential was 0.777, and that of sulfur or sulfide 

Table 2 
Summary of preprocessing, Xs, Xc preparation, and Module 1.  

Dataset Xs Total number of samples 
(before outlier deletions) 

The number of deleted 
abnormal samples 

Sensor types (The number of sensors in 
an array in parenthesis) 

Xc (The total number of used 
features in parenthesis) 

Module 1 model 

Gas 
dataset 
1 

ΔR,
αs 

640 1 MOX sensors (8) 
BDE, EDE, M

−
1
2 (3) 

LightGBM 
regressor 

Gas 
dataset 
2 

ΔR 180 4 [54] MOX sensors (8) BDE, EDE (2) LightGBM 
regressor 

Gas 
dataset 
3 

ΔV 104 – MOX sensors (2), electrochemical 
sensors (4), 
PID sensors (1) 

IP, SUL (2) Random forest 
classifier  

Table 3 
Properties of target gases detected from MOX sensor: the property matrix was multiplied by the concentration matrix to obtain Xc.  

Target gas EDE (mol e− released 
per mol gas) [42] 

Molar mass function 

(M
−
1
2) (mol/g) 

BDE 
(kJ/mol) 
[51] 

Surface redox reaction on sensing element [42] (At room temperature) 

Carbon 
monoxide 
(CO)

0.5 0.189 1075 2CO+ O−
2 (ads)→ 2CO2 + e−

Ethanol 
(C2H5OH)

2.5 0.147 436 2C2H5OH→2CH3CHO+ 2H2 (basic oxide)
2CH3CHO+ 5O−

2 (ads)→4CO2 + 4H2O+ 5e−

On the sensor surface, ethanol may undergo two different chemical reactions (dehydration 
and dehydrogenation) depending on the nature of the metal oxide. Because the sensors are 
composed of basic ZnO, dehydrogenation is favored [42,52]. Therefore, two ethanol 
molecules finally release five electrons after undergoing redox reactions on the surface of the 
sensor. 

Ethylene 
(C2H4)

3 0.189 682 C2H4 + 3O−
2 (ads)→ 2CO2 + 2H2O+ 3e−

Methane (CH4) 2 0.250 431 CH4 + 2O−
2 (ads) → CO2 + 2H2O+ 2e−

Table 4 
Module 1 results by model (standard deviations in parentheses).  

Metric EDE BDE 
Molar mass function (M

−
1
2) 

R2 0.725 (0.044) 0.721 (0.048) 0.732 (0.047)  
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was 0.847. 
Upon completion of Module 1, the datatype of predicted X̂c was 

converted to float, and it was delivered to Module 2. 

3.3.1. Module 2 and target prediction 
In Module 2, just as gas dataset 1 and 2, we compared the results of 

h(Xs) and h(Xs+random) with those of h(Xs+ĉ), and the results are presented 
in Table 9, which show that average F1 score for h(Xs+ĉ) are superior to 
those of h(Xs) and h(Xs+random), except for the classification of toluene 
using KNN. The highest F1 score of each task was obtained using h(Xs+ĉ), 
and the values were 0.791, 0.852, and 0.829 for the classification of 
butyl acetate (Extra trees classifier), dimethyl sulfide (Extra trees clas
sifier), and toluene (LightGBM). 

4. Discussion 

4.1. Improvement in classification performance achieved with the 
proposed methodology 

For the gas dataset 1, the highest average F1 score was achieved by 
elasticnet trained from concatenated Xs+ĉ. To interpret the model and 
determine the contributions of chemical property features, we imple
mented Shapley additive explanations (SHAP) [55,56], a summary plot 
whereof is presented in Fig. S9, which shows the average SHAP values of 
models obtained from 100 random samplings. The result indicates that 
the molar mass function (’1/sqrt(m)’), EDE and BDE were the first, third 
and fourth highest contributing features for the model, respectively, 
proving the dominant contribution of chemical property features. 

To interpret the gas dataset 2, both BDE and EDE have been 
moderately contributed features for the model. For the classification of 
Carbon monoxide, which has the highest BDE, and the lowest EDE 
among three target species (Please see Table 3), both chemical property 
features ranked 3rd and 4th highest contributing ones among whole 
features. For the classification of the other gases, Ethylene and Methane 
have the highest EDE and the lowest BDE among three target gases, 
respectively. The results show that EDE for Ethylene and BDE for 

methane are ranked higher than the other one. 
For gas dataset 3, we defined discretely distributed chemical prop

erty features: the ionization potential and the level of sulfur or sulfide. 
The former is designed to detect dimethyl sulfide and toluene, whereas 
the latter is designed to exclusively detect dimethyl sulfide. The results 
(Fig. S11) demonstrate that the SHAP impact of ‘Sulfur/sulfide (scaled)’ 
significantly contributed to all three tasks because it is capable of 
detecting the samples containing dimethyl sulfide at concentrations 
lower than 500 ppm. Additionally, ‘Ionization potential (scaled)’ 
contributed to the high classification performance for gases having low 
ionization potentials (i.e., dimethyl sulfide and toluene). 

Our chemistry-informed machine learning framework performs 
better than conventional approaches because the chemical property 
features Xc are closely related to sensor signal and sensor selectivity, 
thereby bridging the gap between Xs and y (see Fig. 4). We identified the 
chemical property features Xc that are likely to be related with the target 
y, where each target class is composed of analytes having different 
chemical properties. Therefore, Xc facilitates the separation of classes 
and the training of classification models that can distinguish between 
adjacent data points generated by different classes with higher accuracy. 
In other words, for accurate and reliable chemical recognition, the 
variation of Xc complements that of Xs between classes. Consequently, it 
enhances the selectivity and sensitivity of chemical sensing and 
recognition. 

4.2. Applicability of the proposed framework to other problems 

We attempted to identify new features based on knowledge of the 
chemical properties of the sensors and analytes to establish the con
nections between sensor response data and the target class (Fig. 4). Our 
identification of new features was based on the following criteria to 
maximize the classification performance and prevent adding unnec
essary features. Firstly, the new features should be known to be inherent 
in the sensor signal, leading to variations of signal response. Secondly, 
the variation of signal and chemical property features should explain the 
target class. To achieve this goal, we referred to numerous previous 

Table 5 
F1 scores/win rate of Module 2 (standard deviations of F1 score in parentheses).  

Input Elastic net Random forest Extra trees LightGBM KNN SVC 

Xs+ĉ (Ours) 0.910/68 (0.022) 0.900/27 (0.023) 0.908/71 (0.020) 0.879/62 (0.029) 0.892/63 (0.025) 0.908/50 (0.023) 
Xs 0.895/28 (0.025) 0.907/46 (0.024) 0.892/16 (0.024) 0.869/26 (0.034) 0.882/39 (0.026) 0.907/50 (0.023) 
Xs+random 0.890/11 (0.024) 0.904/37 (0.025) 0.894/24 (0.025) 0.869/25 (0.033) 0.794/0 (0.030) 0.890/5 (0.025)  

Table 7 
F1 scores/win rate of Module 2 (standard deviations in parentheses).  

Input Elastic net Random forest Extra trees LightGBM KNN SVC 

a. Classification of carbon monixoide 
Xs+ĉ (Ours) 0.945/88 (0.033) 0.920/72 (0.048) 0.931/82 (0.049) 0.844/69 (0.054) 0.898/54 (0.048) 0.946/81 (0.036) 
Xs 0.936/59 (0.035) 0.910/51 (0.049) 0.911/40 (0.047) 0.855/82 (0.055) 0.905/60 (0.041) 0.943/75 (0.038) 
Xs+random 0.936/59 (0.035) 0.910/52 (0.050) 0.908/40 (0.063) 0.854/82 (0.055) 0.905/60 (0.042) 0.942/76 (0.038) 

b. Classification of ethylene 
Xs+ĉ (Ours) 0.959/49 (0.039) 0.922/45 (0.048) 0.913/42 (0.055) 0.944/38 (0.051) 0.935/40 (0.039) 0.972/46 (0.032) 
Xs 0.956/47 (0.048) 0.917/41 (0.053) 0.909/40 (0.063) 0.937/33 (0.043) 0.936/41 (0.045) 0.971/46 (0.033) 
Xs+random 0.956/47 (0.048) 0.918/41 (0.054) 0.908/40 (0.063) 0.936/34 (0.042) 0.936/41 (0.045) 0.971/46 (0.033) 

c. Classification of methane 
Xs+ĉ (Ours) 0.918/89 (0.040) 0.930/86 (0.040) 0.903/90 (0.045) 0.904/49 (0.042) 0.868/54 (0.044) 0.921/78 (0.042) 
Xs 0.913/75 (0.042) 0.906/41 (0.044) 0.866/23 (0.055) 0.921/65 (0.036) 0.877/70 (0.049) 0.921/75 (0.040) 
Xs+random 0.913/74 (0.039) 0.907/42 (0.045) 0.872/23 (0.057) 0.920/65 (0.037) 0.874/70 (0.059) 0.921/75 (0.040)  

Table 6 
Module 1 results by model (standard deviations in parentheses).  

Metric BDE EDE 

R2 0.616 (0.131) 0.528 (0.140)  

Table 8 
Module 1 results by model (standard deviations in parentheses).  

Metric The level of Ionization potential (IP) The level of sulfur/sulfide (SUL) 

F1 score 0.777 (0.101) 0.847 (0.072)  
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studies, sensor manuals provided by manufacturers, and textbooks. For 
example, we calculated the number of electrons released during surface 
reactions, BDEs, and ionization potentials. In addition, we consulted 
domain experts from TSEI, and this work was based on extensive dis
cussions with them. Furthermore, we obtained scanning electron mi
crographs and energy-dispersive X-ray spectra that provided 
compositional and morphological information for MOX sensors 
(Tables S1, S3, S6) to relate them to previous studies. 

Considering the three examples based on the specific evidence suit
able for each problem, we believe that the proposed framework can be 
applied similarly to other problems in different domains. As demon
strated in this study, new heterogeneous types of features closely related 
to the original features can be generated by user-defined supervised 
learning methods. Specifically, we improved the classification perfor
mance by 1) using both discrete and continuous chemical property 
features (using classification and regression, respectively), 2) compar
atively evaluating the performance of various types of machine learning 
models, e.g., elastic net classifier, random forest, extra trees classifier, 
LightGBM, KNN, and SVC. We hope that our approach will facilitate new 
research into a wide range of prediction problems in other fields, such 
as, but not limited to, image detection [57], biosensors [58], electronic 
tongues for prediction of chemicals [59], and chromatographic analysis 
[60]. We also expect that users will be able to identify new features that 
are unused but may be exploitable by analyzing existing features and 
sensors using scientific knowledge. They can extract, select, and pre
process these according to their needs. 

4.3. Limitations and future work 

There are several limitations of this work that need to be addressed in 
future research. Firstly, in this study, we trained Modules 1 and 2 
separately. However, simultaneous optimization of the two modules 
may be required, since the optimum result of Module 1 does not 
necessarily ensure the optimum test result in Module 2. Therefore, 
global optimization to improve both modules simultaneously is 
required. For example, in case we have large datasets, we can develop a 
chemistry-informed deep learning framework, where the Modules 1 and 
2 are integrated into a neural network in an end-to-end manner (i.e., the 
error of Module 2 can be backpropagated to Module 1). 

Secondly, our plan includes an attempt to develop a regression 
framework (Module 2) utilizing chemical property features. The scope of 
this study was confined to chemical recognition, and the key role of Xc in 
classification was to separate the classes. Different approaches, 
including feature analytics and extensive adoption of domain knowl
edge, may be required to enhance regression performance based on 
newly added chemical property features. 

Finally, when time series sensor data are used for gas classification, 
we believe that a contrastive learning framework with chemical prop
erty features can be effective. There have been some recent studies to 
reflect and integrate domain knowledge onto a contrastive learning 
process (e.g. Ref. [61]). In the context of our work, gas sensing can be 
improved by using a knowledge-based objective function to learn 
time-series sensor array representation, as well as chemical property 
information. 

5. Conclusion 

Filling the knowledge gap between the data scientist and the chemist 
is a key step for ensuring success in applying machine learning models to 
real-world problems of chemical recognition. However, traditional ap
proaches to machine learning for chemical recognition have relied on 
feature engineering of sensor response data instead of addressing the gap 
between sensor response and the sensed analytes. To improve machine 
learning performance with gas sensor data, we suggest identifying, 
predicting, and utilizing unused and unobserved but important chemical 
property features from observable sensor responses, based on domain 
knowledge. Here, domain knowledge refers to the chemical knowledge 
about sensors and analytes, which can be estimated or calculated but 
cannot be directly measured by the sensors. In particular, the “unique 
chemical properties of analytes” are affected by the selectivity of the gas 
sensors (i.e., using a specific sensor, some gas species are detected while 
others are not). In obtaining successful gas classification performance, 
the selectivity of gas sensors should be dealt importantly, as it makes the 
variants of the sensor signals for different gas species, and it strongly 
depends on the unique chemical properties of gas species, which 
“directly” affects the selectivity. Meanwhile, the estimation or calcula
tion of such properties requires an understanding of the domain 

Table 9 
Results of Module 2 (standard deviations in parentheses).  

Input Elastic net Random forest Extra trees LightGBM KNN SVC 

a. Classification of butyl acetate 
Xs+ĉ (Ours) 0.593/82 (0.115) 0.697/83 (0.142) 0.791/65 (0.103) 0.749/79 (0.124) 0.699/81 (0.113) 0.693/94 (0.120) 
Xs 0.458/29 (0.002) 0.658/57 (0.135) 0.754/45 (0.110) 0.675/37 (0.120) 0.576/17 (0.117) 0.457/8 (0.037) 
Xs+random 0.456/26 (0.004) 0.612/36 (0.127) 0.491/2 (0.077) 0.654/30 (0.119) 0.531/18 (0.109) 0.457/5 (0.046) 

b. Classification of dimethyl sulfide 
Xs+ĉ (Ours) 0.721/79 (0.139) 0.823/82 (0.128) 0.852/85 (0.113) 0.826/79 (0.128) 0.763/68 (0.118) 0.762/65 (0.100) 
Xs 0.570/20 (0.128) 0.785/48 (0.120) 0.696/13 (0.148) 0.711/15 (0.123) 0.728/42 (0.103) 0.692/43 (0.142) 
Xs+random 0.621/33 (0.122) 0.769/41 (0.128) 0.690/13 (0.148) 0.706/19 (0.127) 0.708/30 (0.106) 0.720/56 (0.139) 

c. Classification of toluene 
Xs+ĉ (Ours) 0.755/75 (0.091) 0.796/70 (0.113) 0.717/65 (0.156) 0.829/61 (0.102) 0.727/29 (0.149) 0.694/40 (0.148) 
Xs 0.696/38 (0.094) 0.782/64 (0.077) 0.543/22 (0.133) 0.828/59 (0.088) 0.808/56 (0.085) 0.628/24 (0.157) 
Xs+random 0.704/40 (0.088) 0.739/40 (0.103) 0.592/39 (0.158) 0.817/47 (0.091) 0.757/26 (0.087) 0.735/56 (0.14)  

Fig. 4. Contribution of chemistry-informed machine learning: chemical prop
erty features bridge the gap between the target class and the sensor response 
data for effective prediction of analytes. 
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knowledge regarding the sensors and analytes, which is often not re
flected in the sensor data per se. 

Our bimodular “chemistry-informed machine learning” framework 
initially predicts chemical property features and subsequently performs 
classification using the concatenated features of predicted chemical 
properties and raw sensor responses. As such, our proposed framework 
is unique in that it helps the translation of the domain knowledge into 
specific features to improve the machine learning performance, which 
can be estimated using originally available features of sensor data. In 
improving the prediction performance using available data of the sen
sors, this domain-knowledge-based approach can be used to extend the 
features (from the set of original sensor features to the set of original 
features combined with chemical property features) and to enhance the 
performance of machine learning. As validated in this paper, the clas
sification performance can be improved using this framework. 
Furthermore, once the modules 1 and 2 are well trained, these modules 
can be used to classify the gas in question automatically (i.e., after the 
training is completed, Module 1 can estimate the chemical property 
features with the original features, and Module 2 can classify the gas 
with the set of original features combined with chemical property fea
tures). Our framework can be generally applied to any gas datasets and 
any classification problems, as long as there is domain knowledge that 
can be translated into chemical property features. 
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