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Abstract

We show that a set of disjoint unit spheres iiR¢ admits at most two distinct geometric permutations i 9,
and at most three if 3 n < 8. This result improves a Helly-type theorem on line transversals for disjoint unit
spheres irR3: if any subset of size at most 18 of a family of such spheres admits a line transversal, then there is a
line transversal for the entire family.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A line transversafor a setF of pairwise disjoint convex bodies iR is a line¢ that intersects every
element of 7. A line transversal induces two linear orders Bnnamely the orders in which the two
possible orientations df intersect the elements @f. Since the two orders are the reverse of each other,
we consider them as a singileometric permutatian
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Bounds on the maximum number of geometric permutations were established about a decade ago:
a tight bound of 2 — 2 is known for two dimensions [6], for higher dimension the number is
in Q(n¢~Y [11] and in Qn%~2) [16]. The gap was closed for the special case of spheres by Smorodinsky
et al. [15], who showed that spheres irR¢ admit® (n¢~1) geometric permutations. This result can be
generalized to “fat” convex objects [13].

The even more specialized case of congruent spheres was treated by Smorodinsky et al. [15] and
independently by Asinowski [1]. They proved thatunit circles inR? admit at most two geometric
permutations if: is large enough (the proof by Asinowski holds foral 4). Zhou and Suri established
an upper bound of 16 for adl, if n is sufficiently large, a result quickly improved by Katchalski, Suri
and Zhou [12] and independently by Huang, Xu and Chen [9] to 4.

Building on Katchalski et al.'s proof, we recently showed that there are in fact at most two geometric
permutations [5]. As two geometric permutations are possible forathys bound is optimal. However,
Katchalski et al.'s approach—and therefore our extension to it as well—relies strongly on the assumption
thatn is “sufficiently” large, which implies that any two line transversalsfofire nearly parallel. The
critical threshold has been estimated to be about 31 in three dimensions [8], but it increases exponentially
with d. The proof gives no bound on the number of geometric permutationspheres ifz is smaller
than this threshold.

In the present paper we analyze line transversals for unit spheRssimmore detail. In particular,
we prove thak disjoint unit spheres admit at most three geometric permutations, for,aanyd at most
two geometric permutations far> 9.

We prove these bounds by showing that some pairs of geometric permutatiamsoanpatible Let 7
be a family of disjoint convex objects (not necessarily sphereRYirA pair of geometric permutations,
such as(ABCD, BADO), is incompatibleif no set of four objectsA, B, C, D € F admits both a line
transversal realizingBCD and a line transversal realizilADC.

Our first result is that if the pairéABCD, BADC) and (ABCD, ADCB) are both incompatible for a
family F, thenF admits at most 3 geometric permutations. This fact was, in a sense, already used by
Katchalski et al. [10,11], but proven only for translates in the plane. We give a purely combinatorial proof.
We then show that if the two additional paiiaBCD, ADBC) and (ABCD, CADB) are incompatible as
well, thenF admits at most two geometric permutations that differ by the swapping of a single pair of
adjacent objects.

To prove the incompatibility ofABCD, ADCB), we show that a line transversal that meets three unit
spheresS, U andT in that order makes an angle of less thaf d4&h the line through the centers 6f
andT. This bound is tight, and settles a problem posed by Holmsen et al. [8], who had conjectured the
angle to be at most 60

Next, and maybe the cornerstone of this paper, we prove that theAR@D, BADC) is incompatible
for disjoint unit spheres. This is nearly trivial in the plane, even for arbitrary convex objects, but takes
considerable effort to prove for unit spheres in higher dimensions. The claim does not hold for general
convex sets here, not even for spheres of different radia, or for unit spheres that are allowed to overlap
somewhat. The bound of three geometric permutations for any family of disjoint unit spheres in any
dimension follows.

We then establish that the paif&BCD, ADBC) and (ABCD, CADB) can be compatible only if the
two line transversals make an angle of at leastwi#h each other. We show that it is impossible for any
set of nine unit spheres to admit two line transversals with such a large angle, and thus obtain the bound
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of two geometric permutations for at least nine unit spheres, with the two permutations differing only by
the swapping of two adjacent spheres.

Incompatible pairs and triples of geometric permutations have been considered before, for instance
by Asinowski et al. [2,3], who give a complete characterization of the families of distinct geometric
permutations that can appear for translates in the plane. Asinowski and Katchalski [4] consider even
larger “forbidden families” of geometric permutations.

Surveys of geometric transversal theory are Goodman et al. [7] and Wenger [17]. The latter also
discusses Helly-type theorems for line transversals. A recent result in that area by Holmsen et al. [8]
proves the existence of a numbgrsuch that the following holds: LeF be a set of disjoint unit spheres
in R3. If every at mostzo members ofF have a line transversal, theéhhas a line transversal. Holmsen
et al.'s proof impliesig < 46. Our results implyzg < 18.

The case of 4 n < 8 spheres is not completely resolved by our results: we prove that at most three
geometric permutations exist, but no example realizing more than two is known. We conjecture that in fact
there cannot be more than two geometric permutations for more than three unit spheres. One approact
to proving this would be to show that the pa{’lBCD, ADBC) and (ABCD, CADB) are incompatible
in general. Another approach might make use of our Lemma 1: if a setof unit spheres had three
distinct geometric permutations, then these permutations must realize all three geometric permutations
of some subset of three spheres. Perhaps one can show that it is impossible to add a fourth sphere to suc
a configuration.

2. Incompatible pairs and geometric per mutations

In this section we show that the incompatibility of certain pairs of geometric permutations implies a
bound on the number of geometric permutations. Since these results can be proven purely combinatori-
ally, without referring to the geometry at all, we present them in a combinatorial setting.

Let S be a set oz symbols (which correspond to our spheres). We call a family of permutdgfons

of S reversibleif with every permutationr € P the reverse permutatian® is also in (obviously, the
family of permutations induced by line transversals is reversible). We will call apair®) ageometric
permutation(corresponding to the two permutations realized by a line transversal). For a Subs®t
we write o (S) for the restriction ok to §, and for simplicity we will writeo (ABC) for o ({A, B, C}).
A pair such agABCD, BADC) is anincompatible pair ofP if no four symbolsA, B, C, D € S and two
permutationsr, o> € P exist witho; (ABCD) = ABCDando»(ABCD) = BADC (generalizing the notion
of incompatible pairs for line transversals).

The incompatible pairs we will consider are the following:

() (ABCD, BADC) (Il  (ABCD,ADCB)
() (ABCD,ADBC)  (IV) (ABCD,CADB)

Lemma 1. Let P be a reversible family of permutations Sfwith incompatible pairgl) and (Il). If P
contains at least six permutatiorithat is, at least three geometric permutatipnthen there are three
symbolsA, B, C € S such that the restriction dP to {A, B, C} consists of all six permutations of these
symbols.
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Table 1
Proof thato1 (ABCX) = 02(ABCX)
o1 02 o3

ACBX ACXB AXCB XACB
ABCX ABXC X,B,C () o9/03 () o1/03 X,A,C
ABCX AXBC () o2/03 C.X,B () o1/03 (1) o2/03
ABCX XABC () o1/02
ABXC AXBC () o9/03 () o1/03 X,C,B (1) o2/03
ABXC XABC A,C.X () o1/03 (1) o2/03 X,C,B
AXBC XABC (1) o1/03 A,CX () 02/03 () o01/03
Table 2
All 16 cases involve an incompatible pair
o1 02 03

ACBXY ACXYB AXYCB XYACB

ABCXY ABCYX (I) CBXY o2 (1) CXYB o1 (1) AXYC o> (1) XYAC o1
ABXYC ABYXC (1) CBXY o1 (1) AXYB o9 (1) AXYB o9 () XYAC oy
AXYBC AYXBC (1) ABXY o> (I) CXYB o1 (I) XYCB o5 (I) XYCB o>
XYABC YXABC (1) ACXY o1 (1) AXYB o> (1) AXCB o1 (1) XYCB o>

Proof. The statement is obvious far< 3, so letn > 3 and assume the contrary. There must then be
three symbolsA, B, C € S and three permutations, o,, o3 € P such tha1 (ABC) = 02(ABC) = ABC
ando3(ABC) = ACB.

Let X € S be any other symbol. We claim the{(ABCX) = o>2(ABCX). Indeed, assume this was not
true. Thernr1 (ABCX) ando2(ABCX) must match one of the six rows of Table 1 (possibly after swapping
o1 anday). There are then four possibilities feg(ABCX), indicated by columns in the table. In each
case, there are either three symbols that appear in three different geometric permutatioss i, or
an incompatible pair appears as indicated in the table. This completes the proet for

If n > 4, there must then be two symbdisY € S\ {A, B, C} such thatb; (ABCXY) = o,(ABCXY),
and these two restrictions differ only by the swapping of the adjacent symtbalsd Y. The four rows
of Table 2 show the possible cases that can aris& #ndY appear separated byaec {A, B, C}
in 03(ABCXY), then the three symbolX, Y, Z appear in three different geometric permutations in
01, 02, 03, @ contradiction. SX, Y are consecutive ia3(ABCXY), and by swapping andY we can
assume thak appears befor&. This leaves four possible cases &a(ABCXY), shown in the columns
of Table 2. In all 16 cases, eithef andos or o, andos contain an incompatible pair. Table 2 indicates
the four symbols of the incompatible pair for each case.

Lemma 2. Let P be a reversible family of permutations &fwith incompatible pairgl) and (II). Then
P contains at most six permutatiofthat is, at most three geometric permutatipns

Proof. Again the statement is obvious far< 3, so letn > 4 and assume th& contains at least four
geometric permutations. By Lemma 1, there are then three symbdsC < S and four permutations
01, 02, 03, 04 € P such thair1 (ABC) = 05,(ABC) = ABC, 03(ABC) = BCAando4(ABC) = BAC.
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Table 3
Proof thato1 (ABCX) = 02(ABCX)
o1 g2 03 o4
XBAC BXAC BAXC BACX
ABXC AXBC XBCA () op/o3
BXCA (1) o1/03
BCXA (1) o01/04 (1) 02/04 (1) 03/04 (1) 01/04
BCAX () 02/03
ABXC XABC XBCA () o1/04 (I) o3/04 (I o2/04 (1) o1/04
BXCA () o1/03
BCXA () 02/03
BCAX (1) o1/04 (I) 03/04 (1) 02/04 (1) 01/04
AXBC XABC XBCA () o1/03
BXCA (1) 03/04 (1) 01/04 (1) o2/04 (1) o3/04
BCXA () 02/03
BCAX () o1/03

We claim that for anyX € S\ {A, B, C} we haves,(ABCX) = 02(ABCX). Indeed, assume this is not
true. As before, there are six possibilities fer, (ABCX), o,(ABCX)}, shown in the six rows of Table 1.
The casglXABC ABCX} (the third row of the table) is incompatible pair (ll). In the other two cases
involving ABCX (the first and second row of Table 1), we reverse permutatipi@ndo,, sSwapos and
o4, and exchange the namasandC. This leaves us with the three cases in the bottom rows of Table 1,
indicated again in Table 3. In each case, there are four possibilitieg fABCX) ando4(ABCX) each.
As indicated in Table 3, each of the resulting 48 cases involves an incompatible pair. This completes the
proof forn = 4.

If n > 4, there must then be two symbots Y € S\ {A, B, C} such thatr; (ABCXY) # 02(ABCXY),
and these two restrictions differ only by the swapping of the adjacent symibaigl Y. We assume that
X, Y appear before in o1, o, (otherwise we can again reversgeando, and swapos with o4 and A
with C), and so there are the two cases indicated in the left and right half of Table 4. In the left half
of the table, assume that appears befor& in o3 (otherwise swap the namésandY). There are ten
possibilities foro3(ABCXY), indicated in the table. In each case, eithgandos or o, andos contain an
incompatible pair. Table 4 indicates the symbols of the incompatible pair. In the right half of Table 4, we
similarly considew,. Again an incompatible pair occurs in each casg.

Lemma 3. Let P be a reversible family of permutationsof> 4 symbolsS with incompatible pairgl)
to (IV). ThenP contains at most four permutations, that is, at most two geometric permutations that
differ only in the swapping of a single pair of adjacent symbols.

Proof. Leto, o’ € P. We first prove the followinglaim (i): If two symbolsA and D appear in consecu-
tive positions ino, then at most one other symbol can appear in betweand D in ¢’. Indeed, assume
A and D appear separated by two other symbBlandC in ¢’, so thats’(ABCD) = ABCD. If B andC
appear on opposite sides of the paib in o, theno (ABCD) is eitherBADC or CADB, an incompatible
pair. If B andC appear on one side, we can assume (by renaming the symbols)&BED) is either
ADBC or ADCB, again an incompatible pair.
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Table 4

Proof of Lemma 2
03 04

01:XYABC XYBCA () XYCA o7 o01:AXYBC XYBAC (I XYBA o7

02:YXABC XBYCA 02: AYXBC XBYAC (I BYAC o1
XBCYA (1) XBCY o2 XBAYC (1) XBAY o>
XBCAY XBACY
BXYCA (I BXYA o1 BXYAC (I XYAC o>
BXCYA BXAYC (1) BXAC o7
BXCAY (I XCAY o1 BXACY (I) XACY o1
BCXYA () BCXY o1 BAXYC (I BXYC o2
BCXAY BAXCY (1) BAXY oy
BCAXY BACXY

We now number the symbols in the order in which they appear,ithat isc = B1B>...B,. Let
similarly o’ = BB, ... B,

We prove the followinglaim (ii): If, for somei, we have{By, ..., B/} = {Bu, ..., B;} (note that this is
set equality not sequence equality) amj = B;, then eitherB; , = B; 1, Or B, = B; 2, B, = Bi,1,
and B/ ;= B;3. Indeed, ifB; , = B; with j > i + 2, thenB; and B; are adjacent iw’, but separated
by Bi;1andB, 2 in o, a contradiction to claim (i). I8, = B;;1, we have the first case of the claim, so
it rests to consideB; , = B; ;2. ThenB; , must beB; ; (otherwise,B; and B, are adjacent i but
separated by two symbolsirf), and finally B/ ; = B; 3 (otherwiseB; ;, and B;, 3 are adjacent iar, but
separated by two symbols ).

If B; = B1, we can repeatedly apply claim (ii) to observe thaands’ can differ only by the ex-
change of independent adjacent pairs. There cannot be more than one such p&akBERIDBADC) is
incompatible, and so the lemma follows.

It remains to consider the ca#g # B;. Let B} = By, with 1 < j < n (if B, = B1 we consider'?
instead ofc’ and apply the previous argument). We observe that {&&n,, B} ,} = {B, Bs} since
no other symbol can appear adjacent&pin o’. Without loss of generality, leB; ;, = B;, B} ; =
Bs (otherwise we again consider? instead ofo’). Now, B4 cannot appear befor8’_; (that is, as
By, ..., B ,), and inductively it follows thatho symbol can appear befo®_,. This impliesj =2,
and we havgBj, B, B3} = {B1, B>, Bz} with B; = B3. Once again we can use claim (ii) to prove the
lemma. O

3. Unit spheresand their transversals

A unit spherds a sphere of radius one. We say that two unit spheredigj@nt if their interiors are
(in other words, we allow the spheres to touch). A lgtabsa sphere if it intersects the closed sphere
(and so a tangent to a sphere stabs it)in& transversalfor a set of disjoint unit spheres is a line that
stabs all the spheres, with the restriction that it is not allowed to be tangent to two spheres in a common
point (as such a line does not define a geometric permutation).
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We will denote unit spheres by upper-case lettérss, ..., and use the corresponding lower-case
lettersa, b, . .. for their centers. We make no distinction between points and vectors, so the vector from
the center of spherg to the center of spherB isb — a.

Given two disjoint unit sphereg and B, let IT(A, B) be their bisecting hyperplane. In other words,
IT(A, B) is the hyperplane througla + b)/2 with normalb — a. We used (-, -) to denote the Euclidean
distance of two points, that i&(a, b)?> = (b — a)?.

Let u - v denote the dot-product of two vectarsandv. The angle between two vectaisandv is
arccoq% The angle between a linewith direction vectorv and a hyperplanél with normaln is
/2 — mm(l(n v), /(—n, v)). Note that the angle does not change if the line is replaced by a parallel
line, or the hyperplane by a parallel one.

We start with a warm-up lemma in two dimensions.

Lemma 4. Let S and T be two unit-radius disks ilR? with centers(—A, 0) and (1, 0), wherex > cosp
for some angleg with 0 < 8 < /2. ThenS N T is contained in the ellipse

x 2 y 2<
(—Sinzﬁ) *(w) S

Proof. Let (1, 0) and (0, v) be the rightmost and topmost point §f1 T (see Fig. 1). Consider the
ellipse E defined as

Y-y

E intersects the boundary ¢fin p = (0, v) andp’ = (0, —v), and is tangent to it ifi, 0). An ellipse
can intersect a circle in at most four points and the tangency counts as two intersections, and so the
intersections ap and p’ are proper and there is no further intersection between the two curves. This

by
|
[
[

(1, 0) ()\ 0) T

Fig. 1. The intersection of two disks is contained in an ellipse.
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implies that the boundary df is divided into two pieces by and p’, with one piece insidé and one
outsidesS. Since(—u, 0) lies insideS, the right hand side of lies outsideS. Symmetrically, the left
hand side oft lies outsideT’, and soS N T is contained inE. It remains to observe that

V2 =1-22<1—cog B =sirtp,
sov <sing, and

uw=1—1<1—cosB <1-cosp=sirp,
which proves the lemma. D

We now show that a transversal for two spheres cannot pass too far from their common center of
gravity.

Lemma 5. Given two disjoint unit spheres and B in R? and a line¢ stabbing both spheres, let be
the point of intersection af and IT(A, B), and lets be the angle betweehandIT(A, B). Then

d(p, (a +b)/2) < sing.

Proof. Let v be the direction vector of, that is,£ can be written agp + Av | A € R}. We first argue that
proving the lemma fod = 3 is sufficient. Indeed, assurde> 3 and consider the 3-dimensional subspace
I’ containing?, a, andb. Since we havé(a, £) <1 andd (b, £) < 1, the linef stabs the 3-dimensional
unit spheresA N I" and BN I". And sincerr/2 — B is the angle between two vectors iih namelyv
andb — a, B is also the angle betwednand the two-dimensional plané(A, B) N I". So if the lemma
holds inT", then it also holds ifR¢.

In the rest of the proof we can therefore assume d¢hat3. We choose a coordinate system where
a=(0,0,—p),b=(0,0, p) with p > 1, andv = (cosB, 0, sing). ThenIT :=I1(A, B) is thexy-plane
andg := (a+b)/2=(0,0,0). Consider the cylinderS, :={u+Arv|uec A, AeR}andCp :={u+ Av |
u € B, » e R}. Sincel stabsA andB, we havep e C4 NCp N IT.

The intersectiorB’ := Cp N IT is the ellipse (see Fig. 2)

2
S|n2ﬂ(x+ %) +y2<1,
and symmetricalhVA’ :=C, N IT is
. I 2 2
Slnzﬁ(x — w) +y <1
If we let T be the linear transformation
7:(x,y) > (xsing, y),

thent(A’) andt(B’) are unit-radius disks with centefs cosg, 0) and(—p cosg, 0). By Lemma 4, the
intersectionr (A’ N B’) is contained in the ellipse

X 2 y 2<
<—Sin2ﬂ) +(—ﬂ) st

Applying r~* we find thatA’ N B’ is contained in the circle with radius straroundg. Sincep € A’N B,
the lemma follows. O
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\/

Fig. 2. The intersection of the cylinder with the-plane is an ellipse.

Let ¢ be a line transversal for a family of » disjoint unit spheres iiR?. This implies that the center
of any sphere i lies inside a cylinder of radius one aroufidA volume argument [12] shows that the
distance between the first and the last sphere métiby2 (n), with a constant depending exponentially
on the dimensiorl. The following lemma improves this to the absolute constdat which is easily
seen to be tight in any dimension.

Lemma 6. LetC be a cylinder of radius one and length less thar2, for somes € N. ThenC contains
at most2s points with pairwise distance at lea3t

Proof. Let the axis ofC be thex;-axis, assumé€ contains at leasts2+ 1 points, and partition it inte
pieces of length less thag2. One of these pieces must contain at least three poiritsc. We can
assume G a; < by < ¢1 < /2. We increase; to +/2—this will increased(a, ¢) andd (b, ¢) so that
we haved(b,c) > 2. Letd’,b’, ¢’ be the projection of the points on the hyperplane=0. These
points are contained in a unit sphefavith center in the origin. Lef7 be the two-dimensional plane
containinga’, b’, ¢’. It intersectsS in a disk of radius at most 1. Lept be the center of this disk.
The pairwise distance of the poinis, o, ¢’ is at leasty/2, as the pairwise difference af, b1, c1
is at mosty/2. It follows that the anglesa’ pb’, /b’ pc’, /¢ pa’ are all at leastr/2. This implies that
moving all three points away fromp can only increase their pairwise distances, and so we can as-
sumed(p,a’) = d(p,b’) = d(p,c’) = 1. Furthermore, we can rotaté around p towardsa’ until
la’'pc’ =7 /2, as this can only increagkb’, ¢'). We have

4<d(a,b)’=dd,b)?+ b2 4<db,c)’=db, )+ (2 —b)



262 O. Cheong et al. / Computational Geometry 30 (2005) 253-270

Letnowa” = p+ (p —a’) andc” = p + (p — ¢). The pointd’ lies somewhere on the quarter circle
aroundp betweer:” andc”. By Thales’ theorem, the angléa”b’'a’” and/c¢”b’'c’ are right angles, so we
have

db',a"V>=d(d,a")* —d(d,b)> =4—d(d,b)*> < b?,
db', ) =d(c, ") —d(c, b)Y =4—d(c,b)? < (N2 —by)?.

This impliesd(b', a”) < by andd (b', ¢”) < ~/2 — by. By the triangle inequality, however, we have
V2=d@', ) <d@ by +d®, ") <bi+ (N2 —b1) =2,

a contradiction. O

The following lemma is our first major geometric result. It settles a conjecture by Holmsen et al. [8].

Lemma 7. Given three disjoint unit sphere$, B and C in R?, and a directed lineZ with direction
vectorv stabbing them in the order ABC. Thétw, ¢ — a) < n/4.

The boundr /4 is tight, as can be seen by choositig: to be a nearly rectangular triangle. If one
wishes to bound the angle betweeand theplanespanned by, b, ¢, then the maximal angl# is given

by cos® = 3/v/9 + 6+/3, which is roughly 43[14].

Proof. We first argue that it is sufficient to prove the result in three dimensions. Indedd detthe two-
dimensional plane through, » andc. If £ is a line with direction vector stabbingABC in that order,
then there is a parallel lin€ in a three-dimensional subspadecontaining/T and stabbing the spheres
(in orderABC). This is obvious if¢ is parallel toIT (take A as the affine hull of andIT). Otherwise,
let v be the direction vector of, and letA be the subspace spannedffyandv. Let IT’ be a hyperplane
orthogonal toZ, and lete’, b’ andc’ be the orthogonal projection af b, c on IT’. We haved’ = a + Av
for somei € R, so froma, v € A follows a’ € A, and analogously’, ¢’ € A. The pointsd’, b’ andc¢’ lie
in the unit sphere with centérn I7’. That implies that the circumcircle of the triangl®’c’ has radius
at most one. Lep be the center of this circumcircle. The liie= {p + Av | A € R} intersectsABC and
is parallel to¢ (and therefore intersecfBCin the same order).

Let now/C(ABC) be the set of vectors € R® such that there is an oriented line with direction veetor
that intersects the spheres in the ordBIC. Holmsen et al. [8, Lemma 1] have shown that thexg&BC)
is convex. This implies that if there is a transversal with direction vectand / (v, ¢ — a) > 7 /4, then
there is also a line transversal with angle exaatf¢ (since clearly there is a transversal with direction
c—a).

In the following, we therefore assume that a line transversal Withc — a) = 7 /4 exists. We choose
a coordinate system whefeis the line{(x, A,0) | A € R}, v = (-1, —1, 0), and the lineca is the line
£1=1{(},0,—p) | L € R}. Let C be the cylinder of radius one arouddSince B intersects the convex
hull of A andC and is disjoint from both, the poirlt € ¢; closest tob lies inbetweer: andc. This
means we can translateandc along¢; away fromd’: this cannot cause the spheres to intersect, or the
order in which? intersectsABCto change. Let's therefore mowean direction(Z, 0, 0) andc in direction
(—1, 0, 0) up to the points of intersection éf andC (this means that is now tangent td andC). As a
result, we have = (—/2 — 2p2,0, —p) anda = (/2 — 2p2, 0, —p). Without loss of generality, we can
assume; > 0 (otherwise we exchange the rolecoéndc).
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Fig. 3. lllustration for Lemma 7.

We will now show that it is impossible to havKa, b) > 2, a contradiction to the disjointness af
and B. We observe first that we can transl@ten direction v until 5; = 0. If originally »; > 0, then
this strictly increasesd(a, b) since(b — a) - v > 0. The intersection of and the plana; =0 is a filled
ellipse E with half-axes 1 and/2, and we now havé € E. On the other hand, the sphere with center
a and radius 2 intersects the plane= 0 in a circleC with centerp = (0, 0, —p) and radius/2 + 2,2.
Letg = (0,/2—2p2, p) andqg’ = (0, —/2 — 2p2, p). The pointsy andq’ are points of tangency df
andC, and so there cannot be any other intersection points betwegm C, see Fig. 3. It follows thak
lies entirely insideC, with the exception of the two shared poigtandg’. The points, ¢” are therefore
the only possible candidates for the location of the pairtiowever,(¢ —a) -v=0= (¢’ —¢) - v, SO
neither of these is admissible o

The previous angular inequality yields a first incompatible pair:
Lemma 8. The geometric permutations ABCD and ADCB are incompatible for disjoint unit spheres.

Proof. Let ¢ be atransversal with direction vectostabbing four spheres in the ord®BCD, and let¢’
be a transversal with direction vectarstabbing them in the ordé&xDCB. By Lemma 7, it follows that
/(v,d—b) <m/4dand/(v,b—d) < /4, and thereforé (v, v') > /2. On the other hand(v, c —a) <
m/4 and/(v', ¢ — a) < /4, a contradiction. O

4. The geometric permutations ABCD and BADC areincompatible

We start with a somewhat technical lemma.
Lemma 9. Let A and B be two disjoint unit spheres with centerand in R, and let¢ be a line with
direction vectorv stabbing both spheres. Lptbe the point of intersection édfand I7(A, B), and letg

be the point orf closest ta. Letb —a = u + Av be the unique factorization éf— a with u - v =0, and
lets:=/(b—q,u). Thens < m/2andd(p, q) > sins.
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T2

Fig. 4. The configuration projected on thexo-plane.

\J

Note that wher is parallel toab, we haveu = 0 and$ is not defined. In that casé(p, ¢) > 1, and

the lemma holds for any angée

Proof. We choose a coordinate system where (—p,0,...,0), b= (p,0,...,0), wherep > 1, and
£ is the line(a sing, po + A 0SB, pa, ..., ps). ThenII(A, B) is the hyperplana; =0, g(A, B) is the
origin, v = (sinB, co0sB, 0, ..., 0), andu is a multiple ofu’ := (cosB, —sing, 0, ..., 0).

Let ¢’ be the orthogonal projection gfon thex,x,-plane, and consider the rectangular triarigjéy .

We have/q'bg = §, asb — ¢’ is a multiple ofu’, and therefore

d(b,q") =d(b,q)Ccoss < COSS.

Fig. 4 shows the projection of the configuration on #ig,-plane. Since intersectsA, clearly b lies
above the projection df on thex;x,-plane, and therefor&< /2. Consider now the projectiayt’ of ¢’

on thex;-axis. We have/q'bq” = 8, and so
d(b,q") =d(b,q") cosp < coss cosp.
It follows that

d(q.M1(A, B))=d(q", I1(A, B)) = p —d(b,q") > 1— c0OS§ COSB.

Since the angle betweérandII (A, B) is 8, we have
d(p.q) = d(q, 17.(A, B)) > 1- cgs& cosﬁ‘
sing sing
Finally, we observe that
1> cogB — §) =sind sinB + coss cosB,
and so 1 cos§ cosB > sind sinB, and we obtain

sind sin .
.—ﬁ =sinsg. O
sing

d(p,q) >

We also need the following trigonometric inequality.
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Lemma 10. Leta, 8 be angles. Then
2coga + B) > (sina — sinB)? — 2.

Proof. We have

0 < (cosa + cosp)? = coS « + 2 cosx cosB + cos B = 1 — sirf o + 2 cosw cosp + 1 — sirf B,
and since ca® + B) = cosx cosB — sina sing, that implies

0< 2— (sirfa — 2sina sing + sir? B) + 2cosa + f) = 2 — (sina — sing)? + 2 coga + B),
and the inequality follows. O

We now fix four disjoint unit spheresd, B, C, D in RY. Let I1, := IT(A, B), [T, =I1(C, D), g1 :=
(a+b)/2andg, := (c +d)/2. Also letp be the angle between the normalgdf andIT,.

Note that since we will be working with only four spheres, we could restrict our argumeii: to
after all, if a line¢ stabsA, B, C, D in R?, then the orthogonal projection éfinto the three-dimensional
subspace spanned byb, c, d does so as well. We will nevertheless prove the following lemm&<in
as the stronger result takes no additional effort.

A line transversak for the four spheres must interse@; and IT,. We definer (¢) to be the finite
segment orf between the two intersection points.

Lemma 11. Given four disjoint unit spheres, B, C, D in RY as above. Assume there is a line transversal
¢ intersecting the four spheres in the order ABCD, and a line transvéf$alersecting them in the order
BADC. Then

min{ |7 (¢)

t(€)]} < sing.

’

Proof. We choose a coordinate system whédie is the hyperplaner; = 0, T, is the hyperplane
X1C0Sp — xSing = 0, and so the intersectiofl; N IT, is the subspace; = x, = 0. We can make
this choice such that the,-coordinate ofz is negative, and that the-coordinate of is less than the
xg-coordinate ofi. We can also assume that thecoordinate ofg; is non-negative (otherwise we swap
A with B, C with D, and{ with £'). Fig. 5 shows the projection of the configuration on the,-plane.

Since/ stabsA before B and C before D, it intersectsiT; from bottom to top, and7, from left to
right. The segment(¢) therefore lies in the top-left quadrant of Fig. 5. On the other hénhdtabsB
before A and D beforeC, so it intersectd7; from top to bottom, and7, from right to left, and so the
segment (¢) lies in the bottom-right quadrant of the figure.

We introduce some further notation: Liet= |t (¢)|, t' := [t ()|, let p; ==L N TT;, p; =€ N IT;, let g;
be the angle betweehand/7;, and letg; be the angle betweefy and/7;. Letus (1) be the orthogonal
projection ofps (p}) on Iy, u» (u5) the orthogonal projection g, (p5) on I1;. Consider the rectangular
triangle p1u, p,. We have/u, p1 p, = 81, and so

tsinpy = d(p2, uz) = d(p2, ITy). (1)
Similarly, we can consider the rectangular triangbes, p1, pju,p5, andpsu p; to obtain

tsinfy =d(p1, u1) =d(p1, ), (2)

t'sinpy = d(pj, up) = d(py, M), 3)

t'sin, = d(py, uy) = d(py, o). (4)
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II;

\J

T2

Fig. 5. The two hyperplanes define four quadrants.

We now distinguish between two cases.

Thefirst caseoccurs if, as in the figure, the -coordinate ofg, is negative or zero. By Lemma 5 we
haved(p-, g2) < sinB,. Sincep, andg, lie on opposite sides aff;, we haved(p,, IT;) < sinB;sing.
Similarly, we haved (p1, g1) < Sinf1, andp; andg; lie on opposite sides afl,, implying d(p1, IT,) <
sinp; sing. Plugging into Egs. (1) and (2), we obtain

. [sinB, sin
¢ <min] 2Pz SInfy
sinp;” sings
which proves the lemma for this case.

The second caseccurs if thex;-coordinate ofg, is positive. We lets; := d(g1, ITo) and s, :=
d(g2, ITy). Applying Lemma 5 , we then have

} sing < sing,

d(p2, IT1) < d(pa2, g2) SiNg + 52 < SiNB2SiNg + 57, (5)
d(p1, ITz) < d(p1, g1) Sing — 51 < sinBysing — 1, (6)
d(py, ) < d(pj, g2) Sing — 52 < SiNBySing — s2, @)
d(p}, IT2) < d(p}, g1) Sing + s1 < SiNB; sing + s1. 8)

Plugging inequalities (5)—(8) into (1)—(4), we obtain

< sinBzsing + s
Sin,B]_
sinBising — s
. ,Bl. »—s
sing,

(9)

: (10)
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/

sing;sing — s,

11

sing; (11)

< S|nﬂl§|n¢ + 51 (12)
sinpg;

We want to prove that mim, ') < sing. We assume the contrary. Fran+ sing and inequality (10) we
obtain

sinB,sing < sinB1Sing — s,
and fromz’ > sing and inequality (11) we get
sing; sing < sing;sing — s,.

Plugging this into inequality (9) and (12) results in

sinB,sing + s, SinB1SiNg — 51+ 52 . So— 81

< p . Ld < p '(,0 =SIng + — )
sing; singy sinB;

sinB; sing + 51 sinp,sing — s> + 51 . 51— §2
/< ,31. (f’ < B .<P/ —sing + 22,
sing, sing, sing,

It follows that if s, < 51 thent < sing, otherwise’ < sing. In either case the lemma follows o

Theorem 12. The geometric permutations ABCD and BADC are incompatible for disjoint unit spheres
in R4,

Proof. Assume two line transversals and ¢’ exist, realizing the geometric permutatioA8CD
andBADC. By Lemma 11 we have mjir(¢)|, |t (¢")|} < sing. Without loss of generality, we can as-
sume thatz (¢)| < sing.

Let n; be the unit normal vector off; pointing into the halfspace containingt), fori =1, 2. We
can expresg; uniquely asi; = u; + A;v, wherew is the direction vector of andu,;v = 0. Notice that
llu; ]| < |lvi |l = 1. Sincet stabsA beforeB, we haverv > 0. Since it stabg’ beforeD, we havei,v < 0.
This impliesi1 > 0, A, < 0, and therefor@ 1, < 0. Recall thaty = /(n1, n2), and lety = /(uy, uz). We
have

2 ujuz
CoSp =niny = (U1 + Av) (U + Aov) = uilr + AAv° < uis < m = CoSs,
and sov < ¢.

Letp; =¢N1II;, fori =1, 2, letq; € £ be the point closest th, and letg, € £ be the point closest ta
The pointsg; andg; lie betweenp; and p,, that is, in the segment?), and so we have

d(p1, q1) +d(q1, q2) + d(g2, p2) =d(p1, p2) = |t (£)| < sing, (13)

the last inequality stemming from Lemma 11.
Let 81 := Z(uy, b — q1), 82 := L(uz,¢c — ¢g2). By Lemma 9, this impliesd(pi1, ¢g1) > siné; and
d(p2, g2) = sind,. Applying inequality (13) results in

sinéy + sind, + d (g1, g2) < sing. (14)
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Consider the hyperplang orthogonal to in ¢;. It contains the pointg; andb, and its normal i.
Let ¢’ be the orthogonal projection ofon I, so that we have — g, = ¢’ — ¢g1. Let ¥ := /c’q1b. Since
B andC are disjoint, we have

4<d(b, c)* =d(q1,42)* +d(b, ). (15)
Consider now the triangleg;¢’. By the cosine-theorem, we have
d(b,¢)? =d(b,q)* +d(c, q1)* = 2d (b, q1)d (¢, q1) cOSY

=d(b, q1)* +d(c, q2)* — 2d (b, g1)d(c, g2) COSY
< 2 - Zd(bs 41)d(0, QZ) Cosw

Inequality (13) impliesd(g1, o) < 1. Combining with inequality (15) results (b, ¢’)?> > 3, which
implies cos) < 0. We can therefore apply the upper boumrtis, g1) < 1 andd(c, g2) < 1 again to
obtaind (b, ¢')? < 2 — 2 cosy. Together with inequality (15) this givesgd(¢1, g»)> + 2 — 2 cosyr, or

2cosy < d(q1,92)% — 2. (16)

By Lemma 9, we have & 61,82 < /2. Lets := 81 + 82. We claim thats < /2. Indeed, assume that
3 > m/2. By inequality (14), we have

Sinéy + sin(d — §1) = sindy + sind, < sing < 1.

The functiond; — sind; + sin(é — §;) over the intervald — /2, /2] is minimized foré; = /2 or
81 =468 — /2, where its value is sim/2 + sin(6 — 7 /2) > 1, a contradiction.

We now argue thap + § < . This is true ifp < /2. Otherwiseyr — ¢ < /2. By inequality (14)
we have

siné < sindy + sind, < sing = sin(r — ),

which impliess < & — ¢ and thereforé + ¢ < . Sinced < ¢, this also implies) 4§ < .

Consider now the angl¢ = /bqic’. We can write it as the sum of the thredentedangles/ (b —
q1,u1), L(uy, uz), and/(us, ¢’ — q1)- Sinced + 81+ 6, < m, this Implles Ky <+61+6=0+68<
¢ + 8 < . We apply Lemma 10 and obtain

2cosy > 2cogy + 8) > (sing — sins)? — 2.

Together with inequality (16) we gésing —sind)? < d (g1, g2)?, sod (g1, g2) > Sing —sins. Combining
with inequality (14), we obtain

Sing = sing 4 sing — siNd < siNdy + Sind> + d(q1, g2) < sing,
a contradiction. O

5. Putting it all together

We now apply the combinatorial results of Section 2 to our geometric results. Lemma 2 immediately
implies the following theorem, using Lemma 8 and Theorem 12.

Theorem 13. Let S be a family of disjoint unit spheres iR?. ThenS admits at most three distinct
geometric permutations.
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This is the first bound valid for a small number of spheres in dimension greater than two. To improve
the bound to the optimal two, we need the two additional incompatible pairs (l1l) and (V). Our proof of
incompatibility of these pairs, however, uses the additional assumption thait least 9. Note that this
threshold is independent of the dimension.

Lemma 14. LetS be a family of: > 9 disjoint unit spheres iiR¢. Then any two line transversals f6r
make an angle of less thary4.

Proof. Let¢ and?’ be two line transversals fdf, and letC andC’ be cylinders of radius one with axis
and?’, respectively. The centers of all spheresSiare contained i€ N C’. If £ and¢’ make an angle of
at leastr /4, thenC N C’ is contained in a section ¢f of length at most 2- 2./2 < 4v/2. By Lemma 6,
this impliesn < 8, a contradiction. O

The threshold 9 can probably be lowered by analyzing the sha@&@f more carefully. We do not
pursue this, as we cannot close the gap entirely: values@fain where our best bound on the number
of geometric permutations is three.

We can now prove thaABCD, ADBC) and(ABCD, CADB) are incompatible pairs.

Lemma 15. Let S be a family ofz > 9 disjoint unit spheres iiR¢. Then the pairfABCD, ADBC) and
(ABCD, CADB) are incompatible forS.

Proof. Let v be the direction vector of a line transversal realizABCD, and letv’ be the direction
vector of a transversal realizing eithebBC or CADB. By Lemma 7,/(v,d — b) < n /4. On the other
hand,/(v',b —d) < m/2, and so/ (v, v') > /4, a contradiction with Lemma 14.0

The final theorem now follows from Lemma 3, using Lemmas 8, 15 and Theorem 12.

Theorem 16. Let S be a family ofz > 9 disjoint unit spheres iiR¢. ThenS admits at most two distinct
geometric permutations, which differ only in the swapping of two adjacent spheres.

Our results also improve the constants involved in recent results by Holmsen et al. [8]. First, Lemma 7
implies the following improvement to Holmsen et al.'s Theorem 2, a Hadwiger-type theorem (their con-
stantis 12).

Theorem 17. LetS be a family of at leas® disjoint unit spheres ifR®. If there is a linear ordering oi&
such that ever® members are met by a directed line consistent with that ordering,haamits a line
transversal.

This improvement, combined with Theorem 16, reduces the constant in their Helly-type Theorem 1
from 46 to 18. (The justification for both improvements can be found in Holmsen et al.’s paper [8], in the
first remark of their Section 4.)

Theorem 18. LetS be a family of: disjoint unit spheres ifR3. There exists an intege < 18 such that
if any subsetS’ C S of size at mosty admits a line transversal, thefi admits a line transversal.
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