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Ternary metal fluorides as high-energy cathodes
with low cycling hysteresis
Feng Wang1, Sung-Wook Kim1,w, Dong-Hwa Seo2,3,w, Kisuk Kang2,3, Liping Wang1, Dong Su4, John J. Vajo5,

John Wang5 & Jason Graetz1,5

Transition metal fluorides are an appealing alternative to conventional intercalation

compounds for use as cathodes in next-generation lithium batteries due to their extremely

high capacity (3–4 times greater than the current state-of-the-art). However, issues related to

reversibility, energy efficiency and kinetics prevent their practical application. Here we report

on the synthesis, structural and electrochemical properties of ternary metal fluorides

(M1
yM

2
1-yFx: M

1, M2¼ Fe, Cu), which may overcome these issues. By substituting Cu into the

Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are

achieved with surprisingly small hysteresis (o150mV). This finding indicates that cation

substitution may provide a new avenue for tailoring key electrochemical properties of

conversion electrodes. Although the reversible capacity of Cu conversion fades rapidly, likely

due to Cuþ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride

cathode remains an intriguing candidate for rechargeable lithium batteries.
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L
ithium ion batteries (LIBs) are the preferred energy
storage devices for portable electronics, and their use in
electric vehicles and grid-level energy storage is increasing

rapidly1–3. However, large-scale application requires greater
energy density per unit cost (by two times or more) for
widespread use. The capacity of conventional cathodes (for
example, LiCoO2, LiFePO4) is low (140–170mAh g� 1) and
currently limits the energy density of most commercial cells.
Although a number of alternative anodes (such as Si and Sn)
exhibit capacities well above 500mAh g� 1, few cathodes have
been identified that can match such high capacity. The
conversion cathodes, specifically the fluoride-based materials,
are an exception to this rule and exhibit extremely high
specific capacities, enabled by more than one electron transfer
per transition metal (MnþXyþ nLiþ þ ne� ¼ yLin/yXþM0;
nZ2)4–7, in addition to their intrinsically high redox
potentials (42V)5,8–18. CuF2 is particularly attractive
because of its extremely high theoretical potential (B3.55V)
and specific capacity (B528mAh g� 1), offering an exceptionally
high specific energy density (1,874Whkg� 1)8,9. However,
the electrochemical activity of CuF2 is low, and utilization of
its full capacity was only recently achieved by embedding
CuF2 into a conductive matrix13. Unfortunately, the utility of
CuF2 has been limited to primary batteries due to the
irreversibility of the Cu2þ /0 redox reaction. Other fluorides,
such as FeF2 and FeF3 exhibit high reversibility15–18, but their low
working potentials and poor energy efficiency (due to large
polarization and cycling hysteresis), continue to limit their
practical use in commercial batteries.

Recently, extensive research on metal fluoride cathodes has
provided new insights into the mechanisms involved in the
conversion reactions and the issues relevant to cycling reversi-
bility and efficiency (for example, hysteresis)8–21. Although poor
electronic and ionic transport plague many conversion
electrodes, recent studies show that the electronic conductivity
in FeF2 improves lithiation and approaches that of metallic Fe
(ref. 20). The percolating Fe network formed during lithiation
provides a facile electronic pathway15,16,19,20, and the high
interfacial area provides abundant pathways for rapid Liþ

transport15,22. In contrast, the conversion reaction in CuF2
involves highly mobile Cu2þ ions, which leads to coarsening and
growth of large, isolated Cu particles during lithiation, making
reconversion difficult15,17. In addition, a recent study of the CuF2
conversion reaction by Hua et al.23, clearly showed that the
dominant reaction occurring during the 1st charge is the
dissolution of Cu into the electrolyte to form an unidentified
Cuþ species, resulting in considerable loss of capacity. An
intriguing new concept, derived from these recent findings, is the
possibility of substituting Cu into the Fe fluoride system, and
thereby forming a ternary solid–solution CuyFe1-yF2. An electrode
configured in this way would potentially benefit from the
percolating iron network, which may be effective at ‘trapping’
Cu ions allowing them to fully oxidize into Cu2þ . The addition
of a second cation into a solid–solution is also an effective
strategy for tailoring electrochemical properties (thermodynamics
and kinetics) and improving electrochemical performance, as
already demonstrated in many electrodes24–28. Surprisingly,
despite tremendous research on the binary metal fluorides8–20,
studies of conversion reactions in the ternary fluorides (involving
two transition metal cations) have been largely overlooked.

In this study, solid solutions of the ternary metal fluorides
M1

yM2
1-yFx (M1, M2¼ transition metal), were prepared via

mechanochemical reactions. The structure, stability and electro-
chemical properties of CuyFe1-yF2 were investigated by density
functional theory (DFT) calculations, electrochemical measure-
ments, along with comprehensive structural and chemical

analysis using synchrotron X-ray diffraction (XRD), absorption
spectroscopy (XAS) and (scanning) transmission electron micro-
scopy ((S)TEM) coupled with electron energy loss spectroscopy
(EELS). Electrochemical measurements indicated a reversible
Cu redox reaction (that is, Cu2þ /0) in the mixed system,
Cu0.5Fe0.5F2, in contrast to irreversible behaviour observed in the
binary fluoride, CuF2 (ref. 23). This result was subsequently
confirmed by XAS and TEM–EELS measurements. The voltage
hysteresis for the Cu redox (Cu2þ /0) in CuyFe1-yF2 is surprisingly
small, o148mV, which is likely to be the lowest value ever
measured for conversion reactions in metal fluorides. A
comprehensive investigation of the reaction mechanisms, ther-
modynamics and kinetics of the lithium (re)conversion reactions in
the solid–solution CuyFe1-yF2 reveals that the incorporation of Cu
into the Fe lattice enables a cooperative redox reaction, which leads
to the reversible Cu redox (Cu2þ2Cu0).

Results
Structure of ternary metal fluorides. The crystal structures of as-
synthesized M1

yM2
1-yF2 powders were examined using synchro-

tron XRD and TEM. Figure 1a shows the XRD patterns of the
CuyFe1-yF2 system at several different Cu/Fe ratios (y¼ 0, 0.1,
0.33, 0.5, 0.67, 0.9, 1). The broadened diffraction peaks indicate a
loss of long-range order during the mechanochemical synthesis.
Interestingly, the milling of CuF2 and FeF2 precursors leads to the
formation of a single solid–solution phase over the entire com-
positional range. This is not too surprising given the similarity of
the CuF2 and FeF2 structures. FeF2 exhibits a tetragonal rutile
structure (space group: P42/mnm) and is comprised of FeF6
octahedra, while CuF2 is monoclinic (space group: P21/n), which
is essentially a distorted rutile structure due to the strong Jahn–
Teller distortion induced by the Cu2þ ([Ar]3d9) ion (Fig. 1b and
Supplementary Fig. 1)27. The distorted structure of CuF2 becomes
more symmetric with Fe incorporation as the CuyFe1-yF2 solid–
solution is formed (see Supplementary Fig. 2 and Supplementary
Note 1). The as-synthesized samples are complex agglomerates of
small nanocrystallites as shown by brightfield TEM image
(o10 nm; Fig. 1c). The diffusive rings in the electron
diffraction pattern (although being broadened due to the
nanocrystalline nature of the particles; inset in Fig. 1c) can be
assigned to the tetragonal rutile phase (Supplementary Fig. 3),
consistent with the XRD measurements (Fig. 1a).

DFT calculations were used to predict the stability of solid–
solution phases, at all the possible configurations (see details in
Methods below). The energy difference between the possible
CuyFe1-yF2 phases and the simple yCuF2-(1-y)FeF2 mixture
(Fig. 1d) indicates that, regardless of the composition, there exist
several CuyFe1-yF2 phases that are energetically more
stable (negative energy points) than the simple mixture (zero
energy points). The lowest energy points at each composition
overlap well with the convex hull (dashed line), indicating that
CuyFe1-yF2 can exhibit solid–solution behaviour over the entire
composition range. The structural stability of the solid–solution
phase was experimentally confirmed by in situ XRD (Fig. 1e),
which shows no phase decomposition in Cu0.5Fe0.5F2 during
dynamic heating up to 250 �C.

Since most of the 3d metal binary fluorides (that is, MF2) have
similar structures, either based on the tetragonal rutile or
distorted rutile framework, it is expected that they may form a
variety of solid solutions. A number of ternary fluoride phases
were prepared, including Cu0.5Ni0.5F2, Fe0.5Ni0.5F2, Ni0.5Co0.5F2
and Fe0.5Co0.5F2 (Fig. 1f), which demonstrates the versatility of
the mechanochemical synthesis method.

Electrochemical properties of CuyFe1-yF2. Electrochemical
measurements were performed on a series of CuyFe1-yF2 samples
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to evaluate their electrochemical properties in the presence of two
redox centers (Fig. 2). During galvanostatic discharge, CuyFe1-yF2
exhibits a two-step lithiation process as expected (Fig. 2a), but the
voltage profiles are different than those obtained from pure CuF2,
FeF2 or a mixture of the two. In CuyFe1-yF2, the Cu conversion
(higher plateau) occurs at similar potentials as CuF2, while the Fe
conversion (lower plateau) occurs at a much higher potential and
does not exhibit the voltage dip typically observed in pure FeF2,
indicating a more facile Fe conversion.15 Even at low Cu
concentration (for example, 10%), significantly higher rate
capabilities were achieved in Cu0.1Fe0.9F2 at room temperature
(Supplementary Fig. 4). Similar to other solid–solution
systems26–28, the electrochemical properties in the ternary
system, CuyFe1-yF2, are significantly affected by the cooperative
redox of Cu and Fe sitting on the same lattice.

Electrochemical analysis of Cu0.5Fe0.5F2 over the voltage range
of 1.0–4.5 V (Fig. 2b) revealed an initial discharge capacity
is B575mAh g� 1, comparable to the theoretical value
(549mAh g� 1 for two electron transfer), and a charge capacity
543mAh g� 1 (B94% of the initial discharge capacity), indicating
the reoxidization of both the iron and the copper. The reaction
process during the subsequent charge and discharge appear to be
different than that during the first discharge, as evidenced by the
change from two obvious plateaus (B2.9 and B2.2 V) to three
plateaus (B2.8, 3.4, 3.8 V). On subsequent cycles the voltage
profiles become similar, indicating a high cycling reversibility.
The redox reactions in the Cu0.5Fe0.5F2 electrodes were also

investigated by cyclic voltammetry (CV), as given in Fig. 2c, and
compared with FeF3 (ref. 14). During charge, the first peak is
attributed to Fe0/2þ oxidation (at B2.8V), while the second,
located at B3.4V, is likely attributed to the further oxidization
into trivalent iron (Fe3þ ). The third peak at higher voltage
(B3.8V) is noticeably absent in the CV from FeF3 and must be
related to Cu oxidation since there are no other redox centers in
this voltage range. There are also three peaks in the 2nd
discharge, with the first two associated with Fe2þ /0 and Fe3þ /2þ

reduction and a 3rd at B3.4V assigned to Cu2þ /0 reduction
(with the voltage slightly lower than the theoretical value of
3.5 V). The voltage of Cu2þ /0 reduction during the 1st discharge
is relatively low (only about 2.9 V), which is due to a kinetic effect
common in conversion reaction electrodes15. In contrast to pure
CuF2, which showed no reversible redox Cu peaks, the redox
peaks in Cu0.5Fe0.5F2 are present over multiple cycles, indicating
different electrochemical behaviour in the solid–solution ternary
phase (See Supplementary Fig. 5 and Supplementary Note 2 for
comparison of Cu redox reactions between CuF2 and
Cu0.5Fe0.5F2).

Another striking feature observed in the cycling data is the
small voltage hysteresis. Even during conventional galvanostatic
cycling (Fig. 2b), the measured voltage gaps are only B0.48 V
for Cu0/2þ , B0.63V for Fe0/2þ and B0.43V for Fe2þ /3þ .
Those values are significantly less than that of binary fluorides,
such as FeF2, which is B1.6 V (see Supplementary Fig. 6.
The voltage hysteresis measured by galvanostatic intermittent
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titration technique (GITT) is reduced to 148mV for the Cu0/2þ

redox and B200mV for the Fe redox (Fig. 2d), which is
substantially lower than pure FeF2 (700mV)20 and comparable to
intercalation-type electrodes. This is the lowest reported
hysteresis for conversion reaction in any metal fluoride,
indicating the potential for achieving high-energy efficiency in
ternary fluoride cathodes. In addition, these results also suggest
that the hysteresis is not solely determined by the anions, but is
also affected by the type of cations present. This is further verified
by the different thermodynamic and kinetic behaviours between
Cu0.5Fe0.5F2 and pure FeF2, CuF2 (Supplementary Figs 4 and 7
and Supplementary Note 3).

Reversibility of redox reactions in CuyFe1-yF2. Elemental
specific XAS measurements were performed on Cu0.5Fe0.5F2 to
gain insight into the Cu and Fe redox reactions and local
structural reorganization, and to correlate these results with the
electrochemical behaviour. Figure 3 shows the results from XAS
near-edge structure (XANES) and extended fine structure
(EXAFS) measurements of Fe and Cu K-edges during the 1st
cycle. On discharge, the XANES spectra clearly indicate the
conversion of Cu occurs first (#1-#4), followed by that of Fe
(#4-#8) at lower voltages (Fig. 3b,e). The XANES spectra from
the Cu K- (Fig. 3b) and Fe K-edges (Fig. 3e) reveal an isosbestic
point (as labelled by an arrow), indicating a two-phase transition
behaviour of the conversion reactions. Simultaneous dissociation
of Cu–F/Fe-F bonds and the formation of metallic Cu-Cu/Fe-Fe
bonds at each plateau were also confirmed by the Fourier
transformation (FT) of the EXAFS (Fig. 3c,d,f,g). XRD mea-
surements (Supplementary Fig. 8) also show decomposition of the
initial solid–solution phase and formation of metallic Cu0 after
the high-voltage plateau, while there is no visible diffraction peak
from FeF2, indicative of the highly disordered nature of the FeF2
after Cu conversion. The intermediate FeF2 is then reduced to
metallic Fe0 at lower voltages, (Fig. 3e,f).

The charge process is quite different from the discharge as
shown in Fig. 3h–j. At the initial stage of charge (#8-#9), the Fe
oxidation state increases from 0 to 2þ (Fig. 3h). On further
delithiation (#9-#11), the oxidation state of Fe continues to
increase (indicated by edge shift to higher energies), along with
the formation of a 2nd isosbestic point indicating the further
oxidation of Fe2þ to a higher valence state, but only partially (as
verified by XANES of Fe K-edge; Supplementary Fig. 9)29. This is
in agreement with the CV data, which shows a redox peak at
B3.4V (Fig. 2c). The strong Fe–F peak, with bond distance
similar to that of FeF6 octahedra in a rutile phase, is evident in the
final product (Fig. 3i), suggesting the reconversion back to a
rutile-like framework.

In the high-voltage region (above 3.5 V; #10-#11), the shift of
the Cu K-edge to higher energies provides direct experimental
evidence for oxidization of Cu0 back to a high-valence state
(Fig. 3h). In addition, the reformation of the Cu–F bonds is
evident from the FT EXAFS data (Fig. 3j), showing a strong Cu–F
peak with exactly the same position and shape as in the pristine
material. Due to the over oxidation of Fe to Fe3þ during which
extra LiF is consumed, Cu0 cannot be fully oxidized into Cu2þ .
But it should be noted that, Fe is only partially oxidized into Fe3þ

(as verified by XANES of Fe K-edge in Supplementary Fig. 9),
allowing much of the Cu to be converted to Cu2þ , while the rest
remains as Cu0 (Figs 3j and 4c). These results provide direct
verification of a reversible Cu redox (Cu0/2þ ) in Cu0.5Fe0.5F2 (as
observed in Fig. 2). This behaviour is different than what is
observed in pure CuF2, as indicated by the valence state and local
coordination of Cu after one complete discharge/charge cycle
(Supplementary Fig. 10 and Supplementary Note 4). Although
Cu2þ is fully reduced to metallic Cu0 during the 1st discharge,
Cu is only partially oxidized (to a soluble Cuþ ) in pure CuF2
during the first charge (delithiation)23. The extent of Cu
oxidation on charge is significantly higher in Cu0.5Fe0.5F2 (even
after four cycles) as evidenced in the Cu K-edge XANES. While
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the local coordination of Cu in the reconverted CuF2 forms a
doublet and is distinctly different from that in the pristine CuF2,
or reconverted CuyFe1-yFy, in which only a single Cu–F peak was
observed. The Cu valence state and coordination in the
reconverted Cu0.5Fe0.5F2 is also different than other Cuþ

compounds, such as CuCl, but similar to that of
‘‘0.5Cu0þ 0.5Cu0.5Fe0.5F2’’ (Supplementary Fig. 11).

Due to the disordered nature of phases formed during
conversion and reconversion in CuyFe1-yFx, their structures were
not identified from XRD measurements (Supplementary Fig. 8),
but well resolved locally by electron diffraction and STEM–EELS
(Supplementary Fig. 12 and Supplementary Note 5). The most
salient feature of these results is that most of the Cu and Fe are
atomically mixed both in the pristine and reconverted states,
although some larger (presumably inactive) Cu particles were
observed in the EELS maps (Supplementary Fig. 12a–e). The near-
edge features of the Cu L-edge, such as the Cu L3 peak atB933 eV,
clearly shows that Cu in the reconverted phase is nearly identical to
that in the pristine material (Supplementary Fig. 12f); nevertheless
the Cu K-edge spectra in the discharged samples (at 2.4 and 1.5V)
show broad plateaus characteristic of metallic Cu (additional
details in Supplementary Note 5). These results are consistent with
observations in the Cu K-edge XANES and EXAFS measurements,
indicating the reconversion of Cu back to a state close to Cu2þ

(bonded with F). Although no peaks associated with the rutile-like
structure were identified by XRD (Supplementary Fig. 8), the

electron diffraction pattern, recorded from localized regions of the
reconverted CuyFe1-yFx (Supplementary Fig. 12g), shows diffusive
rings that are overall similar to those from the pristine sample,
indicating the reformation of rutile-like structure in the CuyFe1-yFx
electrodes after charge, consistent with the Cu K-edge EXAFS
results (Fig. 3j).

Evolution of Cu in CuyFe1-yF2 during cycling. To track the
valence state and local coordination of Cu and better understand
Cu redox behaviour in a working electrode, in situ XAS mea-
surements (XANES and EXAFS of Cu K-edge) were performed
on the Cu0.5Fe0.5F2 electrodes, with hundreds of spectra acquired
during the 1st one and half cycles. Since the Cu reduction during
the first discharge is well understood, only the results from the
first charge and second discharge are presented here (Fig. 4). The
results from in situ XAS measurements during charge (Fig. 4b,c)
reveal a gradual Cu oxidation from Cu0 to Cu2þ as indicated by
the gradual chemical shift to higher energies, and the formation
of the Cu–F bonds as indicated by growth of Cu–F peak in the FT
of EXAFS (up to an amplitude similar to that of the pristine
sample). This process is reversed on discharge (second lithiation)
where the Cu K-edge shifts to lower energies and the Cu–F peak
in the FT EXAFS data disappears as Cu is reduced back to the
metallic state (Fig. 4d,e). This behaviour is distinctly different
than what was observed in the CuF2 electrode, in which no
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further reduction was found during the second cycle
(Supplementary Fig. 10, and Supplementary Note 4, and also
reported in ref. 23). These results provide direct evidence
verifying a reversible Cu redox process in the Cu0.5Fe0.5F2
electrode (which does not occur in CuF2). In addition, the
isosbestic points in the XANES data during the first charge and
second discharge suggest the dominant reaction is two phase,
involving Cu02Cu2þ , without going through a Cuþ

intermediate (such as Cu–F; being consistent with DFT calcula-
tions in Supplementary Fig. 13 and Supplementary Note 6).
Despite these results, analysis of the internal cell components
after cycling indicates that some Cu dissolution (Cuþ ) still
occurs in Cu0.5Fe0.5F2 and these parasitic reactions are likely
responsible for much of the capacity fade in this system (see
Supplementary Fig. 14 and Supplementary Note 7). Various
mitigation methods, such as surface coatings to stabilize the
electrode at high potentials or barrier layers to prevent crossover,
may be useful at limiting the loss of Cu and mitigating the
capacity decay30,31.

Although Cu reoxidization is expected to occur at voltages above
3.55V during charge (considering the overpotential), the ex situ
XAS results clearly reveal a slight chemical shift in the Cu K-edge
along with the formation of a surprisingly large Cu–F peak in the
FT EXAFS in Cu0.5Fe0.5F2 charged to only 3.5V (with a 10-h hold;
Fig. 3h,j). The Cu reoxidization at low potentials is evident in the
in situ XAS data (Fig. 4), particularly by the formation of a small
Cu–F peak in the FT EXAFS (spectrum #82 in Fig. 4c) at potentials
as low asB1.5V. This peak occurs almost simultaneously with the
Fe reconversion (Fe0/2þ ), and gradually grows into an intense

peak at 3.5V (spectrum #126). These results indicate that Cu
reconversion is initiated at low potentials and largely overlaps with
Fe oxidation, which may consequently lead to the reformation of
the solid–solution phase (CuyFe1-yF2). This newly reformed
CuyFe1-yF2 phase has a somewhat disordered structure, but
remains a rutile-like framework, similar to the pristine material.
This repeatable, cooperative redox behaviour (after the first
discharge) may also explain the origin of the reversibility in this
system (Fig. 2b,c). The disclosed cooperative redox behaviour in
ternary fluorides may also be widely applicable to other systems,
such as multication oxides or oxyfluorides32,33, provided that
solid–solution phases can be formed.

Discussion
A summary of the reaction pathway and phase evolution in
CuyFe1-yF2 is illustrated in Fig. 5. During the initial discharge, the
conversion process occurs in two stages (I and II), which involve
the reduction of Cu and Fe, while the reconversion (III and IV) is
more complicated, and follows a different pathway. The reactions
in Stage III start with Fe reconversion to FeF2, followed by
transformation into a rutile-like iron fluoride (with Fe at a
valence of Fe2þ /3þ ). The reconversion of Cu is initiated at the
very beginning of Stage III, triggered by the preformed rutile-like
framework. Due to the structural similarities, the nucleation and
subsequent growth of the Cu-based fluoride phase on the surface
of rutile-like iron fluoride likely requires less energy than direct
nucleation of CuF2, which could reduce the overpotential and
enable the reconversion at very low potentials, leading to
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formation of the Cu–Fe–F-based rutile structure. As the potential
is further increased (in Stage IV), much of the Cu is reconverted
back to the rutile structure, with a small amount of irreversible Cu
dissolved into the electrolyte or segregated into larger, isolated
particles (see Supplementary Figs 12 and 14 and Supplementary
Note 7). So consequently, the converted phase may not be
Cu0.5Fe0.5F2, but a Cu-deficient phase, such as Cu0.35Fe0.65F2 or
other compositions, as being predicated by DFT calculations
(Fig. 1d).

The revealed reaction pathway and correlated local structural
reorganization may help to understand the small overpotential
and strikingly low voltage hysteresis in CuyFe1-yFx (Fig. 2). First
the formation of nanosized FeF2 intermediates, surrounded by
metallic Cu0 from Cu conversion (Supplementary Fig. 12a–e),
may accelerate the Fe conversion due to the increased ionic
conductivity (resulting from the large LiF/FeF2 interface) and the
enhanced electronic transport (in the presence of metallic
Cu0)15,16. The increase in defects and structural disorder, along
with the size reduction of the FeF2 after Cu conversion is likely
responsible for the higher discharge potential during the initial Fe
conversion. Similar observations of elevated conversion potential
were also reported in amorphous RuO2 (compared with
crystalline phase)34. The low voltage hysteresis associated with
the Cu redox (Fig. 2d) is most likely due to the low nucleation
barrier for Cu–F formation on/within the existing Fe–F
framework. In addition, the structural disorder of the reformed
Cu–Fe–F framework, and the intrinsically high mobility of Cu
ions may also play a role.

In conclusion, novel ternary metal fluorides M1
yM2

1-yFx
(M1, M2¼ transition metal) were prepared by a mechanochem-
ical process to form a variety of solid solutions, which exhibit
interesting electrochemical properties. The initial conversion
reaction (lithiation) in CuyFe1-yF2 proceeds via a two-stage
process, the reduction of Cu to metallic Cu0 and concomitant
formation of disordered FeF2, followed by Fe2þ /0 reduction. The
reformation of the fluoride takes a different path, during which

Fe0 is partially oxidized up to Fe3þ , leading to the formation of a
rutile framework, which promotes the reconversion of Cu to form
a disordered rutile-like Cu–Fe–F final phase (overall similar to the
pristine material). However, the formation of some trivalent iron
limits the full reconversion of Cu0 back to Cu2þ . Although cation
dissolution remains a challenge for the long-term cyclability, the
Cu-based ternary fluorides exhibit two truly unique electro-
chemical properties—a reversible Cu2þ /0 reaction and remark-
ably low hysteresis (o150mV), which, along with intrinsically
high voltage and capacity, makes them appealing for use in next-
generation rechargeable batteries.

Methods
Synthesis of M1

yM
2
1-yF2 solid–solution. As-purchased CuF2 (Aldrich, 98%), FeF2

(Aldrich, 98%), NiF2 (Aldrich, 98%) and CoF2 (Aldrich, 98%) were used as starting
materials without any further purification. A stoichiometric mixture of two MF2
compounds was introduced into a stainless steel reactor inside an Ar-filled glove
box. The reactor was sealed to prevent air contamination and transferred to
planetary ball-mill (Fritsch, Pulverisette 6). The mixed powder was ball-milled at
300 r.p.m. for 12 h. After the milling, the container was opened inside the Ar glove
box to collect the final product for characterization.

DFT calculations. All DFT calculations were performed with the spin-polarized
generalized gradient approximation (GGA) within the Perdew–Burke–Ernzerhof
(PBE) functional35. A plane-wave basis set and the projector-augmented wave
method were used, which were implemented in the Vienna ab initio simulation
package (VASP)36. The Hubbard parameters (GGAþU) were used to correct the
incomplete cancelation of the self-interaction of the GGA37. An effective U-value of
5.3 eV for Fe ion and 4.0 eV for Cu ion were used38,39. A plane-wave basis set with
a kinetic energy cutoff of 500 eV and 6� 4� 4 Monkhorst-Pack k-point meshes
were used to ensure that the total energies converged to less than 5meV per
formula unit. To investigate the phase stabilities of CuyFe1-yF2 (0ryr1), we
calculated all possible Cu/Fe configurations within triple-sized supercells expanded
along one of the axes. We considered 135 configurations within the distorted rutile
structure and 78 configurations within the tetragonal rutile structure. All
symmetrically distinct configurations were generated with a Cluster-Assisted
Statistical Mechanics program40. Two-hundred and thirteen configurations of
different Cu contents were used in calculating the DFT formation energies (as
shown in Fig. 1d). The dashed line shows the convex hull of CuyFe1-yF2, when
CuF2 and FeF2 are considered as the end members.
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Characterization of as-synthesized materials. Crystal structures were deter-
mined by synchrotron XRD at beam line X14A at the National Synchrotron Light
Source (NSLS; l¼ 0.7787Å). The lattice parameters of the synthesized samples
were calculated by Rietveld refinement using the Fullprof software41. In situ high
temperature XRD measurements (up to 250 �C) were also carried out to examine
the phase stability. The Cu0.5Fe0.5F2 powder was sealed in a quartz tube in the Ar-
filled glove box and resistively heated during XRD measurements. High-resolution
(S)TEM images, electron diffraction patterns and EELS mapping were collected
from a JEOL TEM machine (JEM 2100F) and a dedicated STEM (Hitachi,
HD2700) equipped with an EELS detector (Gatan, Enfina).

Electrochemical tests. The cycling performance of CuyFe1-yF2 was measured
using the conventional composite electrode composed of active materials (72
wt.%), carbon black (18 wt.%) and polyvinylidene fluoride binder (10 wt.%), which
were homogeneously mixed together in N-methyl-2-pyrrolidone (solvent). The
mixed slurry was cast onto an Al foil and dried overnight. All test electrodes were
prepared inside the Ar-filled glove box to prevent water absorption. The test
electrodes were assembled into CR-2025/2032 type coin cells with Li metal counter
electrodes, glass fibre separator (Whatman, GF/D) or a polymer membrane
separator (Celgard, 2320) and 1M LiPF6 electrolyte dissolved in 1:1 (by volume)
mixture of ethylene carbonate and dimethylcarbonate (DMC). The test cell was
cycled using a battery cycler (Arbin Instrument, BT-2400) in constant current
mode to collect the electrochemical data. CV measurements were performed using
a Solatron 1286 Electrochemical Interface. Galvanostatic intermittent titration
technique was performed by applying an intermittent current for 3.5 h followed by
a 15 h rest. The pristine cells were cycled between 1.0 and 4.5 V at a current of
150mA (equivalent to a rate of C/20 at constant current).

Ex situ XRD/XAS/TEM/SEM studies. Cu0.5Fe0.5F2 samples at different (dis)-
charge states were prepared by controlling the cutoff voltage or the cutoff time
during the electrochemical reaction. The test cells after cycling were disassembled
using the coin cell disassembler. The cycled electrodes were thoroughly rinsed with
DMC and then carefully collected inside the Ar-filled glove. For XRD and XAS
measurement, the collected electrodes were sealed inside Kapton tape to minimize
air exposure during the measurement.

In situ and ex situ XAS measurements (Cu K-edge and Fe K-edge) were
performed at beam line X18A at the NSLS. The measurements were performed in
transmission mode using a Si (111) double–crystal mononchroator. Energy
calibration for the absorption edge was made using Fe and Cu foils as a reference
(Fe K-edge: 7112 Cu K-edge: 8979). A series of reference spectra (Fe K-edge and Cu
K-edge) were recorded from Fe and Cu containing materials, including, FeF2, FeF3,
FeO, Fe2O3, CuF2, CuCl, CuCl2, CuO, Cu2O. The XAS spectra were analysed using
Athena42.

TEM samples were loaded onto a TEM holder inside the glove box and then
transferred quickly to the TEM to minimize air exposure. The Li metal anode after
one cycle was also collected, rinsed with DMC and then attached to carbon tape for
SEM-EDS analysis inside the glove box. The SEM holder was sealed and then
transferred quickly to the SEM to minimize air exposure.
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