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Drug discovery inspired by bioactive small molecules from nature
Seyun Kim, Seol-Wa Lim and Jiyeon Choi

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

ABSTRACT
Natural products (NPs) have greatly contributed to the development of novel treatments for
human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic
chemical compounds, primary and secondary metabolites from medicinal plants, fungi,
microorganisms, and our bodies are promising resources with immense chemical diversity and
favorable properties for drug development. In addition to the well-validated significance of
secondary metabolites, endogenous small molecules derived from central metabolism and
signaling events have shown great potential as drug candidates due to their unique metabolite-
protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific
and technological advances including metabolomics tools, chemoproteomics approaches, and
artificial intelligence-based computation platforms, and explore potential strategies to overcome
the current challenges in NP-driven drug discovery.
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Introduction

Humans has long relied on natural products (NPs) to
treat and manage various diseases including infection,
cancer, and metabolic disorders (e.g. obesity and type
2 diabetes) (Koehn and Carter 2005; Baker et al. 2007;
Cragg and Newman 2013; Atanasov et al. 2021). Histori-
cal records from Mesopotamia dating back to 2,600 BC
clearly demonstrate that early civilizations were aware
of the medicinal properties of approximately 1,000
plants. Traditional Asian medicine is also based on the
knowledge obtained from thousands of years of
disease management and treatment using NPs. Since
the nineteenth century, the concept of rational drug
discovery began to flourish with the successful iso-
lation of analgesic chemicals from opium and many
bioactive compounds such as quinine, nicotine, and
rapamycin from various natural sources. Driven by
the industrial need to maximize production yields
and quality, natural compounds such as salicylic acid
have been successfully synthesized through chemical
procedures. The discovery of penicillin further broad-
ened our interests by recognizing the potent activities
of microbial NPs. Crude and semi-pure extracts from
medicinal plants, animals, and microbes including
fungi provided the best available medications in this
early period. However, with the introduction and vali-
dation of the receptor theory of drug action in pharma-
cology, specific chemical compounds in crude NP

extracts were identified as the primary factors mediat-
ing the biological and pharmacological properties of
these extracts. Well-known examples of approved
drugs derived from NPs include penicillin (antibacter-
ial), morphine (analgesic), artemisinin (antimalarial),
fingolimod (immunosuppressor), rapamycin (immuno-
suppressor, anticancer), and paclitaxel (anticancer).
Small bioactive molecules from NPs are also widely
used to improve biological activity and pharmaceutical
properties, as demonstrated by the use of salicylic acid
for aspirin production.

Our intense efforts to investigate NPs as sources of
novel human therapeutics became fruitful between the
1970s and 1980s, leading to pharmaceutical develop-
ment influenced by non-synthetic molecules. While clas-
sical and combinatorial chemical compound libraries are
competitively emerging, mainly due to their favorable
physicochemical properties and lower toxicity, NPs
have been continuously considered an attractive
source of compounds for drug discovery (Figure 2).
Nearly 25% of new drugs approved worldwide in the
past four decades are NPs and their derivatives,
whereas another 25% are synthetic drugs with an NP
pharmacophore or drugs that mimic the structure and
properties of an NP (Newman and Cragg 2020). These
novel drugs have been used to treat a wide variety of
disorders including infectious (bacterial, fungal, para-
sitic, and viral), immunological, cardiovascular,
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neurological, inflammatory, and related diseases, as well
as cancer.

Compared to synthetic small molecules, the most
valuable feature of NPs as a resource for drug discovery
is their structural scaffold complexity (Rodrigues et al.
2016; Yñigez-Gutierrez and Bachmann 2019; Lautié
et al. 2020). All small molecules found in nature are
metabolites, which are defined as intermediate or final
products of metabolism (e.g. synthesis and breakdown
of carbohydrates, proteins, fats, and nucleic acids) cata-
lyzed by various arrays of cellular enzymes. Primary
metabolites are the chemical compounds produced
from central metabolic processes, thus contributing to
the regulation of energy homeostasis, growth, and
reproduction. Secondary metabolites derived from
central metabolic pathways in plants and fungi are not
required for homeostatic metabolic processes.
However, they offer a wide array of new chemical struc-
tures, many of which have numerous biological and
pharmacological properties against virtually every exist-
ing disease including cancer (Seca and Pinto 2018; Keller
2019). In this short review, we summarize how our
knowledge of the biological activities of primary metab-
olites can be used for drug discovery. We then highlight
the importance of secondary metabolite activities and
finally focus on current/future strategies to harness
their therapeutic properties and promote drug discovery
and development.

Emerging roles of primary metabolites as
signaling factors

Primary metabolites have long been viewed as a simple
fuel source for energy metabolism or as fundamental
substrates required for the degradation and biosynthesis
of macromolecules. However, several recent discoveries
have demonstrated that certain primary metabolites can
trigger or mediate potent biological activities (Figure 1)
(Fang et al. 2001; Schreiber 2005; Keller et al. 2012;
Shimazu et al. 2013; Lee et al. 2015; Mills et al. 2018;
Bae et al. 2020; Gomes et al. 2020; Harayama and
Shimizu 2020; Lee et al. 2020c; Martínez-Reyes and
Chandel 2020; Shyer et al. 2020; Lee et al. 2021). Particu-
larly, these metabolites can control cellular signaling
pathways, which are the main targets for drug develop-
ment (Li and Snyder 2011; Wang and Lei 2018; Milanesi
et al. 2020). These findings suggest that our cellular and
physiological systems have evolved to utilize specialized
endogenous small molecules as primary or secondary
signaling messengers to fine-tune various biological
events. Therefore, identifying specific cellular metab-
olite-protein interactions provides insights into the
development of synthetic drug molecules with

enhanced properties such as efficacy and stability
(Piazza et al. 2018). Endogenous small molecules can
thus be classified depending on their modes of inter-
action (Figure 1).

First, small molecules in our body can act as ligands
toward specific receptor molecules. In addition to the
well-known involvement of hydrophobic steroid hor-
mones in the activation of nuclear receptor proteins
(Mangelsdorf et al. 1995), primary metabolites (e.g. ade-
nosine, sphingosine-1-phosphate, free fatty acids, amino
acid neurotransmitters) also stimulate key signaling
pathways for cellular responses such as cell growth,
differentiation, immunity, neuronal activation, and mor-
phological changes by directly binding and stimulating
their cognate cellular receptors (Schreiber 2005; Jacob-
son and Gao 2006; Traynelis et al. 2010; Blaho and Hla
2014; Milligan et al. 2017).

Furthermore, our metabolism produces second mes-
senger molecules such as cyclic nucleotides, inositol
polyphosphates, and bioactive lipids upon activation
of target cells (Berridge and Irvine 1984; Conti 2000;
Murad 2006; Newton et al. 2016). The production and
degradation of these second messengers are tightly
regulated by the dynamic changes of cellular and phys-
iological programs such as differentiation, cellular death,
development, and tissue regeneration. Recent studies
on cellular nutrient and energy sensing continue to
uncover unexpected metabolite-protein interactions
(e.g. leucine-sestrin, inositol pyrophosphate-Akt)
(Alvarez et al. 2010; Chakraborty et al. 2010; Lee et al.
2016; Lee et al. 2020c; Wolfson et al. 2016; Li et al.
2017). Moreover, druggable targets can be further devel-
oped based on our knowledge of the allosteric inter-
action between endogenous small molecules and their
effector proteins. Some primary metabolites are also
known to mediate stable interactions with target pro-
teins, suggesting their pivotal roles in coordinating
protein stability. For example, inositol polyphosphate is
known as an essential factor to mediate capsid for-
mation for HIV (human immunodeficiency virus) viral
particle assembly, suggesting that IP6 (inositol hexaki-
sphosphate) metabolism is a promising target for the
development of new anti-HIV therapeutics (Dick et al.
2018). The stabilization of the molecular complexes
(e.g. RNA editing enzyme ADAR2, Integrator) by inositol
polyphosphates is another example demonstrating the
significance of stable metabolite-protein interactions
for the development of novel therapeutics (Macbeth
et al. 2005; Lin et al. 2022).

Besides the above-mentioned non-covalent metab-
olite-protein interactions of cellular metabolites, some
metabolic biomolecules can also lead to various post-
translational modifications (PTMs) (Figlia et al. 2020).
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In addition to ATP, which is an essential substrate for
protein phosphorylation, many other metabolites can

also modify and modulate target protein functions. For
example, nitric oxide (NO), a product derived from
arginine metabolism, is the primary source for protein
S-nitrosylation, a process that leads to changes in the
activities, subcellular localization, and stability of target
proteins (Jaffrey et al. 2001; Stomberski et al. 2019).
S-adenosyl methionine, acetyl-CoA, and other metab-
olites (e.g. alpha-ketoglutarate) can indeed control
many signaling pathways and mediate epigenetic
changes through unique PTMs (e.g. methylation, acety-
lation, succinylation) (Kaelin and McKnight 2013). The
identification of other PTMs and their responsible metab-
olites could provide specific molecular targets and
metabolism for novel drug discovery and development.

Recent advances in the characterization of primary
metabolites and endogenous small molecules as signal-
ing factors have greatly expanded our understanding of
the vast potential of NPs as sources of therapeutic com-
pounds. Fundamental structural and biological infor-
mation on the specific covalent and/or non-covalent
interactions among bioactive primary metabolites and
target proteins provide a valuable resource for the
development of efficient small molecules and thera-
peutic compounds based on known druggable targets.
In addition to targeting metabolite-protein interactions,
approaches to modulate selective metabolites will also
become an important strategy to control serious dis-
eases such as cancer (Wang and Lei 2018; Milanesi
et al. 2020; Stine et al. 2022). As exemplified by recent
studies, increasing the levels of toxic metabolites can
be selectively and efficiently kill tumor cells (Kim et al.
2015; Lee et al. 2020b). In summary, the primary metab-
olites in our cells and tissues are less structurally
complex compared to secondary metabolites from

Figure 1. Biological actions of endogenous small molecules in the control of cellular signaling and metabolism via metabolite-protein
interactions.

Table 1. Selected examples of bioactive NP extracts.
Sources In vitro & biological effects (References)

Phloms lanata Anti-oxidative effects, T cell activity control
(Couladis et al. 2003; Karali et al. 2016)

Microalgae
Euglena tuba

Anti-tumor effects (Shanab et al. 2012; Gupta et al.
2022)

Holothuria atra Anti-tumor effects (Nursid et al. 2019; Cui et al.
2022; Nugroho et al. 2022)

Polyalthia evecta Anti-tumor effects (Machana et al. 2012)
Solieria robusta Anti-tumor effects (Yen et al. 2014)
Tagetes erecta Anti-oxidative, anti-tumor effects (Burlec et al.

2021; Cui et al. 2021)
Sorbus commixta
Sorbus acuparia,
Sorbus caucasica

Anti-tumor, anti-bacterial effects (Park et al. 2017)

Populus tremuloides Anti-microbial effects (Turumtay et al. 2017; St-
Pierre et al. 2018)

Jatropha gossypiifolia Antmicrobial, anti-inflammatory, antidiarrheal,
antihypertensive, anti-tumor effects
(Félix-Silva et al. 2014)

Terminalia macroptera Anti-malarial, anti-inflammatory, anti-psychotic
effects (Pham et al. 2014; Ior et al. 2021)

Onopordum acanthium Anti-inflammatory, anti-tumor, cardiotonic effects
(Lajter et al. 2015; Robertovna et al. 2019)

Brown algae
(e.g. Ascophyllum
nodosum)

Anti-tumor, anti-diabetic effects (Austin et al.
2018; Gabbia and Martin 2020)

Allium sativum Anti-oxidative, anti-tumor, lipid-lowering effects,
gastrointestinal motility control (Kimura et al.
2017; Moon et al. 2022)

Mangifera indica Anti-oxidative, anti-inflammatory, anti-diabetic,
immunomodulatory, anti-tumor effects
(Noratto et al. 2010; Jung et al. 2022)

Agrimonia pilosa Anti-oxidative, anti-inflammatory, anti-tumor,
analgesic effects (Feng et al. 2022; Wen et al.
2022)

Clerodendrum
trichotomum

Anti-inflammatory, anti-microbial, anti-viral, anti-
tumor, anti-diabetic effects (Kim et al. 2009; Jang
et al. 2021)

Geranium thunbergii Anti-tumor, anti-obesity effects (Sung et al. 2011;
Choi et al. 2015; Lee et al. 2020a)

Colored corn
(Zea mays L.)

Ant-bacterial, anti-oxidative, anti-inflammatory,
anti-diabetic effects, neuroprotection (Colombo
et al. 2021; Kim et al. 2021b; No et al. 2021)
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other organisms, but endogenous small molecules and
their control of cellular signaling should be further eluci-
dated and applied for the development of next-gener-
ation drugs.

Pharmacologically-active secondary
metabolites as major resources for the
discovery of potent drugs

Many medicinal NPs derived from plants, fungi, and
microorganisms have long been used to alleviate and
cure a wide range of medical conditions such as infec-
tious diseases, inflammatory reactions, obesity/diabetes,
cardiovascular disease, and cancer, as well as psychiatric
disorders (Dias et al. 2012; Atanasov et al. 2021). Our
information on these potent effects of extracts and/or
single compounds derived from NPs have been

Table 2. Selected list of bioactive secondary metabolites derived
from plant NPs.

Metabolites Sources
In vitro & biological effects

(References)

Avenanthramide Avena sativa Anti-oxidative, anti-
inflammatory actions
(Collins 1989; Koenig et al.
2016; Lim and Kang 2020)

Apigenin Fruits, vegetables Anti-oxidative, anti-
inflammatory, anti-tumor
effects (Bao et al. 2013;
Rahmani et al. 2022)

Baicalein Scutellaria species Anti-oxidative, anti-bacterial,
anti-inflammatory, anti-
tumor effects
(Chandrashekar and Pandi
2022)

Betulinic acid Plants (Betula sp.) Anti-oxidative, anti-
inflammatory,
hepatoprotective, anti-
tumor effects (Ríos and
Máñez 2018; Park et al.
2021)

Chloroquine Cinchona sp. Anti-malarial, anti-tumor,
immune suppressive,
autophagy-inhibitory
effects (Zhou et al. 2020;
Sharma et al. 2021)

Chrysin Honey, vegetables,
(Pelargonium crispum,
Passiflora incarnate,
etc.)

Anti-oxidative, anti-
inflammatory, anti-tumor,
anti-nociceptive effects,
neuroprotection (Mani and
Natesan 2018; Hong et al.
2020; Stompor-Gorący
et al. 2021)

Cynarin Cynara cardunculus Anti-oxidative,
antihypertensive, anti-
inflammatory, anti-
atherosclerotic, anti-HIV,
anti-tumor, cholesterol-
lowering effects (Topal
et al. 2016; Hakkou et al.
2017; Kim et al. 2022a)

Decursin Angelica gigas Anti-inflammatory, anti-
tumor, anti-angiogenic
effects (Yim et al. 2005;
Shehzad et al. 2018;
Ahmed et al. 2020)

Ginsenoside Panax ginseng Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
aging, cognitive
improvement effects
(Ratan et al. 2021; Hou
et al. 2022)

Hesperidin Vegetables Anti-oxidative, anti-tumor,
anti-inflammatory effects,
gastrointestinal motility
control (Garg et al. 2001;
Hwang et al. 2020)

Honokiol Magnolia officinalis Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
diabetic effects, protective
actions in various organs
(e.g. liver, brain) (Park et al.
2020; Rauf et al. 2021)

Kazinol Broussonetia kazinoki Anti-tumor, autophagy-
promoting effects (Kim
et al. 2015; Lee et al. 2022)

Lapachone Tabebuia avellanedae Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
aging (Gomes et al. 2021)

Luteolin Aromatic flowering
plants, vegetables,

Anti-oxidative, anti-
inflammatory, anti-

(Continued )

Table 2. Continued.

Metabolites Sources
In vitro & biological effects

(References)

Salvia tomentosa,
Aiphanes aculeate

atherosclerotic, anti-
thrombogenic effects,
neuroprotection,
cardioprotection, mood
control (Mahdiani et al.
2022; Sur and Lee 2022)

α-Mangostin Garcinia mangostana Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
diabetic, anti-obesity,
hepatoprotection,
cardioprotection (Zhang
et al. 2017; John et al.
2022)

Quercetin Fruits, vegetables Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
diabetic, anti-aging effects
(Deepika 2022; Jan et al.
2022)

Rosmarinic acid Boraginaceae family and
the subfamily
Nepetoideae of the
Lamiaceae family

Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
depressive effects (Moore
et al. 2016; Luo et al. 2020;
Jeong et al. 2021)

Resveratrol Red grapes, blueberries,
and many food
products (soy, nuts,
etc)

Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
diabetic, anti-aging,
autophagy-promoting
effects (Fu et al. 2021;
Zhang et al. 2021)

Plumbagin Plumbago zeylanica Anti-oxidative, anti-tumor,
anti-inflammatory, anti-
bacterial effects (Hwang
et al. 2015; Cai et al.2020)

Rutin Fruits (e.g. oranges,
lemons, grapes)

Anti-oxidative, anti-tumor,
anti-inflammatory effects,
hepatoprotection
(Enogieru et al. 2018; Choi
et al. 2021)

Tannic acid Fruits, vegetables Anti-oxidative, anti-tumor,
anti-inflammatory effects,
neuroprotection,
cardioprotection (Luduvico
et al. 2020; Jing et al. 2022;
Kim et al. 2022b)
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continuously updated (Tables 1 and 2). The potent
activities of these NPs largely originate from their sec-
ondary metabolites, which are organic compounds pro-
duced through the modification of primary metabolites.
Unlike primary metabolites, secondary metabolites and
related metabolic reactions are involved in ecological
functions (e.g. pathogen sensing and defense mechan-
isms) (Li et al. 2020).

Structural diversity and complexity are the most
important features of secondary metabolites as an
essential resource for drug in competition with synthetic
chemical libraries (Hong 2011; Lautié et al. 2020).
Approximately 40% of the chemical scaffolds from NPs
are not found in commercial synthetic compounds
(Henkel et al. 1999). Furthermore, 83% of the ring
scaffolds in NPs are not present in synthetic molecules
(Hert et al. 2009). Complex molecules can more readily
interact with a greater variety of chemical structures
and modifications, suggesting a superior potential for
secondary metabolites to complement the spatial
characteristics of target proteins. Although many sec-
ondary metabolites do not fit into drug-likeness stan-
dards such as Lipinski’s ‘rule of five’ (e.g. logP≤ 5,
molecular weight≤ 500 Da, number of hydrogen bond
acceptors≤ 10), they exhibit more favorable metabolic
and pharmacokinetic properties such as absorption, dis-
tribution, metabolism, and excretion/toxicity than syn-
thetic molecules (Müller-Kuhrt 2003; Atanasov et al.
2021).

The journey from the identification of promising bio-
active secondary metabolites to drug discovery indeed
entails a series of demanding processes (Figure 2). The
therapeutic potential of secondary metabolites
depends on the quality and quantity of the bioactive
chemicals in medicinal organisms, which in turn is
influenced by various environmental factors (e.g.
growth conditions, age, climate changes). The purifi-
cation of bioactive metabolites involves various strat-
egies such as combinatorial chemistry, isolation assays,
and efficacy-based high-quality fractionation. It is also
critical to avoid the replication of previous efforts by cor-
rectly identifying known compounds. The determination
of de novo structure of novel compounds has greatly
benefited from recent advances in spectroscopic tech-
niques such as high-resolution nuclear magnetic reson-
ance (NMR) technologies. When the biological activity
profile of a therapeutic candidate meets the optimal cri-
teria for potency and selectivity, structure–activity
relationship (SAR) studies are then conducted and
large-scale purification processes are developed. Once
synthetic modification methods become feasible, hit-
to-lead optimization is further accelerated by conven-
tional medicinal chemistry approaches.

Strategies for accelerating natural
metabolite-driven drug discovery

To continue the long and successful history of NPs in
drug discovery and their unique structural diversity,
several challenges must be overcome (Koehn and
Carter 2005; Lam 2007; Atanasov et al. 2021). NP-
derived lead compounds typically exhibit low solubility
or chemical instability, which impedes further drug
development. Many NPs also exhibit high molecular
weight and complex structures, which often results in
poor absorption and complicates the development of
oral formulations. Although naturally active substances
usually make well-qualified lead compounds, many of
them can hardly fulfill the criteria for druggability. There-
fore, the most important step during NP-based drug dis-
covery is the efficient and accurate selection of natural
sources for the extraction and isolation of bioactive
metabolites with desired biological activities and struc-
tural properties (Figure 2).

Technical advancements in the field of metabolomics
— the sensitive, unbiased, and high-throughput study of
complex metabolites — have enabled the characteriz-
ation and quantification of bioactive metabolites from
complex mixtures derived from NPs (Liu and Locasale
2017). Metabolomics can thus be widely applied to the
analyses of pharmaceutically relevant NP resources, as
well as for the discovery of bioactive metabolites
(Wishart 2016; Wolfender et al. 2019; Stuart et al.
2020). Coupling metabolomics with NMR further facili-
tates the acquisition of structural information of potent
metabolites, which saves a substantial amount of time
and labor when extracting or isolating metabolites (Lin
et al. 2008; Gathungu et al. 2020). Efforts have been
recently made to establish a comprehensive experimen-
tal tandem mass spectrometry (MS/MS) database of NPs.
The Global Natural Products Social (GNPS) molecular
networking platform contains thousands of MS datasets
from NP extracts (Wang et al. 2016). Moreover, this plat-
form clusters structurally related metabolites and pro-
vides insights regarding their relationships. In addition
to the GNPS platform, the METLIN (Guijas et al. 2018)
and CSI:FingerID (Dührkop et al. 2015) databases
provide useful information to expedite metabolite
identification by combining fragmentation tree compu-
tation and machine learning.

The subsequent process of identifying the molecular
targets of bioactive NP-derived hits, which is also known
as ‘target deconvolution,’ is essential for underpinning
the mechanisms of drug action, as well as for the appli-
cation of the identified hits to fully elucidate the biologi-
cal processes modulated by a drug candidate
(Terstappen et al. 2007). Recent advancements in
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chemical proteomics have led to the development of
efficient and sensitive methods analyzing the proteins
that the bioactive metabolite of interest binds. Based
on the assumption that a molecule binding to a
protein target alters the target’s stability, two major
methods have been widely applied. Drug affinity-
responsive target stability (DARTS) assesses the
changes in the stability of a protein to proteolysis
upon binding with the ligand (Lomenick et al. 2009).
The cellular thermal shift assay (CETSA) and the stability
of proteins from rates of oxidation (SPROX) rely on the
thermal stabilization of a protein bound to a ligand
(Molina et al. 2013; Strickland et al. 2013). Label-free
metabolites of interest can be used in these platforms,
thus foregoing the need for laborious chemical modifi-
cations such as biotinylation. Combined with MS proteo-
mics, the CETSA-MS and DARTS-MS platforms become
more powerful, thus enabling the acquisition of
protein–ligand interactome data, as well as the accom-
panying physiological changes in biological samples
such as cell lysates, intact cells, as well as tissues (Savitski
et al. 2014; Pai et al. 2015).

Small molecule drug candidates derived from NPs can
be applied by conjugating them with other bioactive
molecules, thus expanding the use of NP metabolites
for the development of novel, bifunctional, and more
effective drugs for disease treatment. The immense
range of bifunctional conjugates used for the develop-
ment of NP hybrid drugs includes antibody–drug conju-
gates and aptamer drug conjugates, PROteolysis
TArgeting Chimeras (PROTAC), and AUTOphagy-TArget-
ing Chimeras (AUTOTAC) (Yoon et al. 2017; Newman
2021; He et al. 2022; Ji et al. 2022). For example, the
PROTAC approach is based on the development of

bifunctional hybrid molecules comprised of a ligand
for an E3 ligase and a ligand for the target protein
joined by a linker, thus leading to the ubiquitination of
the target protein and proteasomal degradation (Nala-
wansha and Crews 2020; Li and Crews 2022). For
example, the PROTAC approach, which is based on the
NP apigenin (i.e. a low estrogenic flavonoid with antican-
cer activity), was developed to specifically target the aryl
hydrocarbon receptor for degradation (Puppala et al.
2008). Wogonin-based PROTACs were also used for the
synthesis of CDK9-targeting PROTACs capable of selec-
tively degrading CDK9 (Bian et al. 2018). Since the first
study with PROTACs was performed with a natural poly-
ketide ovalicin-derived molecule (Sakamoto et al. 2001),
the use of NP-mediated target protein degradation has
emerged as a promising strategy to treat diseases such
as cancer and metabolic disease (Li et al. 2022).

Artificial intelligence (AI) has garnered increasing
attention in various academic fields as well as industrial
decision-making and processing applications because it
allows for fast and efficient analysis and reduces human
errors. Therefore, AI has recently been applied in drug
discovery to analyze molecular properties, identify syn-
thetic routes, and predict bioactive metabolites. By
using various machine learning algorithms coupled
with cloud computing technologies, big data accumu-
lated from drug discovery and development can be pro-
cessed to facilitate the identification of therapeutic
candidates. For example, machine learning software
(e.g. ACD/structure elucidator, Mestrelab Mnova) has
been used for structure determination and dereplication
(Claridge 2009; Elyashberg and Williams 2021). An AI-
based structure prediction tool (DP4-AI) has been also
developed to predict metabolite structures as well as

Figure 2. Strategy of secondary metabolites-inspired drug discovery.
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MS2DeepScore, a machine learning-based mass spectral
similarity-predicting algorithm, to identify metabolites
based on clustering analysis (Howarth et al. 2020;
Huber et al. 2021). Machine learning can also be used
to identify drug targets. For example, BANDIT, a Bayesian
machine-learning algorithm, is used to integrate mul-
tiple data types and predict the targets of nearly 4,000
compounds with a 90% accuracy (Madhukar et al.
2019). Other AI platforms include DEcRyPT (Drug–
Target Relationship Predictor) (Rodrigues et al. 2018),
SuperPred (Gallo et al. 2022), and NPClassifier (Kim
et al. 2021a). The integration and curation of different
forms of NP-derived databases (taxonomic, structural,
genomic, transcriptomic, proteomic, and metabolomics
databases) should be systematically pursued to over-
come the common drawbacks of AI-powered technol-
ogy for drug discovery. In turn, this approach is highly
expected to reduce errors and increase predictability.

Conclusions

The quest for the discovery of new drugs derived from
natural metabolites has led to many breakthroughs
and achievements (e.g. taxol, artemisinin, rapamycin,
and penicillin). In addition to the discovery of several
potent bioactive secondary metabolites, recent
findings on the signaling activities of endogenous
primary metabolites have greatly contributed to the
identification of novel metabolite-protein interactions
(Figure 1), which are critical for disease control. Recent
technological improvements and systems biology
approaches coupled with the application of available
omics technologies and AI-powered computational
strategies will potentially pave the way for the discovery
of new NP-derived drug candidates (Figure 2). In turn,
this strategic integration of various technologies
enables the design of a new generation of first- and
best-in-class drugs. Less than 1% of Earth’s vast biodiver-
sity has been investigated as a potential source of drug
candidates. However, the discovery of novel therapeutic
compounds is being threatened by the massive destruc-
tion of ecosystems (e.g. deforestation) and the conse-
quent loss of species diversity and habitats. Therefore,
promoting NP research through the construction of
metabolite databases and the use of integrative drug
discovery platforms could develop new and more
effective NP-based therapeutics, sooner than expected.
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