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Abstract

We show that a set ofn disjoint unit spheres inRd admits at most two distinct geometric permutations ifn � 9,
and at most three if 3� n � 8. This result improves a Helly-type theorem on line transversals for disjoint
spheres inR3: if any subset of size at most 18 of a family of such spheres admits a line transversal, then th
line transversal for the entire family.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A line transversalfor a setF of pairwise disjoint convex bodies inRd is a line� that intersects ever
element ofF . A line transversal induces two linear orders onF , namely the orders in which the tw
possible orientations of� intersect the elements ofF . Since the two orders are the reverse of each o
we consider them as a singlegeometric permutation.
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Bounds on the maximum number of geometric permutations were established about a decade ago:
a tight bound of 2n − 2 is known for two dimensions [6], for higher dimension the number is
in �(nd−1) [11] and in O(n2d−2) [16]. The gap was closed for the special case of spheres by Smorodinsky
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et al. [15], who showed thatn spheres inRd admit�(nd−1) geometric permutations. This result can
generalized to “fat” convex objects [13].

The even more specialized case of congruent spheres was treated by Smorodinsky et al.
independently by Asinowski [1]. They proved thatn unit circles inR

2 admit at most two geometri
permutations ifn is large enough (the proof by Asinowski holds for alln � 4). Zhou and Suri establishe
an upper bound of 16 for alld , if n is sufficiently large, a result quickly improved by Katchalski, S
and Zhou [12] and independently by Huang, Xu and Chen [9] to 4.

Building on Katchalski et al.’s proof, we recently showed that there are in fact at most two geo
permutations [5]. As two geometric permutations are possible for anyn, this bound is optimal. Howeve
Katchalski et al.’s approach—and therefore our extension to it as well—relies strongly on the assu
thatn is “sufficiently” large, which implies that any two line transversals ofF are nearly parallel. Th
critical threshold has been estimated to be about 31 in three dimensions [8], but it increases expo
with d . The proof gives no bound on the number of geometric permutations ofn spheres ifn is smaller
than this threshold.

In the present paper we analyze line transversals for unit spheres inR
d in more detail. In particular

we prove thatn disjoint unit spheres admit at most three geometric permutations, for anyn, and at mos
two geometric permutations forn � 9.

We prove these bounds by showing that some pairs of geometric permutations areincompatible. LetF
be a family of disjoint convex objects (not necessarily spheres) inR

d . A pair of geometric permutations
such as(ABCD,BADC), is incompatibleif no set of four objectsA,B,C,D ∈ F admits both a line
transversal realizingABCDand a line transversal realizingBADC.

Our first result is that if the pairs(ABCD,BADC) and (ABCD,ADCB) are both incompatible for
family F , thenF admits at most 3 geometric permutations. This fact was, in a sense, already u
Katchalski et al. [10,11], but proven only for translates in the plane. We give a purely combinatorial
We then show that if the two additional pairs(ABCD,ADBC) and(ABCD,CADB) are incompatible a
well, thenF admits at most two geometric permutations that differ by the swapping of a single p
adjacent objects.

To prove the incompatibility of(ABCD,ADCB), we show that a line transversal that meets three
spheresS, U andT in that order makes an angle of less than 45◦ with the line through the centers ofS

andT . This bound is tight, and settles a problem posed by Holmsen et al. [8], who had conjectu
angle to be at most 60◦.

Next, and maybe the cornerstone of this paper, we prove that the pair(ABCD,BADC) is incompatible
for disjoint unit spheres. This is nearly trivial in the plane, even for arbitrary convex objects, but
considerable effort to prove for unit spheres in higher dimensions. The claim does not hold for g
convex sets here, not even for spheres of different radia, or for unit spheres that are allowed to
somewhat. The bound of three geometric permutations for any family of disjoint unit spheres
dimension follows.

We then establish that the pairs(ABCD,ADBC) and (ABCD,CADB) can be compatible only if th
two line transversals make an angle of at least 45◦ with each other. We show that it is impossible for a
set of nine unit spheres to admit two line transversals with such a large angle, and thus obtain th
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of two geometric permutations for at least nine unit spheres, with the two permutations differing only by
the swapping of two adjacent spheres.

Incompatible pairs and triples of geometric permutations have been considered before, for instance
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by Asinowski et al. [2,3], who give a complete characterization of the families of distinct geom
permutations that can appear for translates in the plane. Asinowski and Katchalski [4] consid
larger “forbidden families” of geometric permutations.

Surveys of geometric transversal theory are Goodman et al. [7] and Wenger [17]. The latt
discusses Helly-type theorems for line transversals. A recent result in that area by Holmsen e
proves the existence of a numbern0 such that the following holds: LetF be a set of disjoint unit sphere
in R

3. If every at mostn0 members ofF have a line transversal, thenF has a line transversal. Holmse
et al.’s proof impliesn0 � 46. Our results implyn0 � 18.

The case of 4� n � 8 spheres is not completely resolved by our results: we prove that at most
geometric permutations exist, but no example realizing more than two is known. We conjecture tha
there cannot be more than two geometric permutations for more than three unit spheres. One a
to proving this would be to show that the pairs(ABCD,ADBC) and(ABCD,CADB) are incompatible
in general. Another approach might make use of our Lemma 1: if a set ofn � 4 unit spheres had thre
distinct geometric permutations, then these permutations must realize all three geometric perm
of some subset of three spheres. Perhaps one can show that it is impossible to add a fourth sphe
a configuration.

2. Incompatible pairs and geometric permutations

In this section we show that the incompatibility of certain pairs of geometric permutations imp
bound on the number of geometric permutations. Since these results can be proven purely com
ally, without referring to the geometry at all, we present them in a combinatorial setting.

Let S be a set ofn symbols (which correspond to our spheres). We call a family of permutatioP
of S reversibleif with every permutationσ ∈ P the reverse permutationσR is also inP (obviously, the
family of permutations induced by line transversals is reversible). We will call a pair(σ, σR) ageometric
permutation(corresponding to the two permutations realized by a line transversal). For a subsetS ⊂ S ,
we writeσ(S) for the restriction ofσ to S, and for simplicity we will writeσ(ABC) for σ({A,B,C}).
A pair such as(ABCD,BADC) is anincompatible pair ofP if no four symbolsA,B,C,D ∈ S and two
permutationsσ1, σ2 ∈ P exist withσ1(ABCD) = ABCDandσ2(ABCD) = BADC(generalizing the notion
of incompatible pairs for line transversals).

The incompatible pairs we will consider are the following:

(I) (ABCD,BADC) (II) (ABCD,ADCB)

(III) (ABCD,ADBC) (IV) (ABCD,CADB)

Lemma 1. LetP be a reversible family of permutations ofS with incompatible pairs(I) and (II) . If P
contains at least six permutations(that is, at least three geometric permutations), then there are three
symbolsA,B,C ∈ S such that the restriction ofP to {A,B,C} consists of all six permutations of the
symbols.
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Table 1
Proof thatσ1(ABCX) = σ2(ABCX)

σ1 σ2 σ3

be
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ACBX ACXB AXCB XACB

ABCX ABXC X,B,C (II) σ2/σ3 (II) σ1/σ3 X,A,C
ABCX AXBC (II) σ2/σ3 C,X,B (II) σ1/σ3 (I) σ2/σ3
ABCX XABC (II) σ1/σ2
ABXC AXBC (II) σ2/σ3 (II) σ1/σ3 X,C,B (I) σ2/σ3
ABXC XABC A,C,X (II) σ1/σ3 (I) σ2/σ3 X,C,B
AXBC XABC (II) σ1/σ3 A,C,X (I) σ2/σ3 (I) σ1/σ3

Table 2
All 16 cases involve an incompatible pair

σ1 σ2 σ3

ACBXY ACXYB AXYCB XYACB

ABCXY ABCYX (I) CBXY σ2 (II) CXYB σ1 (II) AXYC σ2 (I) XYAC σ1
ABXYC ABYXC (II) CBXY σ1 (II) AXYB σ2 (II) AXYB σ2 (II) XYAC σ2
AXYBC AYXBC (II) ABXY σ2 (II) CXYB σ1 (I) XYCB σ2 (I) XYCB σ2
XYABC YXABC (I) ACXY σ1 (II) AXYB σ2 (I) AXCB σ1 (I) XYCB σ2

Proof. The statement is obvious forn � 3, so letn > 3 and assume the contrary. There must then
three symbolsA,B,C ∈ S and three permutationsσ1, σ2, σ3 ∈ P such thatσ1(ABC) = σ2(ABC) = ABC
andσ3(ABC) = ACB.

Let X ∈ S be any other symbol. We claim thatσ1(ABCX) = σ2(ABCX). Indeed, assume this was n
true. Thenσ1(ABCX) andσ2(ABCX) must match one of the six rows of Table 1 (possibly after swap
σ1 andσ2). There are then four possibilities forσ3(ABCX), indicated by columns in the table. In ea
case, there are either three symbols that appear in three different geometric permutations inσ1, σ2, σ3, or
an incompatible pair appears as indicated in the table. This completes the proof forn = 4.

If n > 4, there must then be two symbolsX,Y ∈ S \ {A,B,C} such thatσ1(ABCXY) �= σ2(ABCXY),
and these two restrictions differ only by the swapping of the adjacent symbolsX andY . The four rows
of Table 2 show the possible cases that can arise. IfX and Y appear separated by aZ ∈ {A,B,C}
in σ3(ABCXY), then the three symbolsX,Y,Z appear in three different geometric permutations
σ1, σ2, σ3, a contradiction. SoX,Y are consecutive inσ3(ABCXY), and by swappingX andY we can
assume thatX appears beforeY . This leaves four possible cases forσ3(ABCXY), shown in the column
of Table 2. In all 16 cases, eitherσ1 andσ3 or σ2 andσ3 contain an incompatible pair. Table 2 indica
the four symbols of the incompatible pair for each case.�
Lemma 2. LetP be a reversible family of permutations ofS with incompatible pairs(I) and (II) . Then
P contains at most six permutations(that is, at most three geometric permutations).

Proof. Again the statement is obvious forn � 3, so letn > 4 and assume thatP contains at least fou
geometric permutations. By Lemma 1, there are then three symbolsA,B,C ∈ S and four permutation
σ1, σ2, σ3, σ4 ∈ P such thatσ1(ABC) = σ2(ABC) = ABC, σ3(ABC) = BCAandσ4(ABC) = BAC.
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Table 3
Proof thatσ1(ABCX) = σ2(ABCX)

σ1 σ2 σ3 σ4
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XBAC BXAC BAXC BACX

ABXC AXBC XBCA (II) σ2/σ3
BXCA (II) σ1/σ3
BCXA (II) σ1/σ4 (II) σ2/σ4 (II) σ3/σ4 (I) σ1/σ4
BCAX (I) σ2/σ3

ABXC XABC XBCA (II) σ1/σ4 (I) σ3/σ4 (II) σ2/σ4 (I) σ1/σ4
BXCA (II) σ1/σ3
BCXA (I) σ2/σ3
BCAX (II) σ1/σ4 (II) σ3/σ4 (II) σ2/σ4 (I) σ1/σ4

AXBC XABC XBCA (II) σ1/σ3
BXCA (I) σ3/σ4 (II) σ1/σ4 (II) σ2/σ4 (II) σ3/σ4
BCXA (I) σ2/σ3
BCAX (I) σ1/σ3

We claim that for anyX ∈ S \ {A,B,C} we haveσ1(ABCX) = σ2(ABCX). Indeed, assume this is n
true. As before, there are six possibilities for{σ1(ABCX), σ2(ABCX)}, shown in the six rows of Table 1
The case{XABC,ABCX} (the third row of the table) is incompatible pair (II). In the other two ca
involving ABCX (the first and second row of Table 1), we reverse permutationsσ1 andσ2, swapσ3 and
σ4, and exchange the namesA andC. This leaves us with the three cases in the bottom rows of Tab
indicated again in Table 3. In each case, there are four possibilities forσ3(ABCX) andσ4(ABCX) each.
As indicated in Table 3, each of the resulting 48 cases involves an incompatible pair. This comple
proof forn = 4.

If n > 4, there must then be two symbolsX,Y ∈ S \ {A,B,C} such thatσ1(ABCXY) �= σ2(ABCXY),
and these two restrictions differ only by the swapping of the adjacent symbolsX andY . We assume tha
X,Y appear beforeB in σ1, σ2 (otherwise we can again reverseσ1 andσ2 and swapσ3 with σ4 andA

with C), and so there are the two cases indicated in the left and right half of Table 4. In the le
of the table, assume thatX appears beforeY in σ3 (otherwise swap the namesX andY ). There are ten
possibilities forσ3(ABCXY), indicated in the table. In each case, eitherσ1 andσ3 or σ2 andσ3 contain an
incompatible pair. Table 4 indicates the symbols of the incompatible pair. In the right half of Table
similarly considerσ4. Again an incompatible pair occurs in each case.�
Lemma 3. LetP be a reversible family of permutations ofn � 4 symbolsS with incompatible pairs(I)
to (IV) . ThenP contains at most four permutations, that is, at most two geometric permutation
differ only in the swapping of a single pair of adjacent symbols.

Proof. Let σ,σ ′ ∈P . We first prove the followingclaim (i): If two symbolsA andD appear in consecu
tive positions inσ , then at most one other symbol can appear in betweenA andD in σ ′. Indeed, assum
A andD appear separated by two other symbolsB andC in σ ′, so thatσ ′(ABCD) = ABCD. If B andC

appear on opposite sides of the pairAD in σ , thenσ(ABCD) is eitherBADCor CADB, an incompatible
pair. If B andC appear on one side, we can assume (by renaming the symbols) thatσ(ABCD) is either
ADBCor ADCB, again an incompatible pair.
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Table 4
Proof of Lemma 2

σ3 σ4

so

he

ere
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σ1 : XYABC XYBCA (I) XYCA σ2
σ2 : YXABC XBYCA

XBCYA (II) XBCY σ2
XBCAY
BXYCA (II) BXYA σ1
BXCYA
BXCAY (II) XCAY σ1
BCXYA (I) BCXY σ1
BCXAY
BCAXY

σ1 : AXYBC XYBAC (II) XYBA σ1
σ2 : AYXBC XBYAC (II) BYAC σ1

XBAYC (I) XBAY σ2
XBACY
BXYAC (II) XYAC σ2
BXAYC (II) BXAC σ1
BXACY (I) XACY σ1
BAXYC (II) BXYC σ2
BAXCY (II) BAXY σ1
BACXY

We now number the symbols in the order in which they appear inσ , that isσ = B1B2 . . .Bn. Let
similarly σ ′ = B ′

1B
′
2 . . .B ′

n.
We prove the followingclaim (ii): If, for somei, we have{B ′

1, . . . ,B
′
i} = {B1, . . . ,Bi} (note that this is

set equality, not sequence equality) andB ′
i = Bi , then eitherB ′

i+1 = Bi+1, or B ′
i+1 = Bi+2, B ′

i+2 = Bi+1,
andB ′

i+3 = Bi+3. Indeed, ifB ′
i+1 = Bj with j > i + 2, thenBi andBj are adjacent inσ ′, but separated

by Bi+1 andBi+2 in σ , a contradiction to claim (i). IfB ′
i+1 = Bi+1, we have the first case of the claim,

it rests to considerB ′
i+1 = Bi+2. ThenB ′

i+2 must beBi+1 (otherwise,Bi andBi+1 are adjacent inσ but
separated by two symbols inσ ′), and finallyB ′

i+3 = Bi+3 (otherwiseBi+2 andBi+3 are adjacent inσ , but
separated by two symbols inσ ′).

If B ′
1 = B1, we can repeatedly apply claim (ii) to observe thatσ andσ ′ can differ only by the ex-

change of independent adjacent pairs. There cannot be more than one such pair since(ABCD,BADC) is
incompatible, and so the lemma follows.

It remains to consider the caseB ′
1 �= B1. Let B ′

j = B1, with 1 < j < n (if B ′
n = B1 we considerσ ′R

instead ofσ ′ and apply the previous argument). We observe that then{B ′
j−1,B

′
j+1} = {B2,B3} since

no other symbol can appear adjacent toB1 in σ ′. Without loss of generality, letB ′
j−1 = B2, B ′

j+1 =
B3 (otherwise we again considerσ ′R instead ofσ ′). Now, B4 cannot appear beforeB ′

j−1 (that is, as
B ′

1, . . . ,B
′
j−2), and inductively it follows thatno symbol can appear beforeB ′

j−1. This impliesj = 2,
and we have{B ′

1,B
′
2,B

′
3} = {B1,B2,B3} with B ′

3 = B3. Once again we can use claim (ii) to prove t
lemma. �

3. Unit spheres and their transversals

A unit sphereis a sphere of radius one. We say that two unit spheres aredisjoint if their interiors are
(in other words, we allow the spheres to touch). A linestabsa sphere if it intersects the closed sph
(and so a tangent to a sphere stabs it). Aline transversalfor a set of disjoint unit spheres is a line th
stabs all the spheres, with the restriction that it is not allowed to be tangent to two spheres in a c
point (as such a line does not define a geometric permutation).
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We will denote unit spheres by upper-case lettersA,B, . . . , and use the corresponding lower-case
lettersa, b, . . . for their centers. We make no distinction between points and vectors, so the vector from
the center of sphereA to the center of sphereB is b − a.

ds,
n

rallel

e

d so the
. This
Given two disjoint unit spheresA andB, let Π(A,B) be their bisecting hyperplane. In other wor
Π(A,B) is the hyperplane through(a + b)/2 with normalb − a. We used(· , ·) to denote the Euclidea
distance of two points, that isd(a, b)2 = (b − a)2.

Let u · v denote the dot-product of two vectorsu andv. The angle between two vectorsu andv is
arccos u·v

‖u‖‖v‖ . The angle between a line� with direction vectorv and a hyperplaneΠ with normaln is
π/2 − min(� (n, v), � (−n, v)). Note that the angle does not change if the line is replaced by a pa
line, or the hyperplane by a parallel one.

We start with a warm-up lemma in two dimensions.

Lemma 4. Let S andT be two unit-radius disks inR2 with centers(−λ,0) and(λ,0), whereλ � cosβ
for some angleβ with 0< β � π/2. ThenS ∩ T is contained in the ellipse(

x

sin2 β

)2

+
(

y

sinβ

)2

� 1.

Proof. Let (µ,0) and (0, ν) be the rightmost and topmost point ofS ∩ T (see Fig. 1). Consider th
ellipseE defined as(

x

µ

)2

+
(

y

ν

)2

� 1.

E intersects the boundary ofS in p = (0, ν) andp′ = (0,−ν), and is tangent to it in(µ,0). An ellipse
can intersect a circle in at most four points and the tangency counts as two intersections, an
intersections atp andp′ are proper and there is no further intersection between the two curves

Fig. 1. The intersection of two disks is contained in an ellipse.
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implies that the boundary ofE is divided into two pieces byp andp′, with one piece insideS and one
outsideS. Since(−µ,0) lies insideS, the right hand side ofE lies outsideS. Symmetrically, the left
hand side ofE lies outsideT , and soS ∩ T is contained inE. It remains to observe that

nter of

t
ace
l

ere
ν2 = 1− λ2 � 1− cos2 β = sin2 β,

soν � sinβ, and

µ = 1− λ � 1− cosβ � 1− cos2 β = sin2 β,

which proves the lemma.�
We now show that a transversal for two spheres cannot pass too far from their common ce

gravity.

Lemma 5. Given two disjoint unit spheresA andB in R
d and a line� stabbing both spheres, letp be

the point of intersection of� andΠ(A,B), and letβ be the angle between� andΠ(A,B). Then

d
(
p, (a + b)/2

)
� sinβ.

Proof. Let v be the direction vector of�, that is,� can be written as{p + λv | λ ∈ R}. We first argue tha
proving the lemma ford = 3 is sufficient. Indeed, assumed > 3 and consider the 3-dimensional subsp
Γ containing�, a, andb. Since we haved(a, �) � 1 andd(b, �) � 1, the line� stabs the 3-dimensiona
unit spheresA ∩ Γ andB ∩ Γ . And sinceπ/2 − β is the angle between two vectors inΓ , namelyv

andb − a, β is also the angle between� and the two-dimensional planeΠ(A,B) ∩ Γ . So if the lemma
holds inΓ , then it also holds inRd .

In the rest of the proof we can therefore assume thatd = 3. We choose a coordinate system wh
a = (0,0,−ρ), b = (0,0, ρ) with ρ � 1, andv = (cosβ,0,sinβ). ThenΠ := Π(A,B) is thexy-plane
andg := (a + b)/2= (0,0,0). Consider the cylindersCA := {u+ λv | u ∈ A,λ ∈ R} andCB := {u+ λv |
u ∈ B,λ ∈ R}. Since� stabsA andB, we havep ∈ CA ∩ CB ∩ Π .

The intersectionB ′ := CB ∩ Π is the ellipse (see Fig. 2)

sin2 β

(
x + ρ

tanβ

)2

+ y2 � 1,

and symmetricallyA′ := CA ∩ Π is

sin2 β

(
x − ρ

tanβ

)2

+ y2 � 1.

If we let τ be the linear transformation

τ : (x, y) 	→ (x sinβ,y),

thenτ(A′) andτ(B ′) are unit-radius disks with centers(ρ cosβ,0) and(−ρ cosβ,0). By Lemma 4, the
intersectionτ(A′ ∩ B ′) is contained in the ellipse(

x

sin2 β

)2

+
(

y

sinβ

)2

� 1.

Applying τ−1 we find thatA′ ∩B ′ is contained in the circle with radius sinβ aroundg. Sincep ∈ A′ ∩B ′,
the lemma follows. �
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Fig. 2. The intersection of the cylinder with thexy-plane is an ellipse.

Let � be a line transversal for a familyS of n disjoint unit spheres inRd . This implies that the cente
of any sphere inS lies inside a cylinder of radius one around�. A volume argument [12] shows that th
distance between the first and the last sphere met by� is �(n), with a constant depending exponentia
on the dimensiond . The following lemma improves this to the absolute constant

√
2, which is easily

seen to be tight in any dimension.

Lemma 6. LetC be a cylinder of radius one and length less thans
√

2, for somes ∈ N. ThenC contains
at most2s points with pairwise distance at least2.

Proof. Let the axis ofC be thex1-axis, assumeC contains at least 2s + 1 points, and partition it intos
pieces of length less than

√
2. One of these pieces must contain at least three pointsa, b, c. We can

assume 0= a1 � b1 � c1 <
√

2. We increasec1 to
√

2—this will increased(a, c) andd(b, c) so that
we haved(b, c) > 2. Let a′, b′, c′ be the projection of the points on the hyperplanex1 = 0. These
points are contained in a unit sphereS with center in the origin. LetΠ be the two-dimensional plan
containinga′, b′, c′. It intersectsS in a disk of radius at most 1. Letp be the center of this disk
The pairwise distance of the pointsa′, b′, c′ is at least

√
2, as the pairwise difference ofa1, b1, c1

is at most
√

2. It follows that the angles� a′pb′, � b′pc′, � c′pa′ are all at leastπ/2. This implies that
moving all three points away fromp can only increase their pairwise distances, and so we ca
sumed(p, a′) = d(p, b′) = d(p, c′) = 1. Furthermore, we can rotatec′ aroundp towardsa′ until
� a′pc′ = π/2, as this can only increased(b′, c′). We have

4 � d(a, b)2 = d(a′, b′)2 + b2
1, 4 < d(b, c)2 = d(b′, c′)2 + (

√
2− b1)

2.
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Let now a′′ = p + (p − a′) andc′′ = p + (p − c′). The pointb′ lies somewhere on the quarter circle
aroundp betweena′′ andc′′. By Thales’ theorem, the angles� a′′b′a′ and � c′′b′c′ are right angles, so we
have

l. [8].

ne

s

r

ion

e

x

r the

n

d(b′, a′′)2 = d(a′, a′′)2 − d(a′, b′)2 = 4− d(a′, b′)2 � b2
1,

d(b′, c′′)2 = d(c′, c′′)2 − d(c′, b′)2 = 4− d(c′, b′)2 < (
√

2− b1)
2.

This impliesd(b′, a′′) � b1 andd(b′, c′′) <
√

2− b1. By the triangle inequality, however, we have√
2= d(a′′, c′′) � d(a′′, b′) + d(b′, c′′) < b1 + (

√
2− b1) = √

2,

a contradiction. �
The following lemma is our first major geometric result. It settles a conjecture by Holmsen et a

Lemma 7. Given three disjoint unit spheresA, B and C in R
d , and a directed line� with direction

vectorv stabbing them in the order ABC. Then� (v, c − a) < π/4.

The boundπ/4 is tight, as can be seen by choosingabc to be a nearly rectangular triangle. If o
wishes to bound the angle betweenv and theplanespanned bya, b, c, then the maximal angleϑ is given

by cosϑ = 3/
√

9+ 6
√

3, which is roughly 43◦ [14].

Proof. We first argue that it is sufficient to prove the result in three dimensions. Indeed, letΠ be the two-
dimensional plane througha, b andc. If � is a line with direction vectorv stabbingABC in that order,
then there is a parallel line�′ in a three-dimensional subspaceΛ containingΠ and stabbing the sphere
(in orderABC). This is obvious if� is parallel toΠ (takeΛ as the affine hull of� andΠ ). Otherwise,
let v be the direction vector of�, and letΛ be the subspace spanned byΠ andv. Let Π ′ be a hyperplane
orthogonal to�, and leta′, b′ andc′ be the orthogonal projection ofa, b, c on Π ′. We havea′ = a + λv

for someλ ∈ R, so froma, v ∈ Λ follows a′ ∈ Λ, and analogouslyb′, c′ ∈ Λ. The pointsa′, b′ andc′ lie
in the unit sphere with center� ∩ Π ′. That implies that the circumcircle of the trianglea′b′c′ has radius
at most one. Letp be the center of this circumcircle. The line�′ = {p + λv | λ ∈ R} intersectsABCand
is parallel to� (and therefore intersectsABC in the same order).

Let nowK(ABC) be the set of vectorsv ∈ R
3 such that there is an oriented line with direction vectov

that intersects the spheres in the orderABC. Holmsen et al. [8, Lemma 1] have shown that the setK(ABC)

is convex. This implies that if there is a transversal with direction vectorv and � (v, c − a) � π/4, then
there is also a line transversal with angle exactlyπ/4 (since clearly there is a transversal with direct
c − a).

In the following, we therefore assume that a line transversal with� (v, c − a) = π/4 exists. We choos
a coordinate system where� is the line{(λ,λ,0) | λ ∈ R}, v = (−1,−1,0), and the lineca is the line
�1 = {(λ,0,−ρ) | λ ∈ R}. Let C be the cylinder of radius one around�. SinceB intersects the conve
hull of A andC and is disjoint from both, the pointb′ ∈ �1 closest tob lies inbetweena andc. This
means we can translatea andc along�1 away fromb′: this cannot cause the spheres to intersect, o
order in which� intersectsABC to change. Let’s therefore movea in direction(1,0,0) andc in direction
(−1,0,0) up to the points of intersection of�1 andC (this means that� is now tangent toA andC). As a
result, we havec = (−√

2− 2ρ2,0,−ρ) anda = (
√

2− 2ρ2,0,−ρ). Without loss of generality, we ca
assumeb1 � 0 (otherwise we exchange the role ofa andc).
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ter

s.
Fig. 3. Illustration for Lemma 7.

We will now show that it is impossible to haved(a, b) � 2, a contradiction to the disjointness ofA

andB. We observe first that we can translateb in direction v until b1 = 0. If originally b1 > 0, then
this strictly increasesd(a, b) since(b − a) · v > 0. The intersection ofC and the planex1 = 0 is a filled
ellipseE with half-axes 1 and

√
2, and we now haveb ∈ E. On the other hand, the sphere with cen

a and radius 2 intersects the planex1 = 0 in a circleC with centerp = (0,0,−ρ) and radius
√

2+ 2ρ2.
Let q = (0,

√
2− 2ρ2, ρ) andq ′ = (0,−√

2− 2ρ2, ρ). The pointsq andq ′ are points of tangency ofE
andC, and so there cannot be any other intersection points betweenE andC, see Fig. 3. It follows thatE
lies entirely insideC, with the exception of the two shared pointsq andq ′. The pointsq, q ′ are therefore
the only possible candidates for the location of the pointb. However,(q − a) · v = 0 = (q ′ − c) · v, so
neither of these is admissible.�

The previous angular inequality yields a first incompatible pair:

Lemma 8. The geometric permutations ABCD and ADCB are incompatible for disjoint unit sphere

Proof. Let � be a transversal with direction vectorv stabbing four spheres in the orderABCD, and let�′
be a transversal with direction vectorv′ stabbing them in the orderADCB. By Lemma 7, it follows that
� (v, d −b) < π/4 and� (v′, b−d) < π/4, and therefore� (v, v′) > π/2. On the other hand,� (v, c−a) <

π/4 and� (v′, c − a) < π/4, a contradiction. �

4. The geometric permutations ABCD and BADC are incompatible

We start with a somewhat technical lemma.

Lemma 9. Let A andB be two disjoint unit spheres with centersa andb in R
d , and let� be a line with

direction vectorv stabbing both spheres. Letp be the point of intersection of� andΠ(A,B), and letq
be the point on� closest tob. Letb − a = u + λv be the unique factorization ofb − a with u · v = 0, and
let δ := � (b − q,u). Thenδ � π/2 andd(p, q) � sinδ.
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Fig. 4. The configuration projected on thex1x2-plane.

Note that when� is parallel toab, we haveu = 0 andδ is not defined. In that case,d(p, q) � 1, and
the lemma holds for any angleδ.

Proof. We choose a coordinate system wherea = (−ρ,0, . . . ,0), b = (ρ,0, . . . ,0), whereρ � 1, and
� is the line(λsinβ,p2 + λcosβ,p3, . . . , pd). ThenΠ(A,B) is the hyperplanex1 = 0, g(A,B) is the
origin, v = (sinβ,cosβ,0, . . . ,0), andu is a multiple ofu′ := (cosβ,−sinβ,0, . . . ,0).

Let q ′ be the orthogonal projection ofq on thex1x2-plane, and consider the rectangular trianglebq ′q.
We have� q ′bq = δ, asb − q ′ is a multiple ofu′, and therefore

d(b, q ′) = d(b, q)cosδ � cosδ.

Fig. 4 shows the projection of the configuration on thex1x2-plane. Since� intersectsA, clearlyb lies
above the projection of� on thex1x2-plane, and thereforeδ � π/2. Consider now the projectionq ′′ of q ′
on thex1-axis. We have� q ′bq ′′ = β, and so

d(b, q ′′) = d(b, q ′)cosβ � cosδ cosβ.

It follows that

d
(
q,Π(A,B)

) = d
(
q ′′,Π(A,B)

) = ρ − d(b, q ′′) � 1− cosδ cosβ.

Since the angle between� andΠ(A,B) is β, we have

d(p, q) = d(q,Π(A,B))

sinβ
� 1− cosδ cosβ

sinβ
.

Finally, we observe that

1 � cos(β − δ) = sinδ sinβ + cosδ cosβ,

and so 1− cosδ cosβ � sinδ sinβ, and we obtain

d(p, q) � sinδ sinβ

sinβ
= sinδ. �

We also need the following trigonometric inequality.
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Lemma 10. Letα, β be angles. Then

2cos(α + β) � (sinα − sinβ)2 − 2.

o
l

sal
r

p

l
r

Proof. We have

0 � (cosα + cosβ)2 = cos2 α + 2cosα cosβ + cos2 β = 1− sin2 α + 2cosα cosβ + 1− sin2 β,

and since cos(α + β) = cosα cosβ − sinα sinβ, that implies

0 � 2− (sin2 α − 2sinα sinβ + sin2 β) + 2cos(α + β) = 2− (sinα − sinβ)2 + 2cos(α + β),

and the inequality follows. �
We now fix four disjoint unit spheresA, B, C, D in R

d . Let Π1 := Π(A,B), Π2 = Π(C,D), g1 :=
(a + b)/2 andg2 := (c + d)/2. Also letϕ be the angle between the normals ofΠ1 andΠ2.

Note that since we will be working with only four spheres, we could restrict our arguments tR
3:

after all, if a line� stabsA,B,C,D in R
d , then the orthogonal projection of� into the three-dimensiona

subspace spanned bya, b, c, d does so as well. We will nevertheless prove the following lemma inR
d ,

as the stronger result takes no additional effort.
A line transversal� for the four spheres must intersectΠ1 andΠ2. We definet (�) to be the finite

segment on� between the two intersection points.

Lemma 11. Given four disjoint unit spheresA, B, C, D in R
d as above. Assume there is a line transver

� intersecting the four spheres in the order ABCD, and a line transversal�′ intersecting them in the orde
BADC. Then

min
{∣∣t (�)∣∣, ∣∣t (�′)

∣∣} � sinϕ.

Proof. We choose a coordinate system whereΠ1 is the hyperplanex1 = 0, Π2 is the hyperplane
x1 cosϕ − x2 sinϕ = 0, and so the intersectionΠ1 ∩ Π2 is the subspacex1 = x2 = 0. We can make
this choice such that thex1-coordinate ofa is negative, and that thex2-coordinate ofc is less than the
x2-coordinate ofd . We can also assume that thex2-coordinate ofg1 is non-negative (otherwise we swa
A with B, C with D, and� with �′). Fig. 5 shows the projection of the configuration on thex1x2-plane.

Since� stabsA beforeB andC beforeD, it intersectsΠ1 from bottom to top, andΠ2 from left to
right. The segmentt (�) therefore lies in the top-left quadrant of Fig. 5. On the other hand,�′ stabsB
beforeA andD beforeC, so it intersectsΠ1 from top to bottom, andΠ2 from right to left, and so the
segmentt (�′) lies in the bottom-right quadrant of the figure.

We introduce some further notation: Lett := |t (�)|, t ′ := |t (�′)|, let pi := � ∩ Πi , p′
i := �′ ∩ Πi , let βi

be the angle between� andΠi , and letβ ′
i be the angle between�′ andΠi . Let u1 (u′

1) be the orthogona
projection ofp1 (p′

1) onΠ2, u2 (u′
2) the orthogonal projection ofp2 (p′

2) onΠ1. Consider the rectangula
trianglep1u2p2. We have� u2p1p2 = β1, and so

t sinβ1 = d(p2, u2) = d(p2,Π1). (1)

Similarly, we can consider the rectangular trianglesp2u1p1, p′
1u

′
2p

′
2, andp′

2u
′
1p

′
1 to obtain

t sinβ2 = d(p1, u1) = d(p1,Π2), (2)

t ′ sinβ ′
1 = d(p′

2, u
′
2) = d(p′

2,Π1), (3)

t ′ sinβ ′
2 = d(p′

1, u
′
1) = d(p′

1,Π2). (4)
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e

Fig. 5. The two hyperplanes define four quadrants.

We now distinguish between two cases.
Thefirst caseoccurs if, as in the figure, thex1-coordinate ofg2 is negative or zero. By Lemma 5 w

haved(p2, g2) � sinβ2. Sincep2 andg2 lie on opposite sides ofΠ1, we haved(p2,Π1) � sinβ2 sinϕ.
Similarly, we haved(p1, g1) � sinβ1, andp1 andg1 lie on opposite sides ofΠ2, implying d(p1,Π2) �
sinβ1 sinϕ. Plugging into Eqs. (1) and (2), we obtain

t � min

{
sinβ2

sinβ1
,

sinβ1

sinβ2

}
sinϕ � sinϕ,

which proves the lemma for this case.
The second caseoccurs if thex1-coordinate ofg2 is positive. We lets1 := d(g1,Π2) and s2 :=

d(g2,Π1). Applying Lemma 5 , we then have

d(p2,Π1) � d(p2, g2)sinϕ + s2 � sinβ2 sinϕ + s2, (5)

d(p1,Π2) � d(p1, g1)sinϕ − s1 � sinβ1 sinϕ − s1, (6)

d(p′
2,Π1) � d(p′

2, g2)sinϕ − s2 � sinβ ′
2 sinϕ − s2, (7)

d(p′
1,Π2) � d(p′

1, g1)sinϕ + s1 � sinβ ′
1 sinϕ + s1. (8)

Plugging inequalities (5)–(8) into (1)–(4), we obtain

t � sinβ2 sinϕ + s2

sinβ1
, (9)

t � sinβ1 sinϕ − s1

sinβ2
, (10)
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t ′ � sinβ ′
2 sinϕ − s2

sinβ ′
1

, (11)

′ sinβ ′
1 sinϕ + s1

heres

s-
t �
sinβ ′

2

. (12)

We want to prove that min(t, t ′) � sinϕ. We assume the contrary. Fromt > sinϕ and inequality (10) we
obtain

sinβ2 sinϕ < sinβ1 sinϕ − s1,

and fromt ′ > sinϕ and inequality (11) we get

sinβ ′
1 sinϕ < sinβ ′

2 sinϕ − s2.

Plugging this into inequality (9) and (12) results in

t � sinβ2 sinϕ + s2

sinβ1
<

sinβ1 sinϕ − s1 + s2

sinβ1
= sinϕ + s2 − s1

sinβ1
,

t ′ � sinβ ′
1 sinϕ + s1

sinβ ′
2

<
sinβ ′

2 sinϕ − s2 + s1

sinβ ′
2

= sinϕ + s1 − s2

sinβ ′
2

.

It follows that if s2 < s1 thent < sinϕ, otherwiset ′ < sinϕ. In either case the lemma follows.�
Theorem 12. The geometric permutations ABCD and BADC are incompatible for disjoint unit sp
in R

d .

Proof. Assume two line transversals� and �′ exist, realizing the geometric permutationsABCD
andBADC. By Lemma 11 we have min{|t (�)|, |t (�′)|} � sinϕ. Without loss of generality, we can a
sume that|t (�)| � sinϕ.

Let ni be the unit normal vector ofΠi pointing into the halfspace containingt (�), for i = 1,2. We
can expressni uniquely asni = ui + λiv, wherev is the direction vector of� anduiv = 0. Notice that
‖ui‖ � ‖vi‖ = 1. Since� stabsA beforeB, we haven1v > 0. Since it stabsC beforeD, we haven2v < 0.
This impliesλ1 > 0,λ2 < 0, and thereforeλ1λ2 < 0. Recall thatϕ = � (n1, n2), and letϑ = � (u1, u2). We
have

cosϕ = n1n2 = (u1 + λ1v)(u2 + λ2v) = u1u2 + λ1λ2v
2 < u1u2 <

u1u2

‖u1‖‖u2‖ = cosϑ,

and soϑ < ϕ.
Let pi = �∩Πi , for i = 1,2, letq1 ∈ � be the point closest tob, and letq2 ∈ � be the point closest toc.

The pointsq1 andq2 lie betweenp1 andp2, that is, in the segmentt (�), and so we have

d(p1, q1) + d(q1, q2) + d(q2,p2) = d(p1,p2) = ∣∣t (�)∣∣ � sinϕ, (13)

the last inequality stemming from Lemma 11.
Let δ1 := � (u1, b − q1), δ2 := � (u2, c − q2). By Lemma 9, this impliesd(p1, q1) � sinδ1 and

d(p2, q2) � sinδ2. Applying inequality (13) results in

sinδ1 + sinδ2 + d(q1, q2) � sinϕ. (14)
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Consider the hyperplaneΓ orthogonal to� in q1. It contains the pointsq1 andb, and its normal isv.
Let c′ be the orthogonal projection ofc on Γ , so that we havec − q2 = c′ − q1. Let ψ := � c′q1b. Since
B andC are disjoint, we have

at

diately

t

4 � d(b, c)2 = d(q1, q2)
2 + d(b, c′)2. (15)

Consider now the trianglebq1c
′. By the cosine-theorem, we have

d(b, c′)2 = d(b, q1)
2 + d(c′, q1)

2 − 2d(b, q1)d(c′, q1)cosψ

= d(b, q1)
2 + d(c, q2)

2 − 2d(b, q1)d(c, q2)cosψ

� 2− 2d(b, q1)d(c, q2)cosψ.

Inequality (13) impliesd(q1, q2) � 1. Combining with inequality (15) results ind(b, c′)2 � 3, which
implies cosψ < 0. We can therefore apply the upper boundsd(b, q1) � 1 andd(c, q2) � 1 again to
obtaind(b, c′)2 � 2− 2cosψ. Together with inequality (15) this gives 4� d(q1, q2)

2 + 2− 2cosψ , or

2cosψ � d(q1, q2)
2 − 2. (16)

By Lemma 9, we have 0� δ1, δ2 � π/2. Let δ := δ1 + δ2. We claim thatδ � π/2. Indeed, assume th
δ > π/2. By inequality (14), we have

sinδ1 + sin(δ − δ1) = sinδ1 + sinδ2 � sinϕ � 1.

The functionδ1 	→ sinδ1 + sin(δ − δ1) over the interval[δ − π/2,π/2] is minimized forδ1 = π/2 or
δ1 = δ − π/2, where its value is sinπ/2+ sin(δ − π/2) > 1, a contradiction.

We now argue thatϕ + δ � π . This is true ifϕ � π/2. Otherwise,π − ϕ < π/2. By inequality (14)
we have

sinδ � sinδ1 + sinδ2 � sinϕ = sin(π − ϕ),

which impliesδ � π − ϕ and thereforeδ + ϕ � π . Sinceϑ < ϕ, this also impliesϑ + δ < π .
Consider now the angleψ = � bq1c

′. We can write it as the sum of the threeorientedangles� (b −
q1, u1), � (u1, u2), and� (u2, c

′ − q1). Sinceϑ + δ1 + δ2 < π , this implies 0� ψ � ϑ + δ1 + δ2 = ϑ + δ <

ϕ + δ � π . We apply Lemma 10 and obtain

2cosψ > 2cos(ϕ + δ) � (sinϕ − sinδ)2 − 2.

Together with inequality (16) we get(sinϕ−sinδ)2 < d(q1, q2)
2, sod(q1, q2) > sinϕ−sinδ. Combining

with inequality (14), we obtain

sinϕ = sinδ + sinϕ − sinδ < sinδ1 + sinδ2 + d(q1, q2) � sinϕ,

a contradiction. �

5. Putting it all together

We now apply the combinatorial results of Section 2 to our geometric results. Lemma 2 imme
implies the following theorem, using Lemma 8 and Theorem 12.

Theorem 13. Let S be a family of disjoint unit spheres inRd . ThenS admits at most three distinc
geometric permutations.
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This is the first bound valid for a small number of spheres in dimension greater than two. To improve
the bound to the optimal two, we need the two additional incompatible pairs (III) and (IV). Our proof of
incompatibility of these pairs, however, uses the additional assumption thatn is at least 9. Note that this

f

t
ber

t

mma 7
ir con-

rem 1
in the
threshold is independent of the dimension.

Lemma 14. LetS be a family ofn � 9 disjoint unit spheres inRd . Then any two line transversals forS
make an angle of less thanπ/4.

Proof. Let � and�′ be two line transversals forS , and letC andC ′ be cylinders of radius one with axis�
and�′, respectively. The centers of all spheres inS are contained inC ∩ C ′. If � and�′ make an angle o
at leastπ/4, thenC ∩ C ′ is contained in a section ofC of length at most 2+ 2

√
2 < 4

√
2. By Lemma 6,

this impliesn � 8, a contradiction. �
The threshold 9 can probably be lowered by analyzing the shape ofC ∩ C ′ more carefully. We do no

pursue this, as we cannot close the gap entirely: values ofn remain where our best bound on the num
of geometric permutations is three.

We can now prove that(ABCD,ADBC) and(ABCD,CADB) are incompatible pairs.

Lemma 15. LetS be a family ofn � 9 disjoint unit spheres inRd . Then the pairs(ABCD,ADBC) and
(ABCD,CADB) are incompatible forS .

Proof. Let v be the direction vector of a line transversal realizingABCD, and letv′ be the direction
vector of a transversal realizing eitherADBC or CADB. By Lemma 7,� (v, d − b) < π/4. On the other
hand,� (v′, b − d) < π/2, and so� (v, v′) > π/4, a contradiction with Lemma 14.�

The final theorem now follows from Lemma 3, using Lemmas 8, 15 and Theorem 12.

Theorem 16. LetS be a family ofn � 9 disjoint unit spheres inRd . ThenS admits at most two distinc
geometric permutations, which differ only in the swapping of two adjacent spheres.

Our results also improve the constants involved in recent results by Holmsen et al. [8]. First, Le
implies the following improvement to Holmsen et al.’s Theorem 2, a Hadwiger-type theorem (the
stant is 12).

Theorem 17. LetS be a family of at least9 disjoint unit spheres inR3. If there is a linear ordering onS
such that every9 members are met by a directed line consistent with that ordering, thenS admits a line
transversal.

This improvement, combined with Theorem 16, reduces the constant in their Helly-type Theo
from 46 to 18. (The justification for both improvements can be found in Holmsen et al.’s paper [8],
first remark of their Section 4.)

Theorem 18. LetS be a family ofn disjoint unit spheres inR3. There exists an integern0 � 18such that
if any subsetS ′ ⊂ S of size at mostn0 admits a line transversal, thenS admits a line transversal.
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