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Abstract

Background

Colorectal and gastric cancer are major causes of cancer-related deaths. In Korea, gastroin-

testinal (GI) endoscopic biopsy specimens account for a high percentage of histopathologic

examinations. Lack of a sufficient pathologist workforce can cause an increase in human

errors, threatening patient safety. Therefore, we developed a digital pathology total solution

combining artificial intelligence (AI) classifier models and pathology laboratory information

system for GI endoscopic biopsy specimens to establish a post-analytic daily fast quality

control (QC) system, which was applied in clinical practice for a 3-month trial run by four

pathologists.

Methods and findings

Our whole slide image (WSI) classification framework comprised patch-generator, patch-

level classifier, and WSI-level classifier. The classifiers were both based on DenseNet

(Dense Convolutional Network). In laboratory tests, the WSI classifier achieved accuracy

rates of 95.8% and 96.0% in classifying histopathological WSIs of colorectal and gastric

endoscopic biopsy specimens, respectively, into three classes (Negative for dysplasia, Dys-

plasia, and Malignant). Classification by pathologic diagnosis and AI prediction were com-

pared and daily reviews were conducted, focusing on discordant cases for early detection of

potential human errors by the pathologists, allowing immediate correction, before the pathol-

ogy report error is conveyed to the patients. During the 3-month AI-assisted daily QC trial

run period, approximately 7–10 times the number of slides compared to that in the conven-

tional monthly QC (33 months) were reviewed by pathologists; nearly 100% of GI
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endoscopy biopsy slides were double-checked by the AI models. Further, approximately

17–30 times the number of potential human errors were detected within an average of 1.2

days.

Conclusions

The AI-assisted daily QC system that we developed and established demonstrated notable

improvements in QC, in quantitative, qualitative, and time utility aspects. Ultimately, we

developed an independent AI-assisted post-analytic daily fast QC system that was clinically

applicable and influential, which could enhance patient safety.

Introduction

Background

Colorectal cancer (CRC) and gastric cancer (GC) are common types of cancer found through-

out the world; they are also major causes of cancer-related deaths. According to the Global

Cancer Statistics 2020, CRC ranked third in prevalence (10.0%) and second in mortality

(9.4%), while GC ranked fifth in prevalence (5.6%) and fourth in mortality (7.7%) among all

cancers [1]. In the United States, CRC ranked fourth in both prevalence and mortality, while

GC ranked eighth in prevalence and seventh in mortality among all cancers [2]. In Korea,

243,837 new cancer cases were reported in 2018, of which, GC ranked first, with 29,279 cases

(12.0%), while CRC ranked fourth, with 27,909 cases (11.4%). The crude incidence rates per

100,000 for GC and CRC were 57.1 and 54.4, respectively. For the same year, the number of

cancer-related deaths was 79,153, i.e., cancer accounted for 26.5% of all-cause mortality

(n = 298,777). Among all cancer-related deaths, CRC ranked third, with 8,715 cases (11.0%),

and GC ranked fourth, with 7,746 cases (9.8%) [3]. Owing to the clinical significance of GC

and CRC in Korea, gastrointestinal (GI) endoscopy is actively recommended as a part of the

National Cancer Screening Program. Specifically, gastric endoscopy is offered as a “basic

examination” every two years for adults aged� 40 years, while colonoscopy is offered as an

“additional examination” every year for adults aged� 50 years with positive occult blood test

results [4–6]. Accordingly, GI endoscopic biopsy specimens account for the highest percentage

of histopathologic specimens in Korea. In particular, reference laboratories, such as our insti-

tution, are contracted for tests on specimens from primary and secondary healthcare institu-

tions that do not have their own pathological laboratory; we handle an overwhelming number

of GI endoscopic biopsy specimens, as compared to resection specimens. Moreover, GI endo-

scopic biopsy specimens accounted for 85.6% of all histopathologic tests performed in the past

three years at our institution.

The workload of pathologists continues to increase at a steady rate; however, the number of

pathologists remains relatively insufficient [7]. This relative supply shortage and increased

workload among pathologists can increase human error. A diagnosis based on histopathologic

test results is considered a “confirmative diagnosis” once the period of early diagnosis and

treatment are missed due to a false negative (FN) result and there is no chance of recognition

until the next test. Unfortunately, however, FN is the most common error in pathologic diag-

noses [8]. Accordingly, there is a need for tools to help reduce FNs in a repetitive, labor-inten-

sive, and habitual work environment or to immediately correct FNs that are detected early. A

blinded review is an important and effective method for improving quality control (QC) [9].

PLOS ONE Improving QC in the routine practice for GI endoscopic biopsy interpretation using AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0278542 December 15, 2022 2 / 31

(contact via corresponding authors) for

researchers who meet the criteria for access to

confidential data.

Funding: This research was supported by the

Seegene Medical Foundation, South Korea under

the project “Research on Developing a Next

Generation Medical Diagnosis System Using Deep

Learning” (Grant Number: G01180115).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0278542


However, it is impossible to double-check or review “all slides” that have been signed-out each

day. For QC in a pathology laboratory, the general recommendation is to “randomly” review

“a certain number of slides” on a monthly basis; however, this number may vary depending on

the circumstances of the institution [10, 11]. At our institution, we perform blinded random

reviews on approximately 12 GI endoscopic biopsy specimens per month for each pathologist

as per the recommendation of the Korean Society of Pathologists [12]. Significant discrepan-

cies may sometimes occur during this process [13] or corrections may be delayed. Nonetheless,

most of these issues may be found at 1–2 months after the initial diagnosis; thus, such follow-

up measures are often too late to provide any clinically significant outcomes for the patients. If

artificial intelligence (AI) models could alleviate these difficulties, they would be of great bene-

fit to both patients and pathologists.

There are several issues with implementing AI models. First, digitalization of all glass slides

is required to use an AI classification model as a screening tool prior to the pathologist’s exam-

ination. The expected workflow would be as follows: glass slides are prepared; slides are digita-

lized (scanned); predictions are made by the AI model; positive cases are listed first, according

to prediction outcomes; and pathologists open the whole slide image (WSI) via a viewer and

make the primary diagnosis based on the scanned WSI, referring to the heatmap or prediction

outcomes derived by AI. When necessary, glass slides would be checked directly under a

microscope; in other cases, WSI alone would be used for diagnosis. Although digital pathology

(DP) has undergone rapid and significant development in recent years and is quickly transi-

tioning to clinical practice, while offering various advantages over traditional pathology [14], it

cannot completely replace traditional interpretation using glass slides in pathology [15]. There

are concerns regarding the detection of microorganisms, such as Helicobacter pylori (H.

pylori), in gastric biopsy tissue [15–17]. Pathology laboratories that routinely report classifica-

tion and histologic grading of gastritis based on the Updated Sydney System [18] face difficul-

ties in using DP for the primary diagnosis, without glass slides for gastric biopsy interpretation

[15]. In particular, in the direct use of WSIs for the primary diagnosis, images must be scanned

at a high resolution (more than 40x) to minimize discrepancies with the traditional interpreta-

tion using a microscope. In such cases, there is a significant cost associated with the establish-

ment and operation of an information computing infrastructure for archiving and processing

high-resolution WSIs. However, for QC (unlike the primary diagnosis), WSIs scanned at 20x

magnification are sufficient.

Second, most pathology reference laboratories follow slide preparation immediately after

interpretation; in such laboratories, changing the workflow to perform the interpretation step

after scanning the slide can be difficult. Thus, some researchers have proposed the use of an

augmented reality microscope (ARM) with a real-time AI integration technique instead of the

WSI-based technique [19, 20]. However, regardless of the performance ability of the AI-

applied ARM, there is a limit to supplementing human error by routine pathologists because

lesions outside the field of view (FOV) of microscopy cannot be detected. Moreover, there are

no published or commercialized ARM-based models that are applicable to GI endoscopic

biopsy interpretation. Our institution applies a “rapid process” to GI endoscopic biopsy speci-

mens, in which pathologists perform readings as soon as slide preparation is completed.

Therefore, the application of a WSI-based AI model for screening at our institution is not suit-

able, as it is not a rapid reporting system.

Lastly, using an AI model to recommend the priority for interpretation, provide visualiza-

tion of suspected lesions, and expect classification outcomes prior to interpretation, could

induce the risk of an AI-dependent bias by pathologists. Bias is problematic, and it can also

induce dependency owing to the superior performance of the AI model. This would certainly

be a concerning issue from the patient’s perspective. In case of a misdiagnosis due to bias by a
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pathologist who is dependent on a high-performance AI model (e.g., if both the AI model and

pathologist overlook a lesion or if the human pathologist overly relies on a negative prediction

by the AI model and signed out the slides without checking the WSIs), a dispute may occur

regarding legal responsibilities [21]. Numerous researchers have developed and proposed vari-

ous histopathologic WSI-based AI models. Moreover, some studies have claimed that their

models demonstrate performance comparable to, or better than that of, human pathologists

[22–25]. However, pathologists bear all legal responsibilities and authority for the diagnostic

outcome in each case, and AI cannot completely replace pathologists [26]. In particular, the

differentiation of carcinoma/high grade dysplasia (HGD) in GI pathology is prone to inter-

observer variability or discrepancy depending on the group [27, 28]. Accordingly, it is easy to

predict variability or discrepancy in the performance of AI classification models based on how

the classification was defined in GI pathology. Other similar studies have also shown differ-

ences in the definition of classification according to group, while some excluded gray-zone

diagnoses from their studies [29–31]. Furthermore, in many cases, pathologists use ambiguous

expressions in GI endoscopic biopsy (or other small biopsy) specimen reports in their daily

practice, unlike in the interpretation of resection specimens, such as, “atypical glandular prolif-

eration of undetermined significance (AUS),” “suspicious for dysplasia,” “malignancy cannot

be ruled out,” and “favor neoplastic.” AI models cannot possibly resolve these pathology ambi-

guities; there are inherent limitations to small biopsy interpretation [32].

Many studies have examined the accuracy with which AI models can diagnose a region of

interest, focusing on improving their performance. However, this can sometimes cause low

reproducibility in clinical implementations, as the conditions for high accuracy in AI models

are significantly different from those in daily real-world practice [33, 34]. Furthermore, highly

refined data preparation is important for ensuring high accuracy in AI models. Poor scan qual-

ity (out of focus, tissue missing, or air bubbles) and poor slide quality (poor staining, poor sec-

tioning, tissue artifacts, air bubbles, tissue folding, or poor dehydration) lower the

performance of models [35]. Accordingly, their performances can be optimized through train-

ing using highly refined data, with all artifacts artificially removed, and by scanning well-pre-

pared slides, with no blurs. However, this may be contradictory and unrealistic considering

the transition to a fully digitalized pathology laboratory. As mentioned above, the number of

histopathologic tests is gradually increasing [7], increasing the workload of pathologists and

overloading histopathology technicians who prepare the slides [36]. Increased workload could

affect the work competency of histopathology technicians and degrade the slide quality [37,

38]. Thus, pathologists cannot control the quality of all slides, and in daily real-world practice,

they encounter a much higher percentage of slides that do not meet the stipulated quality stan-

dards. The same conditions apply to scanning quality. Scanner companies declare a scan error

rate of 1–3%. At our institution, the average percentage of slides that are rescanned after being

processed as an “error” is 2.4%. These slides are of poor quality, rendering them difficult to

interpret; WSIs that are somewhat interpretable, but are of poor quality with various artifacts

mentioned above are found much more commonly and frequently. Rescanning all “interpret-

able but poor quality” WSIs is impossible and expensive. Thus, in the development and appli-

cation of usable AI models, it would be more appropriate to develop and apply “reliable” AI

models that reflect reality for routine practice, rather than dealing with an inefficient work

burden simply to maximize the AI model performance.

Objectives

Our goal was to develop AI models with reliable performance that can reduce potential human

errors (especially FNs) by pathologists–but not necessarily be better at diagnosis than
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pathologists–without infringing on or threatening the diagnostic responsibilities of patholo-

gists and maintaining the standard microscopy workflow. We aimed to apply such models as a

tool for daily fast QC, as the most realistic and suitable method in routine practice for GI endo-

scopic biopsy interpretation. Our primary rules for the development of AI models were as fol-

lows: (1) FNs caused by potential human errors in daily practice are detected and enable

immediate actions to prevent the neglection of patients who require treatment and promote

patient safety enhancement; (2) artifacts and variability in the field are reflected, promoting

applicability to the daily real-world practice; and (3) the unique authority of each pathologist is

respected, as a reference for accurately differentiating between “neoplastic and regenerative”

and between “cancer and dysplasia” is not our purpose. While many high-performance AI

algorithms have been previously developed, there are very few cases of such algorithms being

used in daily practice during pathologic diagnosis [26]. Therefore, we aimed to develop AI

classification models, and clinically implement them, for daily QC in the histopathological

interpretation of GI endoscopic biopsy.

Materials and methods

Development of AI models

Data preparation. This study used GI endoscopic biopsy specimens with confirmed diag-

noses that were stored at Seegene Medical Foundation (SMF), Seoul (Seongdong -gu, Seoul).

These specimens were selected from specimens that SMF had received from approximately

400 local clinics and hospitals throughout Korea for histopathologic diagnosis. To use these

specimens for research purpose, we obtained approvals from the Institutional Review Board

(IRB) of SMF (IRB Approval number: SMF-IRB-2020–007) and IRB of Korea Advanced Insti-

tute of Science and Technology (KAIST) (IRB Approval number: KAIST-IRB-20–379). All

experiments were conducted in accordance with the relevant guidelines and regulations given

by the two IRBs. All patient records were completely anonymized, and all data were stored and

analyzed only in SMF servers. This study corresponds to the guidelines for performing labora-

tory quality control and test method evaluations, such as accuracy tests, using remaining

human-derived specimens after treatment and diagnosis and received waiver of informed con-

sent. Among the specimens stored at SMF after diagnosis between June 2018 and April 2021,

3,979 gastric biopsy and 1,848 colorectal biopsy hematoxylin-eosin stained slides were ran-

domly selected and scanned (Panoramic 250 Flash III, 3DHISTECH, 20x). Of these, some

were excluded for various reasons during the study (to be described later); ultimately, 1,762

gastric biopsy and 1,509 colorectal biopsy WSIs were used to develop a classifier model. The

data were divided into training (80%), validation (10%), and test (10%) based on the WSIs. For

accurate training and evaluation of the model, the training, validation, and test data were

divided at patient level (i.e., whole slide) with no overlap. Table 1 shows in detail how the WSIs

were specifically divided into training, validation, and test data. To develop AI classification

models for daily QC in real-world practice, we used raw data, preserving routine artifacts and

interobserver variability, to strictly reflect daily practice, rather than artificially establishing

well refined WSI data sets for high model accuracy.

Ensuring diagnostic reliability with usual interobserver variability. In total, five pathol-

ogists with at least five years of clinical experience and specialization in pathology (MJK, YRC,

SHL, YMC, and YSK) made annotations, and all WSIs were first reviewed by each annotator.

If an annotator disagreed with an existing diagnosis, at least two pathologists reviewed the

applicable slides together. If at least two pathologists disagreed with the existing diagnosis, the

slides were excluded from the data collection set. Thus, cases of disagreement by only one

pathologist were considered to reflect realistically acceptable interobserver variability, and
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annotations made by those who agreed with the existing diagnosis were included as training

data. The annotation rules are provided in the S1 Methods.

Reflecting the qualitative environment of pathologic interpretation in the real world.

The quality of the slides was not adjusted for optimal model accuracy. In fact, routine artifacts

(e.g., poor sectioning, poor staining, poor fixation, and air bubbles) were used in training

because they lacked artificial improvement (re-preparation high-quality slides just for train-

ing). However, poor-quality slides that were difficult for pathologists to interpret were

excluded.

Scan quality was also not adjusted artificially. Scanner manufacturers declare an average

error rate of 1–3% for slides that require rescanning, while others are mostly minor problems

that do not affect the interpretation; these include some small out-of-focus areas, overlapping

tiles, and some scanned tissues with cropped edges. To reflect these routine minor errors, arti-

ficial improvement measures, such as rescanning to obtain high-quality WSIs, were not imple-

mented for training only. Moreover, poor-quality WSIs that would be difficult for pathologists

to interpret were excluded.

Definition of each class for training and internal validation. Model development was

attempted for daily QC in all GI endoscopic biopsy specimens at our institution; thus, initially

we used four categories (malignant [M], dysplasia [D], negative for dysplasia [N], and uncate-

gorized [U]) to classify all possible diagnoses. Subsequently, we started the development of a

quaternary classifier model based on these classes (Table 2). However, the inclusion of class

“U,” which by definition had the highest heterogeneity among diseases, degraded the perfor-

mance of the model [39] and was determined to be ineffective in daily practice. Accordingly, a

ternary classifier model that excluded class U was selected for the trial run; thus, cases

Table 2. Definition of each class for training and internal validation.

Class Definition Color

M (Malignant) Diagnosed as malignant neoplasm, including adenocarcinoma, suspicious for (s/f)

adenocarcinoma, suggestive of (s/o) adenocarcinoma, (s/f, s/o) high-grade

lymphoma, and any other (s/f, s/o) carcinoma or malignant neoplasm.

Red

D (Dysplasia) Diagnosed as dysplasia, including (s/f, s/o, favor) adenoma with dysplasia of any

grade.

Blue

N (Negative for
dysplasia)

Diagnosed as non-neoplastic mucosal lesion, including inflammation, ulcer, and

polyps.

-

U (Uncategorized)
Finally excluded

The remaining lesions that do not fall under the aforementioned three

classifications; for example, atypical glandular proliferation of undetermined

significance, indefinite for dysplasia, (s/f, s/o) neuroendocrine tumors (grade 1 or

2), submucosal tumors, (s/f, s/o) low-grade lymphoma, and (s/f, s/o) stromal

tumors.

Green

https://doi.org/10.1371/journal.pone.0278542.t002

Table 1. Details of the datasets used for the development of each AI model.

Cases (WSIs) Gastric biopsies Colorectal biopsies

Classes Total Classes Total

M D N M D N

Training 284 472 613 1369 209 432 568 1209

Validation 70 70 103 243 50 50 50 150

Test 50 50 50 150 50 50 50 150

Total 404 592 766 1762 309 532 668 1509

Abbreviations: AI (artificial intelligence), WSI (whole slide image), M (Malignant), D (Dysplasia), N (Negative for dysplasia)

https://doi.org/10.1371/journal.pone.0278542.t001
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corresponding to class U were excluded from the training dataset for development of the ter-

nary classifier model.

Training of AI models. WSIs include giga pixel-level data; thus, they are not suitable to

be used all at once for deep learning (DL). Accordingly, WSIs that include giga pixel-level data

must be suitably converted to be processed by the models. Model construction was based on a

method of converting and processing WSI into patches, similar to that used in various existing

studies [40, 41]. As mentioned in numerous studies on convolution neural network (CNN)-

based WSI processing [42, 43], the complexity of the CNN can cause a loss of data and

resources from WSIs when they are processed all at once. Consequently, we conducted model

training in three steps: the data preprocessing step, patch classifier training step, and WSI clas-

sifier training step (Fig 1). The same model training method was applied to gastric and colorec-

tal models.

Data preprocessing. The first step in AI model training was the data preprocessing step.

Model training was conducted based on ground truth data generated by the method men-

tioned in the previous section and labeled data as shown in Table 1. Data were set up without

annotation for class N WSIs and with annotations for class M and D WSIs. The WSIs were

saved in mrsx format, and data preprocessing was conducted with Openslide’s library [44].

The method used in our study largely required two deep neural network (DNN) models for

WSI learning. To train each model, data were prepared in two forms: WSI data and patch data.

For WSI data, the scan configuration values of the collected images were checked and images

Fig 1. Overview of the training of the AI model for daily QC. An overview of the modeling method used, which

includes three steps, is shown. The first step is the data preprocessing step; data are organized and converted in several

patches that can be used to train the models. The next step is the patch classifier training step; training is carried out

based on the labeled data for each patch generated from a single WSI. The final step is the training WSI classifier step;

models that generate information for classification of WSIs are trained by combining the data regarding each WSI. The

same model training method was applied to gastric and colorectal models. Abbreviations: AI (artificial intelligence),

WSI (whole slide image), QC (quality control), GUI (graphical user interface), M (Malignant), D (Dysplasia), N

(Negative for dysplasia).

https://doi.org/10.1371/journal.pone.0278542.g001
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with different values were excluded from the dataset. This was to prevent images scanned

under different conditions from causing errors in the model. The WSI data set finally selected

is shown in Table 1. The next step was patch data preprocessing. For class N, Openslide’s

library was used to convert a whole slide to multiple patches, each of which contained a

256x256 pixel image (image with a width of 256 pixels and a height of 256 pixels) derived from

the WSI. The patch size was determined in consideration of the trade-off between user conve-

nience and performance. More specifically, using the same set of slides, we generated alterna-

tive patches of 128×128, 256×256, 512×512, and 1024×1024 pixel images, which are typical

input image sizes for CNN, and then compared the actual classification performances, while

seeking user feedback on the size appropriateness for the user interface (UI). For example,

1024×1024 and 512×512 size pixel images sometimes produced slighty better performance but

were considered unsuitable for determining the lesion location information provided on the

UI (refer to “Development of SeeDP”). In addition, with the 128x128pixel images, the classifi-

cation model performance was noticeably deteriorated. Thus, the 256×256 pixel image patch

size was considered adequate. For classes M and D, only patches within the annotations were

selected and saved; patches outside the annotations were not included in the dataset.

For an accurate assessment of the model performance and feedback, training, validation,

and test datasets were constructed based on the WSIs and their associated patches. If the train-

ing, validation, and test datasets were constructed without considering the association between

WSIs and patches, patch images generated from the same WSI could be found simultaneously

in the training dataset and test or validation dataset. Lastly, patch data were randomly sampled

from the generated training pool to balance and minimize bias in the data classifiers (Fig 2).

Fig 2. Data preprocessing workflow. The workflow for generating patch images during the data preprocessing step is shown. This workflow involves a

series of processes for generating patch images based on the annotation data with WSIs loaded into Openslide’s library, which were processed

differently according to class. Abbreviations: WSI (whole slide image).

https://doi.org/10.1371/journal.pone.0278542.g002
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Model training (patch classifier). In the second step of AI model training, i.e., the patch

classifier training step, CNN-based DNN architecture was used to train the image classifiers.

CNN has shown remarkable achievements since the development of AlexNet [45]. In particu-

lar, combining DL based on CNNs has led to its active use in the medical domain for fields

dependent on human intervention, such as segmentation and detection [46–49]. For patch

image classification, we used DenseNet201, which showed excellent performance in DNN

architecture for model [50]. DenseNet is well recognized for its remarkable performance in

competitive object recognition benchmark tasks, such as ImageNet and CIFAR-100 [51, 52].

DenseNet inputs the connect feature-maps generated in all previous layers to subsequent lay-

ers and achieves easy training and parametric efficiency by reusing the features. Using this

method, deep layers of the network can reuse the features by accessing all connected feature-

maps generated in previous layers [53]. We inputted training data that were setup in the pre-

trained DenseNet201 model. Patch classifier model was trained to accurately infer three cor-

rect labels (classes M, D, and N) for each patch image (Fig 3). Moreover, in order to improve

the effectiveness of the training process, noise data were removed based on the training loss

value of the DenseNet201 model [39].

The classification results generated from the patch classifiers had two purposes: 1) to be

used as elements for inference by the WSI classifiers and 2) to provide explanation in the UI.

In particular, WSIs were trained, based on the model trained in this step, for use as elements

for WSI classifiers. Patch classifiers can generate classification results by distribution in each

class, which can be used as core information.

Model training (WSI classifier). WSI classifiers were trained with the patch classification

results, which were fragmented data of WSIs, as elements for inference by correct WSI labels.

In the WSI classifier training step, WSI classifiers were trained through a series of processes

based on 1) the patch maker model used in the data preprocessing step, and 2) the patch classi-

fiers from the model training step. This allowed for the efficient use of resources needed for

Fig 3. Concept of patch classifier training. The conceptual diagram of the patch image training process is shown.

https://doi.org/10.1371/journal.pone.0278542.g003
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WSI classification, which included giga pixel data, and each model was designed to operate

dynamically like a single model.

In the WSI classifier training process (Fig 4), WSIs were converted to patch images by the

patch maker, and converted patch images were reconstructed based on the locational informa-

tion to train WSI classifiers. This WSI classifier training process largely included three steps:

the patch maker step, patch classifier step, and WSI training step. In the patch maker step,

WSI were converted to several patch images. To preserve the location information of each

patch image during this conversion process, index and location information of the converted

patch and the WSI from which the patch was generated were recorded in a database (DB). In

the patch classifier step, classification information of each patch from a single WSI was

inferred through the trained patch classifier. The inference information of each patch image

was stored in the DB as per the index of the patch image. Accordingly, the index, location, and

classification information of each patch image of a single WSI were stored in the DB. Ulti-

mately, the DB of patch images was combined for WSI training, and reconstructed WSIs were

Fig 4. Training process for WSI classifiers. A conceptual diagram of the training process for WSI classifiers is shown. A single WSI is converted into

several patch images by the patch maker and distribution information is generated by the patch classifier, which is then converted to a reconstructed

WSI. Reconstructed WSIs typically have images rectangular in shape. To classify the reconstructed WSIs, we used a trained CNN model as the WSI

classifier. This series of processes was applied to both the gastric and colorectal models to generate two models. Abbreviations: WSI (whole slide

image), CNN (convolution neural network).

https://doi.org/10.1371/journal.pone.0278542.g004
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generated. Reconstructed WSIs included a condensed version of the characteristic information

of the WSI; thus, this information can be processed in CNNs, in a similar manner as that for a

single image. We trained the slide classifier to classify the reconstructed WSIs using the same

architecture as the patch classifier DenseNet201. In other words, the entire process followed a

process that utilized the DenseNet architecture to produce patch classification results to gener-

ate a distribution of predicted confidence values for each patch image and to train another

DenseNet to classify the reconstructed WSIs. This series of processes was applied to both gas-

tric and colorectal models to generate two models.

Operationalization of AI models

In this step, the entire prediction framework was operationalized, based on the model training

in previous steps, to generate results and additional information. The prediction method was

similar to the training order, with the patch maker followed by the patch classifier and WSI

classifier. The models in our study were developed and trained separately for gastric and colo-

rectal biopsy specimens. Each model operated in the same order and supported the DP solu-

tion we developed. Fig 5 shows the workflow of the trained models in operation.

Development of SeeDP (Seegene medical foundation’s AI-assisted DP total

solution)

We needed an integrated solution to support a series of processes, from the scanning of daily

signed-out glass slides for conversion to WSIs to automatic-AI prediction, visualization of

results, and information processing. Accordingly, we developed “SeeDP” (AI-assisted DP

Total Solution), which is a comprehensive software that can serve as a WSI viewer and also

perform AI prediction visualization, and analyze and process the relationship between the

pathologic diagnosis and AI prediction. We developed SeeDP as an open source-based WSI

viewer that enables pathologists to use a web browser to check WSIs that have undergone AI

prediction. This viewer was produced using Openslide’s library and OpenSeadragon3.0.0

(GitHub, San Francisco, California, United States) [44]. We enabled the qualitative assessment

of the results of the AI model (heatmap and prediction) recorded in each WSI list. These

assessment data can be used as additional data to strengthen the performance of future models.

Additionally, we established scanner operating guidelines, daily QC procedures, and response

measures for system errors to build a daily QC system suitable for daily practice.

Details of SeeDP are presented as Supporting Information (major equipment and specifica-

tions are presented in S1 Table, and the main features are presented in S1–S6 Figs).

Workflow of the SeeDP daily QC system

The AI-assisted daily QC system can perform daily scans and AI predictions on all GI endo-

scopic biopsy slides that have been signed out after microscopic interpretation. The following

system workflow was designed and applied for optimal use in real-world practice (Fig 6). In step

1, the pathologist performs the microscopic interpretation. In routine practice of GI endoscopic

biopsy reading, the slides are not prepared separately for different types of specimens (e.g., gas-

tric biopsy, colorectal biopsy) and are provided to the pathologist only with a receipt number,

with no organ distinction. Thus, the pathologist reads the slides as per the receipt number, with

no organ distinction. In step 2, signed out slides are scanned using a scanner. WSIs generated by

3D HISTECH scanner have mrxs file extension and are saved in the directory designated by the

scanner program. When a new WSI file is created in this directory, the Auto File Watcher pro-

gram detects this and creates a copy in storage. In the SeeDP system, the scanned slide name

(pathology number) is searched for in the DB, and the AI model corresponding to each organ is
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determined and implemented according to designed keywords in the heading (specimen infor-

mation) of the pathology report (Table 3). The AI model reads the WSI file to perform slide-

level and patch-level predictions and each outcome is saved in the DB. In step 3, using the

SeeDP program, scanned slides are organized into classes by pathologic diagnosis and by AI pre-

diction. Pathologists can access the SeeDP system the next day (or a few hours later) to check

whether there is concordance between each class, and review discordant cases preferentially.

Policies for the trial run of SeeDP for daily QC

Redefining classes for the SeeDP daily QC system. Between September 15, 2021 and

December 14, 2021, four pathologists (YMC, JRK, BDL, and YSK) participated in the trial run.

First, the classes of pathologic diagnoses were redefined as shown in Table 4.

Fig 5. Workflow of the operationalization of our trained models. The operationalization of the trained WSI classifier model is similar to the

training workflow. When a new single WSI is loaded into the trained WSI classifier model, the patch maker generates multiple patch images from the

WSI, along with patch information, such as the index and location information, which are then recorded in the database. Each patch image is inputted

into the patch classifier and the class is inferred by the model. Thus, the classification result is generated and stored in the database. Ultimately, the

WSI classifier combines the patch image and database information to generate the reconstructed WSI and classification. This process includes the

integration of classification information and location information of each patch for conversion to the reconstructed WSI, as well as input into the WSI

classifier for generating WSI classification results and database storage. Therefore, the database stores three types of information: the patch image,

patch-level classification, and WSI-label classification information. Patch image information includes the patch index, patch image, and patch location

information; patch-level classification information refers to the class inference results generated from the patch classifier model; WSI level

classification information refers to the class information inferred by the WSI classifier model for a single WSI. Abbreviations: WSI (whole slide

image), M (Malignant), D (Dysplasia), N (Negative for dysplasia).

https://doi.org/10.1371/journal.pone.0278542.g005
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Classification for data training and validation in the AI model development phase (Table 2)

and classification by the pathologic diagnosis in the trial run phase (Table 4) differed. Specifi-

cally, “tubular adenoma, high grade dysplasia (TA, HGD)” and “tubular adenoma, grade

uncertain” were included in class D for training in the AI model development phase, but were

redefined as class M in the SeeDP system for the daily QC trial run. Additionally, class D was

redefined as low grade dysplasia (LGD), indefinite for dysplasia, and AUS. Each class was rede-

fined in the trial run for clinical implementation to assist in the immediate correction of FNs

by the rapid detection of potential human error by the pathologists, rather than to ensure a

more accurate diagnosis by the AI model, as explained earlier. Therefore, specific words

included in pathologic diagnoses were considered as keywords for classification by the patho-

logic diagnosis (Table 5).

Fig 6. Workflow of the SeeDP daily QC system. In routine practice of gastrointestinal endoscopic biopsy reading, the pathologist first performs the

microscopic interpretation. Next, the signed out slides are scanned, then in SeeDP system, their file name (pathology number) is searched for in the

database, and the AI model corresponding to each organ is determined and implemented. Finally, via the SeeDP program, scanned slides are

organized into classes by pathologic diagnosis and by AI prediction. Pathologists can access the SeeDP system to check whether there is concordance

between each class and review discordant cases preferentially. Abbreviations: AI (artificial intelligence), QC (quality control), GUI (graphical user

interface), SeeDP (Seegene Medical Foundation’s AI- assisted Digital Pathology Total Solution).

https://doi.org/10.1371/journal.pone.0278542.g006

Table 3. Keywords to determine the appropriate AI model for each biopsy site.

AI models Keywords

Gastric Stomach, Esophagogastric junction, Gastroesophageal junction

Colorectal Terminal ileum, Ileocecal valve, Cecum, Colon, Large intestine, Rectosigmoid junction, Colon and

Rectum, Rectum

https://doi.org/10.1371/journal.pone.0278542.t003
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Based on the classification in Table 5, cases that included the corresponding keyword in the

pathologic diagnosis (text information) were classified as the indicated class. Such classifica-

tion results were compared (1:1 basis) against the classification by AI model prediction for

determining concordance. Each keyword for classification was applied in the following order:

M>U>D>N. However, “sessile serrated adenoma/polyp,” “sessile serrated adenoma,” and

“sessile serrated lesion” were prioritized over the keywords for class D. For example, certain

diagnoses, such as “Adenocarcinoma, moderately differentiated,” “Neoplastic lesion, suspi-

cious for malignancy,” “Tubular adenoma, high grade dysplasia,” “Tubulovillous adenoma,

low to focal high grade dysplasia,” “Adenoma with focal carcinomatous change,” “Tubular ade-
noma, grade uncertain,” “Malignant neoplasm,” "Atypical glandular proliferation, favor neo-
plastic,” and “Neuroendocrine carcinoma” involve italicized keywords, but are ultimately

classified into class M based on the bolded keywords. Diagnoses such as “Tubular adenoma,

low grade dysplasia,” “Atypical glandular proliferation, favor dysplasia,” “Atypical glandular

proliferation, indefinite for dysplasia,” and “Atypical glandular proliferation, undetermined
significance” are classified as class D based on the rule described above. “Small cell nests with

neuroendocrine feature” is also classified into class U, along with “Neuroendocrine tumor,

grade 1 (carcinoid tumor).”

Based on the above-mentioned classification rule, if “Tubulovillous adenoma, low to focal

high grade dysplasia” is considered as class M by pathologic diagnosis classification, but class

D by WSI AI prediction, then this case is labeled as a “discordant” case, requiring review by a

pathologist. Some ambiguous cases such as "Atypical glandular proliferation, favor neoplas-
tic,” “Atypical glandular proliferation, undetermined significance,” and “Atypical glandular

proliferation, indefinite for dysplasia” could be classified into class M, D, and D, respectively,

by pathologic diagnosis classification. However, the AI prediction result can be of class M, D,

or even N, depending on the characteristics of each WSI. Such “non-typical” cases are also

labeled as discordant with the AI prediction, requiring review by a pathologist.

For “non-typical” cases described above, additional slides (serial cut or recut slides) are

often prepared. In such cases, the AI prediction results for each WSI may vary. For example,

the prediction result for the original slide may be of class D, but one serial cut slide may be

Table 4. Definition of classes by the pathologic diagnosis for the SeeDP daily QC system.

Classes Definition for daily QC

M (Malignant) Malignancy or high grade dysplasia cannot be ruled out

D (Dysplasia) Low grade dysplasia cannot be ruled out

N (Negative for dysplasia) Negative for dysplasia (or worse)

U (Uncategorized) Neuroendocrine tumor (G1 or G2) cannot be ruled out

Abbreviations: QC (quality control)

https://doi.org/10.1371/journal.pone.0278542.t004

Table 5. Keywords for classification by the pathologic diagnosis.

M (Malignant) D (Dysplasia) N (Negative for dysplasia) U (Uncategorized)
Carcinoma Sarcoma Dysplasia Sessile serrated adenoma/polyp Neuroendocrine

High Lymphoma Adenoma Sessile serrated adenoma Carcinoid

Grade undetermined Malignant Low Sessile serrated lesion NET (Capital letters only)

Grade uncertain Malignancy Indefinite for dysplasia Other (not M, D, U)

Favor neoplastic Cancer Undetermined significance

Abbreviations: NET (neuroendocrine tumor)

https://doi.org/10.1371/journal.pone.0278542.t005
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classified as class D, another slide may be classified as class D, and a deeper cut slide may be

classified as class N, with disappearance of the lesion (D, D, M, and N, respectively). When AI

predictions of serial slides are prepared from a single block and they vary like this, the final

prediction was determined in the order of M>U>D>N. In the aforementioned example, the

AI prediction would indicate “M” as the final prediction. If the pathologic diagnosis is “TA,

LGD,” it would be marked as “D,” which would also be considered a discordant case. For sim-

ply improving concordance between the pathologic diagnosis and AI prediction (accuracy),

“D,” which appeared most often (among D, D, M, and N) in the prediction results of each WSI

slide, could be used as the final class. However, for post-analytic QC and the rapid detection of

FN, the more clinically serious result was prioritized over the more frequent AI prediction

result.

Results

Internal validation results

Performance in the laboratory (KAIST) validation. We trained the gastric and colorec-

tal models using the methods described above. More specifically, those models were both

based on a novel patch-based framework in which a WSI was split into multiple patches, the

latent features from the patches were extracted for a patch-level classifier, and the patch-level

features were aggregated for a slide-level classifier, both of which were based on DenseNet201.

In laboratory tests, the WSI classifier achieved accuracy rates of 96.0% and 95.8% in classifying

histopathological WSIs of gastric and colorectal endoscopic biopsy specimens, respectively,

into three classes (Negative for dysplasia, Dysplasia, and Malignant). However, six WSIs were

excluded from the assessment of the colorectal model due to errors. When these six WSIs were

included, the accuracy dropped to 92.0%. Both models properly classified class N WSIs, but

misclassified a small number of class D and M WSIs as class N (see S2 Table).

Performance in the in-house (SMF) validation. Before the real-world application of the

finally selected two models, some of the daily signed-out endoscopic biopsy slides were used as

a pre-test set for in-house validation. The pre-test was conducted using daily slides data gener-

ated in the real-world to verify the practicality of the application of the models in daily practice

by indirectly testing the performance in clinical practice with unbalanced data distribution.

We used 491 gastric biopsy WSIs and 319 colorectal biopsy WSIs in the pre-test. The percent-

age of class N is expected to be high in real-world practice; thus, this test was designed to verify

whether the models can stably show high accuracy under similar conditions. Accordingly,

while the lab validation data were evenly distributed by class, the pre-test dataset had a rela-

tively higher number of class N WSIs. Consequently, gastric and colorectal models showed

accuracies of 93.08% and 95.30%, respectively, which are suitable for the real-world implemen-

tation of daily QC (see S3 Table).

Results of the SeeDP system for daily QC trial run

We developed and applied two separate AI models (gastric and colorectal models); however,

pathologists do not need to consider each model separately in daily practice and they need to

review only cases with discordance between the AI prediction and pathologic diagnosis.

Accordingly, we first evaluated the overall performance instead of performance of each model.

The performance of each model was then checked separately. The model that was finally

applied was a ternary classifier model (classes M, D, and N); however, classification by patho-

logic diagnosis also included class U. Therefore, 16 WSIs (gastric biopsy: 2, colorectal biopsy:

14) corresponding to neuroendocrine tumor (NET) cases and belonging to class U, along with

53 WSIs considered as scan failures, were excluded from AI model performance assessment.
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During the 3-month trial run period, the overall accuracy of the ternary classifier model

was 90.29%, while the accuracies of the gastric and colorectal models were 89.81% and 90.81%,

respectively (S4.1 Table in S4 Table). In particular, the negative predictive values (NPVs) of the

overall, gastric, and colorectal models were high, i.e., 97.20%, 99.98%, and 92.99%, respectively.

Therefore, if both the AI prediction and pathologic diagnosis were included in class N, addi-

tional verification for a FN seemed unnecessary. Accordingly, if pathologists diligently review

discordant cases in accordance with the operating guidelines for the SeeDP daily QC system,

FN pathology reports could be largely prevented. In particular, FN cases considered as severely

discordant, classified as class M by pathologic diagnosis and class N by AI prediction, occurred

in only one colorectal biopsy case (S4.1 Table in S4 Table). A closer examination of this case

revealed that it was classified as class M based on a diagnosis of “TA, HGD”, but it was an

ambiguous case with a small lesion size and possible interobserver discrepancy in dysplasia

grading. The AI model also showed red heat at the patch level in the corresponding region, but

the final prediction was class N (S7 Fig). In the gastric model, there were no serious FN cases

that predicted class M as class N (S4.1 Table in S4 Table). Accordingly, it was determined that

in our models, there was almost no probability of missing (classification as class N) “suspicious

for malignancy” cases that a human pathologist might miss.

When each case was considered using a binary classification, class M (suspicious for malig-

nancy) vs. non-M (no possibility of malignancy), the accuracies of the overall, gastric, and

colorectal models were 97.36%, 96.22%, and 98.59%, respectively (S4.2 Table in S4 Table).

Distribution of the classification by AI prediction in the trial run for daily QC. In

total, 26,133 WSIs were signed out by four pathologists and scanned during the 3-month

period, comprising 13,630 gastric biopsy WSIs and 12,503 colorectal biopsy WSIs from 12,734

patients. Of these, there were 13 gastric biopsy WSIs and 40 colorectal biopsy WSIs that were

not reviewed by the SeeDP daily QC system owing to scan failure (error) despite two or three

re-scans. The distribution of AI predictions for specific pathologic diagnoses are shown in

Tables 6 and 7. (The dataset of the present study are presented as S1 File).

Analysis of cases discordant between the AI prediction and pathologic diagnosis. In

both models, false positive (FP) rate was somewhat high. In the gastric model, the FP rate

was higher for H. Pylori-associated chronic gastritis (HCG) than chronic gastritis among

gastritis diagnoses, with an increased FP rate in cases with findings of a secondary reaction,

related to erosion, ulcers, regenerative changes, and inflamed granulation tissue (+ ero/u/

reg/inflamed) compared to that in cases without such findings (Table 6). In the colorectal

model, cases of inflammatory polyps, active inflammation, or suspicious for inflammatory

bowel disease showed a higher FP rate than nonspecific or inactive inflammation cases

(Table 7). Moreover, such cases occasionally showed red heat in areas with inflammatory

reactions or severe activity accompanied by erosion or ulceration in the patch-level heatmap

(S8.1 Fig in S8 Fig). Such cases can be used as training data to improve the performance of

future models when the pathologic diagnosis is found to be correct during the review of dis-

cordant cases by pathologists.

In the gastric model, there were some negative cases that were falsely predicted as class D.

These cases showed blue heat in some areas, such as foveolar epithelium with some darker

stained areas, poor quality sections with knife marks, (S8.2 Fig in S8 Fig) and intestinal meta-

plasia with atrophy. As shown as Table 6, two of these cases were xanthomatous lesions with

no heat in the foamy histiocytes (S8.2 Fig in S8 Fig). However, in one case, some red heat was

observed in an area accompanied by erosion; thus, it was incorrectly predicted as class M. In

this area of the slide, the stroma was pressed by erosion, making it appear more cellular, and

the cytoplasm was more pinkish than other areas; however, red heat was not observed in other

areas with typical foamy histiocytes (S8.3 Fig in S8 Fig).
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Ambiguous diagnoses, such as AUS, and “indefinite for dysplasia (IFD)”, were classified as

class D by pathologic diagnosis and as class D by AI model prediction in 61.54% of such cases

(8/13 cases). During model training, AUS and IFD initially belonged to class U in the quater-

nary model, but were excluded from the training dataset when the model was converted to a

ternary model. However, it was very interesting to find that the accuracy was lower for AUS/

IFD cases than for LGD despite the current model classifying most of them as class D. More-

over, "dysplasia, grade uncertain" and HGD belonged to class D when defining the training

dataset (Table 2), but were redefined as class M by pathologic diagnosis when applied to the

SeeDP system daily QC (Table 4). The gastric model tended to follow the redefined pathologic

diagnosis classification, while the colorectal model tended to favor class D for focal HGD.

However, for HGD cases, the colorectal model tended to follow the redefined classification,

like the gastric model (Tables 6 and 7).

In the gastric model, one FN case, diagnosed as TA, LGD but classified as class N, had a

small lesion, along with slight focal blue and red heat in portions of the WSI, which may have

been neglected during spatial analysis in the WSI prediction step (S8.4 Fig in S8 Fig). This phe-

nomenon was observed more frequently in the prediction of class D in the colorectal model

than in the gastric model. The FN rate of LGD colorectal biopsies, predicted as class N, was

12.14%, which was higher than that in the gastric model (1.14%). However, owing to the differ-

ence in clinical significance between gastric LGD and colorectal LGD (gastric LGD requires

Table 6. Distribution of the classification by AI prediction of gastric biopsy WSIs.

Pathologic diagnosis M D N Scan failed Total (number, %)

Gastritis

CG 45 0.96% 299 6.40% 4322 92.57% 3 0.06% 4669 34.26%
CG + ero/u/reg/inflamed 265 5.02% 404 7.65% 4611 87.28% 3 0.06% 5283 38.76%
HCG 48 5.06% 31 3.27% 870 91.68% - - 949 6.96%
HCG + ero/u/reg/inflamed 73 7.64% 99 10.37% 782 81.88% 1 0.10% 955 7.01%

Polyp (FGP, HP) 57 3.66% 33 2.12% 1466 94.16% 1 0.06% 1557 11.42%
Xanthoma/Xanthelasma 1 4.55% 2 9.09% 19 86.36% - - 22 0.16%
AUS/ Indefinite for dysplasia 3 23.08% 8 61.54% 2 15.38% - - 13 0.10%
LGD - - 87 98.86% 1 1.14% - - 88 0.65%
Dysplasia, grade uncertain 1 100.00% - - - - - - 1 0.01%
HGD, foveolar type - - 1 100.00% - - - - 1 0.01%
TA, HGD 12 57.14% 9 42.86% - - - - 21 0.15%
Atypical gl., favor neoplastic 3 100.00% - - - - - - 3 0.02%
Carcinoma 38 92.68% 3 7.32% - - - - 41 0.30%
Other

Inflammatory fibroid polyp - - - - 1 100.00% - - 1 0.01%
Russell body gastritis 1 100.00% - - - - - - 1 0.01%
Pyloric gland adenoma 1 50.00% 1 50.00% - - - - 2 0.01%
Malignant (type uncertain) 1 100.00% - - - - - - 1 0.01%
Neuroendocrine tumor 1 50.00% - - 1 50.00% - - 2 0.01%
s/f MALT lymphoma - - - - 1 100.00% - - 1 0.01%

Insufficient/foreign material 4 21.05% - - 10 52.63% 5 26.32% 19 0.14%
Total (number. %) 554 4.06% 977 7.17% 12086 88.67% 13 0.10% 13630 100.00%

Abbreviations: CG (chronic gastritis, chronic active gastritis), ero (erosion, erosive), u (ulcer, ulcerative), reg (regenerating, regenerative), HCG (Helicobacter pylori
associated CG), FGP (fundic gland polyp), HP (hyperplastic polyp), AUS (atypical glandular proliferation, undetermined significant), LGD (low grade dysplasia), HGD

(high grade dysplasia), TA (tubular adenoma), gl. (glands, glandular proliferation), MALT (mucosa-associated lymphoid tissue)

https://doi.org/10.1371/journal.pone.0278542.t006

PLOS ONE Improving QC in the routine practice for GI endoscopic biopsy interpretation using AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0278542 December 15, 2022 17 / 31

https://doi.org/10.1371/journal.pone.0278542.t006
https://doi.org/10.1371/journal.pone.0278542


more aggressive treatment), the class D prediction tendency of both models was considered to

be practically ideal (Tables 6 and 7).

NET cases showed a tendency to be predicted as class N in both models, while the heat-

map patterns mostly showed no heat (S8.5 Fig in S8 Fig). The four cases that were predicted

as class M in the colorectal model were accompanied by unnecessary red heat associated

with aforementioned inflammatory reaction. However, one specific case that was predicted

as class M in the gastric model was somewhat different (S8.6 Fig in S8 Fig). While low-mag-

nification findings seemed to show NET, high-magnification findings indicated that this

case needed to be differentiated from “oxyntic gland adenoma exhibiting infiltrative grow-

ing pattern” and “gastric adenocarcinoma of the fundic-gland type”. This case was descrip-

tively diagnosed as “favor NET,” for which the need for differentiation from these

diagnoses, along with ancillary tests, were recommended. For such cases, it may be better to

advise caution by classifying them as class M rather than as class N; thus, the response of

this model was considered to be reasonable.

There was one case of s/f mucosa-associated lymphoid tissue (MALT) lymphoma within

the daily QC set, which was predicted as class N with no heat in the WSI. The case involved

HCG accompanied by lymphoid follicles (LFs), and localized lymphoepithelial body-like

lesions were found near the LFs. The case was signed out with a descriptive diagnosis of

Wotherspoon grade 3 (S8.7 Fig in S8 Fig). Although some FPs were occasionally found, which

were predicated as class M with red heat in severe gastritis with LFs or lymphoid aggregate, in

this case, a negative prediction was made.

Table 7. Distribution of the classification by AI prediction of colorectal biopsy WSIs.

Pathologic diagnosis M D N Scan failed Total (number, %)

Polyp

Hyperplastic 24 0.36% 323 4.89% 6250 94.54% 14 0.21% 6611 52.88%
Inflammatory 10 2.95% 29 8.55% 300 88.50% - - 339 2.71%
Lymphoid 1 0.88% 5 4.39% 108 94.74% - - 114 0.91%

Inflammation

Nonspecific, inactive 5 1.17% 2 0.47% 419 97.90% 2 0.47% 428 3.42%
Active 21 19.27% 10 9.17% 77 70.64% 1 0.92% 109 0.87%
s/f IBD 2 9.09% 3 13.64% 17 77.27% - - 22 0.18%

LGD 102 2.28% 3812 85.38% 542 12.14% 9 0.20% 4465 35.71%
focal HGD 2 40.00% 3 60.00% - - - - 5 0.04%
HGD 15 78.95% 3 15.79% 1 5.26% - - 19 0.15%
Carcinoma 50 98.04% 1 1.96% - - - - 51 0.41%
Other

Inflammatory fibroid polyp - - - - 2 100.00% - - 2 0.02%
Submucosal tumor - - 2 9.52% 19 90.48% - - 21 0.17%
SSL - - 38 16.52% 192 83.48% - - 230 1.84%
TSA 1 2.17% 26 56.52% 19 41.30% - - 46 0.37%
Neuroendocrine tumor 4 28.57% - - 10 71.43% - - 14 0.11%

Insufficient/foreign material 2 7.41% - - 11 40.74% 14 51.85% 27 0.22%
Total (number, %) 239 1.91% 4257 34.05% 7967 63.72% 40 0.32% 12503 100.00%

Abbreviations: IBD (inflammatory bowel disease), LGD (low grade dysplasia), HGD (high grade dysplasia), SSL (sessile serrated lesion, sessile serrated adenoma,

sessile serrated adenoma/polyp), TSA (traditional serrated adenoma)

https://doi.org/10.1371/journal.pone.0278542.t007
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QC improvement status

Table 8 shows the comparison between QC performance in the three months of SeeDP daily

QC system use in the trial run and the 33 months prior to the trial run. There was a total of

5,789 GI endoscopic biopsy slides that were randomly reviewed by monthly QC (monthly

average of 160.8 slides) during the past three years (January 2019 to December 2021). Of these,

there were 18 cases (0.31%) with discordance between the reviewer and the original diagnosis,

comprising 16 mild (0.28%), two moderate (0.03%), and zero severe (0.00%) cases of discor-

dance. There were no cases in which diagnostic errors identified by the monthly QC random

review led to a revised diagnosis. Accordingly, we can claim that, at our institution, there were

no cases in the past three years wherein the random review of QC slides ultimately affected the

patient. There was a total of 26,080 slides that were double-checked by AI models during the

3-month SeeDP daily QC system trial run, of which, 814 slides were reviewed by human

pathologists, in accordance with the operating plan.

Table 8. Comparison of detected diagnostic errors and corrections.

Monthly QC only (33 m) monthly QC + SeeDP daily QC (3 m) Overall (36 m)

Number of reviewed slides 5209 26660 31869

via Random review (by 12–16 pathologists) 5209 (11.63/person/mo) 580 (12.08/person/mo) 5789

via AI model + 4 pathologists review 0 814 (67.83/person/mo) g 26080

via AI model only 0 25266

Detected discordance or diagnostic errors 29 13 42

via random review 18 0 18

mild 16 0 16

moderate 2 0 2

severe 0 0 2

revision of Dx (time taken) 0 0 0

via request from a clinician 6 1 7

mild 4 1 5

moderate 2 0 2

severe 0 0 0

revision of Dx (time taken) 6 (6.5 days) 0 6

via copy slide review 5 0 5

mild 2 0 2

moderate 1 0 1

severe 2 0 2

revision of Dx (time taken) 5 (80.6 days) 0 5

via previous bx review 0 4 4

mild 0 0 0

moderate 0 3 3

severe 0 1 1

revision of Dx (time taken) 0 0 0

via AI model + 4 pathologists review 0 8 8

mild 0 5 5

moderate 0 2 2

severe 0 1 1

revision of Dx (time taken) 0 8 (3.4 days) 8

Corrected or revised errors (time taken) 11 (40.2 days) 8 (3.4 days) 19

Abbreviations: QC (quality control), m (month), Dx (diagnosis), bx (biopsy)

https://doi.org/10.1371/journal.pone.0278542.t008
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Among the GI endoscopic biopsy slides for the same 3-year period, there was a total of 16

cases that were processed as “discordant” or “error” after a non-random review. Of these, 11

cases were identified during the 33 months prior to the SeeDP daily QC system trial run and

five cases occurred during the 3-month trial run period. Among the 11 pre-trial run cases, six

cases involved a revised diagnosis based on a slide review requested by clinicians (four mild

and two moderate cases of discordance). The remaining five cases involved a revised diagnosis

based on the identification of additional lesions in newly prepared sign-out copy slides that

were not found in the original slides (two mild, one moderate, and two severe cases of discor-

dance). Of the five cases that were identified during the 3-month trial run period, four were

diagnosed as negative in a previous biopsy (i.e., 6, 8, 10, or 16 months earlier), but the cases

were reviewed during the interpretation of a follow-up biopsy, and previous diagnosis was

determined to be a FN through internal communication. However, these cases were closed

without revising the existing diagnosis because, according to the physicians who requested the

test, it was too late to revise them, and these cases were managed based on the biopsy result

currently in process (three moderate and one severe case of discordance; Table 8). The remain-

ing eight cases (seven patients) were reviewed by both the AI model and pathologists; for these

cases, the problem was recognized within an average of 1.2 days and the diagnosis was revised

or corrected within an average of 3.4 days after communication with the physician who

requested the test. In these cases, the errors were corrected before the patient received the

pathology report from the clinician; thus, it can be considered that the daily QC system had a

direct positive impact on these patients. In contrast, for cases reviewed by conventional meth-

ods, the diagnosis was revised or corrected only when it was unavoidable due to a sign-out of

the copy slides and such measures took an average of 40.2 days.

The following are the specific details of cases that were corrected after detection through

the SeeDP daily QC system (Table 9).

Table 9. Details of seven cases of error identified with the SeeDP daily QC system.

Case number Type of error Class by Initial pathologic Dx Revised Dx Time taken (days)

1’ Dx AI

1 FN D M Rectum, colonoscopic biopsy:

TA, LGD

Rectum, colonoscopic biopsy:

ADENOCARCINOMA, MD

2

2 FN N M Rectum, colonoscopic biopsy:

Focal active proctitis

Rectum, colonoscopic biopsy:

ADENOCARCINOMA, MD

1

3 FN N D Rectum, colonoscopic biopsy:

Hyperplastic polyp

Rectum, colonoscopic biopsy:

A. TA, LGD (x1)

B. Hyperplastic polyp (x1)

8

4 FN N D Stomach, endoscopic biopsy:

CG with IM

Stomach, endoscopic biopsy:

Atypical gland proliferation, favor TA, LGD

3

5 FN N D Ileocecal valve, colonoscopic polypectomy:

• Resection margin: Free from tumor

Ileocecal valve, colonoscopic polypectomy:

TA, LGD

• Resection margin: Free from tumor

1

6 FP D N Rectum, colonoscopic biopsy:

Hyperplastic polyp

TA, LGD

Rectum, colonoscopic biopsy:

Hyperplastic polyp

8

7 Switching D

N

N

D

01. Cecum, colonoscopic mucosal resection:

TA, LGD

• Resection margin: Uncheckable

02. Colon, colonoscopic mucosal resection:

Hyperplastic polyp

01. Cecum, colonoscopic mucosal resection:

Hyperplastic polyp

02. Colon, colonoscopic mucosal resection:

TA, LGD

• Resection margin: Uncheckable

2

Abbreviations: QC (quality control), Dx (diagnosis), FN (false negative), MD (moderately differentiated), TA (tubular adenoma), LGD (low grade dysplasia), CG

(chronic gastritis), IM (intestinal metaplasia), FP (false positive)

https://doi.org/10.1371/journal.pone.0278542.t009
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1. Detection and correction of FN cases

A. Major lesions missed in the microscopic FOV: In slides with two or more pieces of tis-

sues, the pathologist missed a positive lesion in one piece in the microscopic FOV.

i. In rectal biopsy, one cancerous piece was missed in the FOV during microscopic

interpretation; therefore, the case was initially diagnosed as negative. The SeeDP daily

Qc system identified discordance between the AI prediction (M) and the pathologic

diagnosis (D and N). Pathologists reviewed the WSIs and confirmed the presence of

cancer, with red heat in the outermost piece. Based on this, the diagnosis was cor-

rected (cases #1 and #2).

ii. Similar to the above case, colon “TA, LGD”, missed in the FOV, was reviewed on the

following day, whereby discordance between the AI prediction (D) and the pathologic

diagnosis (N) was identified. Similarly, a lesion was confirmed in the WSI and heat-

map; based on this, the diagnosis was corrected (case #3).

B. Difficulty with diagnosis: A case initially diagnosed as “CG with IM” during the rou-

tine practice of biopsy interpretation was classified as class D, with blue heat in the cor-

responding region, by AI prediction in the SeeDP system on the following day.

Accordingly, the case was labeled as a discordant case (AI prediction of D versus patho-

logic diagnosis of N). The pathologist reviewed the WSI and glass slide and recalled the

initial diagnosis after explaining the need for an additional intra-laboratory process to

the hospital that had ordered the test. Serial and deeper slides were additionally pre-

pared for testing and a second opinion from another pathologist was sought. Subse-

quently, the diagnosis was revised to “TA, LGD” (case #4).

C. Text diagnosis data entry error: A case labeled as “Resection margin: Free from tumor”

without any major diagnosis in colon polypectomy was identified as a discordant case

(AI prediction D versus pathologic diagnosis N). After a review of the WSIs, an error

involving the omission of a “TA, LGD” diagnosis was detected and the diagnosis was

subsequently corrected (case #5).

2. Detection and correction of FP cases

Text diagnosis data entry error: In a negative biopsy case, a positive diagnosis was addition-

ally entered by mistake during the data-entry stage. Although it was a colonic hyperplastic

polyp (HP) case, two diagnoses (“HP” and “TA, LGD”) were inadvertently entered. The

case was marked as class D in accordance with the pathologic diagnosis classification rules,

but AI prediction classified the case as class N because the corresponding lesion was not

found on the WSI. Accordingly, the case was labeled as a discordant case. Following the

daily review procedure, a pathologist reviewed the applicable WSIs and recognized the

error of a positive diagnosis entry; based on this, the diagnosis was corrected (case #6).

Sometimes, a colorectal biopsy of two or more pieces may actually show the co-presence of

“TA, LGD” and “HP,” and in such cases, the two diagnoses are entered together for each

piece. Consequently, it is difficult to confirm an error based solely on the entry of two diag-

noses. However, this type of error was detected when the AI model reviewed it based on the

WSIs to assess concordance with the diagnostic data.

3. Detection and correction of a switching error

Erroneous switching of paired specimens: Cecal and sigmoid colon biopsy specimens col-

lected from the same patient were received with the slides in reverse order, and the patholo-

gist read the slides without recognizing this error. One slide was diagnosed as “TA, LGD”
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and the other slide was diagnosed as “nonspecific inflammation.” However, because the

slides were processed by the QR codes that appear on the slide label in the AI-assisted

SeeDP daily QC system, each slide was predicted as “N and D” based on the WSIs, which

was in discordance with the pathologic diagnosis of class “D and N.” Accordingly, a pathol-

ogist reviewed the slides the following day, in accordance with the daily QC system operat-

ing procedure, and identified the error. Subsequently, the hospital that ordered the test was

notified and the diagnosis was corrected (case #7).

Discussion

A clinically applicable AI model and DP total solution

Our system was designed so that AI models could be actively used without excess

change to the conventional workflow of the diagnostic process. We opted for a method that

could quickly detect human errors that may occur during pathologic interpretation, allowing

immediate corrections without affecting the actual interpretation process. In the daily practice of

pathologists, GI endoscopic biopsy slides are provided without distinction between gastric and

colorectal biopsy specimens; and are interpreted according to their serial number. In many cases,

gastric and colorectal biopsy specimens from the same patient are received and processed con-

secutively; it is not suitable to process such slides by differentiating them according to organ.

However, the SeeDP program is designed to selectively run the AI model corresponding to each

organ based on the organ information listed in the heading of each specimen. Therefore, when

pathologists review slides through the AI-assisted daily QC system, they can review them by

serial number as well. Additionally, when pathologists perform diagnoses through WSIs and

want to refer to the prediction results of the AI model, they can follow the receipt number.

However, if the heading information and the organ do not match, the model designed for

that organ cannot be run without revising the heading. Moreover, the models cannot be run

for other organs that may be present together in the GI endoscopic biopsy specimens, such as

the esophagus, duodenum, and anus. Furthermore, for various diseases belonging to class U

(e.g., NET, MALT, submucosal tumor, inflammatory bowel disease, and serrated lesions),

which were initially excluded from the study, our current AI models do not yet provide a cau-

tionary warning. Therefore, further research is needed to overcome this limitation (i.e. includ-

ing other diseases). Therefore, we are currently investigating an upgrade to a quaternary

classifier model that would include NET grade 1 or 2.

Our goal was 100% practical application. The results of our study were obtained by scan-

ning all microscopic slides signed out daily and running AI models, instead of simply selecting

interesting cases for assistance with AI models. We aimed to develop AI models for all GI

endoscopic biopsy specimens to achieve 100% practical application in daily QC. During the

trial run period, all endoscopic biopsy slides signed out by four pathologists were 100% digita-

lized and almost all were double checked by the AI models. However, the system is still not

applicable for non-endoscopic biopsy and cytology specimens. Additional research and devel-

opment efforts are needed for other organs and all specimens received for testing.

We developed our own post-analytic daily QC system with an AI-assisted DP total solu-

tion (SeeDP) that integrates a WSI viewer and AI models, combined with a pathology

LIS. First, for the early detection of potential human errors in microscopic interpretations based

on conventional methods, we designed a system to differentiate specimens based on the heading

information in the pathologic report and automatically labelling and applying either the gastric or

colorectal model, as suitable for that specimen. Next, we set major keywords in the text informa-

tion of the pathologic diagnosis for automatic classification of cases into three classes (classes M,
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D, and N). Moreover, the prediction results from the AI model suitable for each specimen were

exposed to the text classification of M, D, and N for comparison against classification by patho-

logic diagnosis to check for concordance. Discordant cases were listed first, so that pathologists

could prioritize their review. When the pathologists reviewed these cases, the AI prediction results

were not visualized by heatmaps provided separately from WSIs; rather, the heatmaps were

masked on or off directly on top of WSIs to enable an intuitive comparison between the WSI and

heatmap at all magnifications. Lastly, we included functions that enabled pathologists to assess

the AI prediction results for reviewed cases and leave their feedback. By continuing to collect FN

and FP cases and using them as an additional model training resources, we were able to establish

a system with continuous improvement in model performance.

However, the system cannot detect cases in which both the AI prediction and pathologic

diagnosis are FNs. Therefore, the models we developed and implemented were designed to

maintain high NPV to minimize such risk.

A clinically influential AI-assisted daily QC system

We developed a powerful and clinically influential system that can ultimately help

enhance patient safety. Numerous researchers have contemplated and suggested improve-

ments in, and the standardization of, test methods that can clinically enhance patient safety. In

particular, in the field of gastroenterology, an endoscopy is performed first; if necessary, a tis-

sue biopsy is performed to obtain a confirmative diagnosis through a histopathological exami-

nation. In this process, a discrepancy may exist between the endoscopic findings and the

histopathologic diagnosis, and patient safety is not assured given this inconsistency. Therefore,

studies to enhance the patient’s stability from the stage prior to biopsy have been continuously

conducted, and recent studies using AI are noteworthy [54, 55]. Similarly, pathologic labora-

tory QC ensures high reliability in the quality of testing, which ultimately helps in enhancing

patient safety [10]. The monthly review of random slides, which is the most popular method

among conventional post-analytic QC methods, serves an important internal function for nar-

rowing the discrepancies between pathologists by blinded reviews, communication of discor-

dant cases, and regular sharing of feedback [9]. In many cases, however, reviewers tend to

ignore or dismiss minor discrepancies in existing diagnoses and in their approach to the

review process. This may be because the time gap between the original diagnosis and review is

at least one month or longer. Therefore, although the random slide review may be a key inter-

nal function, it often does not have direct clinical influence on patients or the clinicians order-

ing the test. Additionally, 1–2 months may have already passed since the initial diagnosis of a

severe discordance. Therefore, even if the corrected diagnosis is conveyed to the clinician or

the patient, the previous FN may have deprived the patient of appropriate treatment.

Improvements in pathology laboratory QC achieved by combining our AI-assisted daily

QC system with a monthly review of random slides can be easily inferred through the compar-

isons in Table 8. In summary, the currently used monthly random slide reviews, performed by

an average of 14 pathologists during the 33 months prior to the SeeDP AI-assisted daily QC

system trial run had relatively little practical influence on detecting or correcting hidden errors

in pathologic diagnoses. In contrast, 11 hidden errors were corrected within an average of 40.2

days by slide reviews compared to the methods used during that 33-month period. Further,

eight cases of errors were detected within 1.2 days by four pathologists during the 3-month

SeeDP AI-assisted daily QC system trial run period, and corrections were made within an

average of 3.4 days. As a comparison, when the duration and number of human pathologists

were roughly adjusted based on these results, we found that approximately 7–10 times as many

slides could be reviewed by pathologists, compared with conventional methods and nearly

PLOS ONE Improving QC in the routine practice for GI endoscopic biopsy interpretation using AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0278542 December 15, 2022 23 / 31

https://doi.org/10.1371/journal.pone.0278542


100% of GI endoscopy slides can be double-checked by the AI models; approximately 17–30

times as many current potential human errors could be detected within an average of 1.2 days.

Consequently, more active measures could be expected before the erroneous pathology report

is conveyed to the patient. These findings indicate that the AI-assisted daily QC system is a

direct and powerful tool for improving daily QC, in quantitative, qualitative, and time utility

aspects, while also being clinically influential, from a patient safety aspect.

As seen in Table 9, errors detected and corrected by the AI models were mostly human

errors, rather than those caused by the diagnostic ability of the pathologist or the difficulty of

the diagnosis itself. Such potential human errors are often difficult to recognize by medical

record officers or pathologists by simply reviewing the diagnostic information, especially when

lesions are missed in the microscopic FOV or when an incorrect diagnosis is made without

typographical errors. Many studies have shown that AI models can improve the diagnostic

accuracy of cases that are difficult to diagnose, and have a positive impact on junior patholo-

gists and trainees [29, 56]. However, they do not provide substantive assistance to pathologists

with sufficient experience. Additionally, because the concept of ambiguity always exists in the

field of pathology, many pathologists worldwide are continuously endeavoring to reduce dis-

crepancies through periodic discussions and agreements; this problem may be an everlasting

obstacle for pathologists to overcome. Further, most pathologists try to perform an accurate

diagnosis (or minimize the possibility of a misdiagnosis) when they encounter cases that are

considered difficult to diagnose. Some of the actions pathologists take for patients (and for

themselves too) include preparing recut or serial cuts, ordering ancillary tests, referring to past

slides, thoroughly reviewing medical records, seeking secondary opinions or advice from

experts, reviewing similar cases, and looking up related literature. It is doubtful that the AI

model could considerably replace the diagnostic capabilities of pathologists compared to the

result of the previously mentioned accumulated efforts. The real problem may be when pathol-

ogists sign out in daily practice without realizing the possibility of making mistakes. As dis-

cussed above, unpredictable simple human errors ultimately result in errors that are difficult

to detect in conventional monthly random reviews. A lot of such hidden human errors, like

those mentioned above have likely persisted, and some of these hidden errors can baffle

pathologists months or years later. Moreover, patients may have to face unnecessary burdens.

Our system has certain limitations, but we have plans to incrementally

make our system more robust

AI systems are onerous to utilize with the emergence of data with new characteristics. For exam-

ple, if detection is required for a minimum number of lesions (a cause of FNs), it is expected

that the proposed model will have difficulty in responding to the request because the model is

operated based on spatial information. It is also necessary to strengthen the ability to accurately

categorize a small number of histological properties that cause FPs, including some tissue arti-

facts and atypical reactive changes. Although relearning these specific cases is expected to

improve performance, there are practical difficulties in preparing training data for all peculiar

cases. Therefore, as in previous studies, methods for continuous model updates based on active

learning can be used for continuous DNN learning, as an alternative measure [57–59].

Additionally, impact analysis on various factors needs to be conducted to establish a gen-

eral-purpose AI system that can be used by external organizations. Slightly different images

can be produced even if the same scanner from the same company is used. Therefore, it is nec-

essary to develop robust models that can produce consistent performance by collecting data

on various cases, including the color heterogeneity problem, which is widely considered, and

conducting an impact analysis on various factors.
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Although the proposed classifier models exhibit appropriate functions and numerous con-

tributions within the actual QC system, we aimed to produce more enhanced classifier models

in further research. Approaches from two main perspectives are deemed necessary to improve

the performance of the proposed models, with the first concerning the data training perspec-

tive. In the present study, we observed that the prediction capabilities of the model decreased

for some cases with the expansion of data. This could be due to the typical limitations of

DNN-based classification models, i.e., they cannot respond well to cases outside the range of

the learned data. However, the model needs to respond to more diverse cases to enable its

usage in practice. This particular problem can be mitigated through the expansion of learned

data. A typical alternative involves producing a consistent training system based on active

learning to induce consistent learning in the classifier model, updating a wider range of data.

The second perspective concerns performance enhancement from the model architecture per-

spective. Although the present study actively utilized well-known CNN-based architecture,

novel approaches have been recently investigated to overcome the limitations of CNNs. A typi-

cal example is the Vision Transformer (ViT), which is actively used in various imaging studies

[60, 61]. The ViT model has a more simplified structure than the CNN architecture, and it

mainly utilizes regional information. This simplified structure enables the implementation of

operations by minimizing the loss of information in the entire image. The performances of

patch classifiers and WSI classifier models themselves can be improved through the active uti-

lization of models such as ViT, which can overcome the limitations of CNNs.

Significance of our study and suggestions regarding our system

The limitations of DP prevent the complete replacement of the conventional pathology methods

of reviewing glass slides through a microscope. However, technological developments will

enable a continuous increase in device performance, gradual reduction of infrastructure con-

struction costs, and vitalization of the development of WSI or DP-based AI models and soft-

ware. In future, all pathologists will choose WSI as the primary diagnostic tool, and they will

rely on computation software for more complex and significant tasks, completely replacing

microscopes in the pathologists’ office with 100% DP. Thus, it may be better to use the AI mod-

els developed in the present study as pre-analytic screening tools, rather than as post-analytic

QC tools. The AI models could provide an excellent AI-assisted pathology solution that can ter-

minate the inspection of screened negative cases, without the confirmation of a human patholo-

gist. However, we do not have to wait for this level of high-end technology to completely change

our work life because we already possess technology that can be applied immediately to our

daily work and is useful to pathologists, clinicians, and patients. When the purpose of utilization

was slightly altered, we confirmed that its application to real-world clinical practice became pos-

sible. There have been studies on pre-analytic QC AI models that have attempted to apply AI as

a QC tool [35, 62]. Each focused on the QC of the WSI scan quality itself, or to enhance the per-

formance of the AI models. However, this was the first large-scale study wherein an AI model

was developed, applied, and operated as a daily fast QC tool in the post-analytic phase for the

enhancement of pathologic diagnosis quality management by quickly detecting and responding

to potential human errors and ultimately enhancing patient safety.

In conclusion, we developed AI models with reliable performance and applied them as

post-analytic daily fast QC tools in the routine practice of GI endoscopic interpretation. The

AI-assisted daily QC system that we developed and established demonstrated notable improve-

ments in QC, in quantitative, qualitative, and time utility aspects. Ultimately, we developed an

independent AI-assisted post-analytic daily QC system that was clinically applicable and influ-

ential, which could enhance patient safety.
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ations: AI (artificial intelligence), SeeDP (Seegene Medical Foundation’s AI-assisted Digital

Pathology Total Solution), WSI (whole slide image).

(DOCX)

S3 Fig. Display of the WSI viewer, zoomed in and out. The viewer allows 3DHISTECH WSI

files in mrxs file format to be loaded directly; it has a fast image loading speed and excellent

scalability because it can be installed in a desktop computer as well as a laptop, mobile phone,

or tablet. When the slides list is searched in the SeeDP system and the row of a specific slide is

double clicked, the WSI viewer for that slide appears. The image location can be moved by

dragging the screen, and the mouse scroll button can be used to zoom in/out, while the mini-

map in the upper right corner can be used to identify the location displayed on the screen.

Abbreviations: WSI (whole slide image).

(DOCX)

S4 Fig. Display of serial-section WSIs. When there are multiple slides from a single specimen

(presence of a recut, serial, or deeper section, or the presence of more than two blocks), the

WSI viewer provides a related slide list on the upper left corner to view related WSIs together.

Abbreviations: WSI (whole slide image).

(DOCX)
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S5 Fig. S5.1 Fig. Menu buttons. The function buttons in the lower left corner can be used to

run various WSI-related functions. From the left, the functions are as follows: perform rota-

tion, visualization of the AI heatmap and prediction, split the screen, position movement, mea-

surement, annotation insertion, annotation lookup, annotation storage, and annotation

deletion functions. Abbreviations: AI (artificial intelligence), WSI (whole slide image). S5.2

Fig. Rotation of the whole slide image. S5.3 Fig. Split screen. S5.4 Fig. Annotation.

(ZIP)

S6 Fig. WSI viewer–Visualization of the heatmap and prediction of the AI model. We

developed a visualization function that would allow slide-level and patch-level information to

be viewed on top of a single WSI in the WSI viewer. The final slide-level prediction is marked

with a text label on the bottom of the mini-map in the upper right corner of the WSI viewer.

Moreover, patch-prediction information is produced in heatmap format, and based on loca-

tion information for each patch, prediction information is expressed on top of each patch

within the WSI. Class M, D, and N patches are expressed as red, blue, and no heat. In particu-

lar, heatmap mask-on and -off can be enabled by simply right-clicking while viewing the slides

through the WSI viewer. The basic functions of the WSI viewer, such as zoon in/out and rota-

tion, can be used to simultaneously view the WSI and heatmap at all magnifications (0.5x–

40x). Accordingly, when a human pathologist reviews WSIs, he or she can intuitively check

how AI models inferred the parts of a single WSI while turning the heatmap on and off at all

magnifications. Abbreviations: AI (artificial intelligence), WSI (whole slide image), M (Malig-

nant), D (Dysplasia), N (Negative for dysplasia).

(DOCX)

S7 Fig. WSI and heatmap of the only case of severe discordance. This case was classified as

class M by pathologic diagnosis and class N by AI prediction, and was only case of severe dis-

cordance. It was revealed that this case was classified as class M based on a diagnosis of “TA,

HGD”, but it was an ambiguous case with small lesion size and possible interobserver discrep-

ancy in the dysplasia grading. The AI model showed red heat at the patch-level in the corre-

sponding region, but the final prediction was class N. Abbreviations: AI (artificial

intelligence), WSI (whole slide image), M (Malignant), N (Negative for dysplasia), TA (tubular

adenoma), HGD (high grade dysplasia).

(DOCX)

S8 Fig. S8.1 Fig. A representative false positive case (N to M) in the gastric model. Class M

prediction with red heat on the ulcer-related change areas. This case was diagnosed as HCG

with ulcer. Abbreviations: M (Malignant), N (Negative for dysplasia), TA (tubular adenoma),

HCG (H. Pylori-associated chronic gastritis). S8.2 Fig. A representative false positive case (N

to D) in the gastric model. Class D prediction with blue heat on the darkly stained and tangen-

tially sectioned foveolar epithelium with knife marks. No heat in the other xanthomatous

areas. This case was diagnosed as xanthoma. Abbreviations: D (Dysplasia), N (Negative for

dysplasia). S8.3 Fig. A representative false positive case (N to M) in the gastric model. Class M

prediction with red heat in erosion-related change areas. This case was diagnosed as xanthe-

lasma with erosion. There was no heat in other xanthomatous areas. Abbreviations: M (Malig-

nant), N (Negative for dysplasia). S8.4 Fig. The only false negative case (D to N) in the gastric

model. Class N prediction with focal blue and red heat only in the dysplastic area. This case

was diagnosed as TA, LGD. Abbreviations: D (Dysplasia), N (Negative for dysplasia), TA

(tubular adenoma), LGD (low grade dysplasia). S8.5 Fig. Representative cases for NET of the

stomach and colon. Most of these cases were predicted as class N with no heat in both models.

Abbreviations: N (Negative for dysplasia), NET (neuroendocrine tumor). S8.6
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Fig. Histopathologic findings of a specific case diagnosed as “favor NET” and predicted as

class M in the gastric AI model. While low-magnification findings seemed to show NET, high-

magnification findings indicated that this case needed to be differentiated from “oxyntic gland

adenoma exhibiting infiltrative growing pattern” and “gastric adenocarcinoma of the fundic-

gland type”. Abbreviations: AI (artificial intelligence), M (Malignant), NET (neuroendocrine

tumor). S8.7 Fig. Histopathologic findings of a specific case of “s/f MALT lymphoma” and pre-

dicted as class N in the gastric AI model. This case involved HCG accompanied by lymphoid

follicles. Localized lymphoepithelial body-like lesions were found near the lymphoid follicles.

The case was signed out with a descriptive diagnosis of Wotherspoon grade 3. Abbreviations:

AI (artificial intelligence), N (Negative for dysplasia), MALT (mucosa-associated lymphoid tis-

sue), HCG (H. Pylori-associated chronic gastritis).

(ZIP)

S1 File. Raw data from Tables 6 and 7.

(XLSX)

Acknowledgments

The authors thank Yul Ri Chung and Sang Hwa Lee (Pathology Center, SMF, Seoul, Korea)

for reviewing and annotating WSI slides. Additionally, we would like to thank Editage (www.

editage.co.kr) for English language editing.

Author Contributions

Conceptualization: Young Sin Ko, Min-Ju Kim, Mun Yong Yi.

Data curation: Young Sin Ko, Yoo Mi Choi, Min-Ju Kim, Seokju Yun.

Formal analysis: Mujin Kim, Youngjin Park, Murtaza Ashraf, Willmer Rafell Quiñones

Robles, Jiwook Jang, Seokju Yun, Yuri Hwang, Hani Jang.

Funding acquisition: Mun Yong Yi.

Investigation: Mujin Kim, Youngjin Park, Murtaza Ashraf, Willmer Rafell Quiñones Robles.

Methodology: Young Sin Ko, Yoo Mi Choi, Mujin Kim, Youngjin Park, Murtaza Ashraf, Will-

mer Rafell Quiñones Robles, Min-Ju Kim.

Project administration: Young Sin Ko, Mujin Kim, Jiwook Jang.

Resources: Jiwook Jang, Seokju Yun.

Software: Mujin Kim, Youngjin Park, Murtaza Ashraf, Willmer Rafell Quiñones Robles,

Jiwook Jang, Yuri Hwang, Hani Jang.

Supervision: Young Sin Ko, Mun Yong Yi.

Validation: Young Sin Ko, Yoo Mi Choi, Mujin Kim, Youngjin Park, Murtaza Ashraf, Will-

mer Rafell Quiñones Robles, Min-Ju Kim, Seokju Yun.

Visualization: Yuri Hwang.

Writing – original draft: Young Sin Ko, Mujin Kim, Yuri Hwang.

Writing – review & editing: Yoo Mi Choi, Youngjin Park, Murtaza Ashraf, Willmer Rafell

Quiñones Robles, Min-Ju Kim, Jiwook Jang, Seokju Yun, Hani Jang, Mun Yong Yi.

PLOS ONE Improving QC in the routine practice for GI endoscopic biopsy interpretation using AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0278542 December 15, 2022 28 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0278542.s014
https://www.editage.co.kr
https://www.editage.co.kr
https://doi.org/10.1371/journal.pone.0278542


References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics

2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA

Cancer J Clin. 2021; 71: 209–249. https://doi.org/10.3322/caac.21660 PMID: 33538338

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71: 7–33.

https://doi.org/10.3322/caac.21654 PMID: 33433946

3. Hong S, Won YJ, Lee JJ, Jung KW, Kong HJ, Im JS, et al. Cancer statistics in Korea: Incidence, mortal-

ity, survival, and prevalence in 2018. Cancer Res Treat. 2021; 53: 301–315. https://doi.org/10.4143/crt.

2021.291 PMID: 33735559

4. Choi KS, Park EC, Shin HR, Kim CM, Oh DK. National Cancer Screening Program in Korea. J Cancer

Prev. 2004; 9: 116–122.

5. Kim Y, Jun JK, Choi KS, Lee HY, Park EC. Overview of the National Cancer Screening Programme and

the cancer screening status in Korea. Asian Pac J Cancer Prev. 2011; 12: 725–730. PMID: 21627372

6. Park B, Choi KS, Lee YY, Jun JK, Seo HG. Cancer screening status in Korea, 2011: Results from the

Korean National Cancer Screening Survey. Asian Pac J Cancer Prev. 2012; 13: 1187–1191. https://doi.

org/10.7314/apjcp.2012.13.4.1187 PMID: 22799303

7. Metter DM, Colgan TJ, Leung ST, Timmons CF, Park JY. Trends in the US and Canadian pathologist

workforces from 2007 to 2017. JAMA Netw Open. 2019; 2: e194337. https://doi.org/10.1001/

jamanetworkopen.2019.4337 PMID: 31150073

8. Renshaw AA, Gould EW. Measuring errors in surgical pathology in real-life practice: Defining what does

and does not matter. Am J Clin Pathol. 2007; 127: 144–152. https://doi.org/10.1309/

5KF89P63F4F6EUHB PMID: 17145620

9. Renshaw AA, Pinnar NE, Jiroutek MR, Young ML. Blinded review as a method for quality improvement

in surgical pathology. Arch Pathol Lab Med. 2002; 126: 961–963. https://doi.org/10.5858/2002-126-

0961-BRAAMF PMID: 12171496

10. Association of Directors of Anatomic Surgical Pathology, Nakhleh R, Coffin C, Cooper K. Recommen-

dations for quality assurance and improvement in surgical and autopsy pathology. Am J Clin Pathol.

2006; 126: 337–340. https://doi.org/10.1309/2TVBY2D8131FAMAX PMID: 16880147

11. Nakhleh RE. What is quality in surgical pathology? J Clin Pathol. 2006; 59: 669–672. https://doi.org/10.

1136/jcp.2005.031385 PMID: 16803945

12. The Korean Society of the Pathologists, editors. The red. Book 2021 histopathology (S). The Korean

Society of the Pathologists; 2021. pp. 1–25.
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