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Abstract. Voronoi diagrams of curved objects can show certain phenomena that are
often considered artifacts: The Voronoi diagram is not connected; there are pairs of objects
whose bisector is a closed curve or even a two-dimensional object; there are Voronoi edges
between different parts of the same site (so-called self-Voronoi-edges); these self-Voronoi-
edges may end at seemingly arbitrary points not on a site, and, in the case of a circular site,
even degenerate to a single isolated point. We give a systematic study of these phenomena,
characterizing their differential-geometric and topological properties. We show how a given
set of curves can be refined such that the resulting curves define a “well-behaved” Voronoi
diagram. We also give a randomized incremental algorithm to compute this diagram. The
expected running time of this algorithm is O (n logn).

1. Introduction

Voronoi diagrams are among the most extensively studied objects in computational
geometry (see for instance Aurenhammer’s survey [2] or the book by Okabe et al. [19]).
Naturally the first type of Voronoi diagrams considered was the one for point sites
and the Euclidean metric in two dimensions. Subsequent research was concerned with
generalizations of all of these features.

* This work was supported by the the Brain Korea 21 Project, The School of Information Technology,
KAIST, 2005, and by the National University of Singapore under Grant R252-000-130.
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In the two-dimensional case these generalizations were also motivated by applications
in motion planning which lead to the so-called retraction method [18]. This method makes
use of the fact that if there is a collision-free motion of a disk-shaped object within a
collection of obstacles from a source to a target position, then there is also one that
essentially follows the edges of the Euclidean Voronoi diagram of the obstacles. Since
in general the obstacles are not single points, Voronoi diagrams for other types of sites
were investigated, mostly for line segments. More complex shapes can be approximated
by polygons to arbitrary precision. However, in general a good approximation requires
very many line segments and leads to large running times of the construction algorithms.
Therefore it should be interesting to consider the construction of Voronoi diagrams where
the sites are bounded by more general curves.

Yap [24] solves the problem for the Euclidean metric and second degree curves.
Further steps in a more general direction are made by Yap and Alt [25], who gave an idea
of an algorithm for the case that the bounding curves are circular arcs or line segments.
Karavelas and Yvinec [12] consider the case of convex objects in the plane.

Klein [13], [14] gave a unified approach for many of the different variants of two-
dimensional Voronoi diagrams, the so-called abstract Voronoi diagrams. They are not
specified by distance functions but by certain topological conditions which the vertices
and edges have to satisfy. Klein et al. [15] gave a general paradigm for a randomized
O (n log n) algorithm for constructing an abstract Voronoi diagram for a set of n sites.

Unfortunately, Voronoi diagrams of curved objects do not satisfy the conditions of
abstract Voronoi diagrams. Figure 1 shows the particularities that can occur. Here we
simply define the Voronoi diagram as the set of all points having more than one clos-
est point on the union of all sites. The Voronoi diagram is not connected and there are
Voronoi edges between different parts of the same site, which we call self-Voronoi-edges;
these self-Voronoi-edges may end at seemingly arbitrary points, and, in the case of a cir-
cular site, even degenerate to a single isolated point. Furthermore, the bisector between

Fig. 1. A Voronoi diagram of curves.
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two objects may be a closed curve. Self-Voronoi-edges, which are part of the medial
axis of a curve, play an essential role in Voronoi diagrams of curved objects. If the
Voronoi diagram is used to do motion planning using the retraction method, for instance,
then the self-Voronoi edges are necessary to capture the connectivity of the workspace.
Without them, the robot may not be able to reach concavities formed by a single
curve.

The aim of this paper is threefold:

1. To investigate the mentioned phenomena of Voronoi diagrams of curves and char-
acterize their differential geometric and topological properties.

2. To show how these difficulties can be overcome (under certain preconditions) by
breaking up the curves into “harmless” pieces.

3. To give a randomized incremental algorithm to compute the Euclidean Voronoi
diagram of these pieces.

A “harmless” curve is either a line segment, a circular arc, or a spiral arc. A spiral arc
is a curve whose curvature monotonically increases strictly along the curve. A circular
arc can be seen as the extreme case of a spiral arc where the curvature remains constant,
while a line segment can be seen as the extreme case of a circular arc whose curvature is
zero. Perhaps the corner stone of our results is the insight that spiral arcs are well-behaved
with respect to Voronoi diagram formation.

A set of curves that arises in an application will not necessarily consist of harmless
curves only. We therefore describe how such a given set of curves can—under some mild
conditions—be refined into harmless pieces by cutting up the curves and adding point
sites on curves.

The algorithmic result of this paper is a randomized algorithm of running time
O (n log n) for constructing the Voronoi diagram of a set of n harmless curves. Combined
with our technique to refine curves that are not yet sufficiently well-behaved, this results
in an algorithm to compute the Voronoi diagram of a set of arbitrary curves in time
O(nlogn).

The algorithm considers curves as abstract objects and assumes that certain elementary
operations are available as black boxes. These include finding the points having the same
distance from three given sites, finding all points of a given slope, finding points where
the curvature has a local maximum, given the representations of two curves finding the
representation of a bisector, and finding intersection points of given curves. The details
of these operations including numerical problems involved will depend on the particular
application of our paradigm. For example, if it is applied to algebraic curves of some
fixed degree, the elementary operations would consist of solving systems of algebraic
equations of constant degree and constantly many variables. The underlying algebraic and
numerical questions are quite involved and have been investigated in several publications
in the computer graphics and CAD community [5], [7]-[10].

A preliminary version of this work appeared in the Proceedings of the ACM Sympo-
sium on Computational Geometry, 1995 [1]. Lemma 1(b) of that version is incorrect.
Overcoming the incorrect claim led us to the following exposition that is based on spiral
arcs.

After the first version of this work, Farouki and Ramamurthy published a differ-
ent approach [8]-[10] for computing Voronoi diagrams of curved objects. They also



442 H. Alt, O. Cheong, and A. Vigneron

have a technique for splitting curves into simpler pieces that allows one to compute
self-Voronoi edges, but it is by no means trivial [8], so they restrict their attention
to cubics. With our approach one only needs to find extrema of curvature, which
is straightforward for arbitrary algebraic curves. Besides, the only time bound given
is O(n?) [10].

2. Spiral Arcs

We assume that curves are regular in the differential-geometric sense, and that they do
not contain their endpoints. More precisely, a curve y is a subset of R? such that there
is a function f,: [0, 1] — R? with the following properties: f, is twice continuously
differentiable, f; (t) #O0forallt € [0,1]and y = {f,(x) |0 < x < 1}. The endpoints
of y are f,,(0) and f, (1). We say that two curves fouch each other in some point p € R?
iff they both pass through p and have the same tangent direction there. As a special case,
a circle touches a curve y in p if it contains p and its center lies on the normal to y
through p. Consider a touching circle C whose center lies on the concave side of the
curve. If the radius of C is small, it will locally—in a neighborhood of p—Ilie on the
concave side of y. If its radius is large, the circle lies locally on the convex side of y.
The radius of curvature separates the two sets of radii. In general, an osculating circle
(the circle of curvature) touches and crosses the curve in p (the only exception is in
points p where the curvature is extreme). The curvature is the reciprocal of the radius
of curvature (for more details see for instance [22]).

A curve is a spiral arc if it is convex (that is, the union of the curve and the segment
connecting its endpoints is a closed convex curve) and if its curvature is strictly monotone.
In particular, a spiral arc does not contain a point of zero curvature. The convexity
requirement excludes genuine spirals (which have arbitrarily long and complex self-
Voronoi edges). Our definition of a spiral arc is more restricted than definitions given
elsewhere; Guggenheimer [11], for instance, requires only monotone curvature (not
strictly monotone), and does not have the convexity requirement.

The following theorem is due to Kneser [11, Theorem 3-12].

Theorem 1 (Kneser’s Theorem). Any circle of curvature of a spiral arc contains every
smaller circle of curvature of the arc in its interior.

A point p = y(fy) on a spiral arc y decomposes the arc into two branches, a branch y;
with increasing curvature, and a branch y, with decreasing curvature when traversing
these branches starting from p. Kneser’s theorem implies that y, lies inside the osculating
circle C at p, while y; lies outside C. In particular, this implies that a spiral arc is simple,
thatis y(t) # y (') fort #1¢'.

The following theorem is due to Vogt [23], [11, Theorem 3-17], see Fig. 2.

Theorem 2 (Vogt’s Theorem). Let p and q be two points on a spiral arc, with curvature
strictly increasing from p to q. Then the angle B of the tangent to the arc at g with the
chord pq is larger than the angle o of the tangent at p with pq.
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Fig. 2. Vogt’s theorem.

Vogt’s theorem implies the following result.

Lemma 3. Let y be a spiral arc. There is no circle that touches y in more than one
point.

Proof. Assume a spiral arc y touches circle C at p and g. The angles of the tangents
to C at p and g with pg are equal. So the same is true for the tangents to y at p and ¢,
which is impossible by Vogt’s theorem. |

3. Harmless Sites

Recall that our goal is to give a systematic treatment of self-Voronoi edges. Our first
central observation is that self-Voronoi edges are closely related to local maxima of the
curvature of the curves, as Fig. 3 shows. There is a circle around x touching y in two
points. When decreasing the radius the center of the circle traces a self-Voronoi-edge
that ends at ¢ where the two tangent points fall together in the point u. The point c is
the center of the circle of curvature C of y at u, which is a local maximum of curvature.
Points y on the line segment cu are centers of circles that touch y only in u and, thus,
do not contribute to the self-Voronoi edge.

Since spiral arcs have monotone curvature, they cannot have local maxima of the
curvature. Lemma 3 implies that indeed no self-Voronoi edge can exist for a single

Fig. 3. A local maximum of curvature.
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spiral arc: no disk can touch a spiral arc in two places. This insight leads us to restrict
our discussion of Voronoi diagrams to sites that are spiral arcs. We also allow arcs of
constant curvature, that is, circular arcs and line segments.

Formally, let a harmless site be either a point, a line segment, a circular arc, or a spiral
arc. A harmless site collection is a finite set S of pairwise disjoint harmless sites with
the condition that for every line segment, circular arc, and spiral arc y € S the endpoints
of y are also members of S.

For example, the parabolic arc { (t, %) | -3 <t< 3} is not a spiral arc. We can cut it
at its apex by adding the point site (0, 0), and can obtain a harmless site collection of two
parabolic arcs and three point sites. Observe that it is possible that several curves share
one endpoint, so we allow arbitrary planar subdivisions by regular curves. Curves may
not intersect, but this case can be handled by making the intersection points additional
point sites. Closed curves (loops) can be handled by cutting them at some points, and
adding those points to the site collection.

In Section 5 we will see how to compute the Voronoi diagram of a harmless site
collection in time O (nlogn). To apply that algorithm to more general sets of curves,
we have to partition the curves into spiral arcs, straight segments, and circular arcs. If,
for instance, the given curves are algebraic of constant degree, each can have at most a
constant number of points of vertical tangency and local maxima of the curvature, and
a nondegenerate interval of constant curvature is only possible if the whole curve is a
circular arc. By cutting the n original curves at these points we obtain a collection of O (n)
harmless sites. We can then compute the Voronoi diagram of these pieces, and obtain a
Voronoi diagram of complexity O (n). If that is desired, we can then merge the Voronoi
cells of curves that are pieces of the same original curve. In most applications, however,
that is probably not what is needed: if the Voronoi diagram is used for motion planning
with the retraction method, for instance, the additional self-Voronoi-edges are essential
to guarantee that the resulting road map captures the connectivity of the workspace.

4. The Voronoi Diagram of Harmless Sites

Throughout this paper we denote by d(x, y) the Euclidean distance of points x, y € R?
and for A C R?, x € R? we define d(x, A) := infyea d(x, y). Also, let Y4 (x) be that
point of A with d (x, Y (x)) = d(x, A). Whenever there is no such point or when there
is more than one, then ¥4 is not defined. Let W4 be the region where 14 is defined. On
W, we define an equivalence relation =, where x = y if and only if ¥4 (x) = ¥4 (y).

Figure 4 shows the region ¥, and some equivalence classes for y a line segment, a
circular arc, or spiral arc. Note that the boundary of W,, (shown dotted in the figure) is
in general not part of the region, except for the curved boundary in the case of a spiral
arc. Observe the fibration of W,, defined by =. Parts (a) and (b) of the figure require no
further proof, so we consider the case of a spiral arc.

Lemma 4. Let y be a spiral arc with endpoints p and q, such that the curvature
increases from p to q. Let u be a point on y and let n be the line normal to y in u. Then
Yy, (x) = u if and only if x is a point on n and d(x,u) < d(x, q).
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Fig. 4. The region W, for the three different curve types.

Proof. 'The “only if” direction is obvious, so assume that x is a pointonn withd (x, u) <
d(x, q). If x is on the convex side of y then clearly v, (x) = u, so we also assume that
x is on the concave side. We denote by C the circle through u# with center x and by C,
the osculating circle at u (see Fig. 5(a)). Since both circles share a common tangent at
u and g is outside the interior of C, and, by Kneser’s theorem, inside C,, we know that
the interior of C is contained in the interior of C,. Kneser’s theorem also implies that
the osculating circle at p contains C, in its interior, so p is outside C, and, therefore,
outside C. Hence there is a closest point to x in y, we denote this point by v. We will
prove by contradiction that v = u, so from now on we assume v # u.

By Lemma 3, the point v cannot lie on C, so v is inside C, and thus v cannot be
situated between p and u along y. However, if v lies between u and ¢, there is a point
w on C such that y touches C at u from the outside, enters the interior of C, visits v,
leaves C at w, and runs to g (see Fig. 5(b)). Then the angle between the tangent to y at
u and the line uw is larger than the angle between the same line and the tangent to y at
w, contradicting Vogt’s theorem. |

(a) (b)

Fig. 5. Proof of Lemma 4.
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The lemma explains why spiral arcs are so well-behaved under Voronoi-diagram forma-
tion: to verify the nearest point on a spiral arc, we need to consider only the neighborhood
of that point and the endpoint of the arc. Lemma 4 has the following corollary.

Corollary 5. Let y be a spiral arc with endpoints p and q, and curvature increasing
Sfrom p to q. Then V., is the region bounded by normals in p and q and by the bisector
of q and y. The latter is part of V,,, the normals are not. The center of any osculating
circle of y lies outside W,

Lemma 6. Let y be a line segment, circular arc, or spiral arc. The function v, is
continuous on \V,,.

Proof. Letx € W, letu := v, (x), and let r := d(x, u). We denote by ¥ the union
of y and its endpoints. For some arbitrary & > 0 consider the e-neighborhood U, (u)
and A := Y\U,(u). Let ¢ be sufficiently small so that A # {. Since for any u’ € A,
d(x,u’) > r and A is compact, there is some § > 0 such that

dx,u)>r+26 (D

forall u’ € A.Let y be any pointin Us(x) so that v, (y) is defined. Since by the triangle
inequality d(y,y) < r + &, and by (1) d(y,u’) > r + & for any u’ € A, it must be
Y, (y) € Ug(u). This shows the continuity of v, . O

Given a harmless site collection S and a site s € S, we define the Voronoi region of s
in S, VR(s, §), as follows:

VR(s, S) := {x € R? | there is a unique p € s withd(x, p) = mi?d(x, s")}.
s'e

An example of Voronoi regions associated with a harmless site collection S is given in
Fig. 6. The sites in S are a spiral arc y, its two endpoints p and ¢, and another point a. In
this example the edges bounding a region belong to it, except for the edges containing
p and g which are not part of VR(y, S). Note the slight twist in the definition. Had we
chosen the simpler condition

d(x,s) =mind(x, s"),
s'eS

Fig. 6. Example of Voronoi regions.
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then the Voronoi region of a curve would contain the Voronoi region of its endpoints.
Our definition avoids that. The uniqueness of p serves only to exclude the center of a
circular arc from its Voronoi region (the point p is unique in all other cases, trivially so
for line segments and circular arcs, by Lemma 3 for spiral arcs).

The Voronoi diagram V (S) is defined as the set of all Voronoi regions VR(s, §), for
s € S. The Voronoi diagram can also be represented as a Voronoi graph as follows: the
vertices of the graph are the points in R? which belong to the boundary of three or more
Voronoi regions. The edges of the graph correspond to the maximal connected subsets
belonging to the boundary of exactly two Voronoi regions. (In these two definitions, the
boundary of a Voronoi region is defined according to the usual topology of R?, except if
the Voronoi region is a line segment, in which case we consider that its boundary consists
of its two endpoints.) We show below that Voronoi edges are curves. The faces of the
graph correspond to the Voronoi regions.

We will find it helpful to restrict our attention to the “finite” part of the Voronoi
diagram. Therefore, we add a large circle @ with center in the origin to our site collection.
The radius of this circle is assumed so large that it contains all Voronoi vertices and
furthermore the circle is not their nearest site. This means that no information about
the topological structure of the Voronoi diagram gets lost by inserting w. So we only
have to consider the Voronoi diagram inside w and, consequently, all Voronoi regions
are bounded.

Next we investigate the shape of Voronoi regions:

Lemma 7. Let S be a harmless site collection and let y € S be a curve. Then
VR(y,S) € V,. For any u € vy, the equivalence class K, :== {x € ¥, | x = u}
of u intersects VR(y, S) in a straight line segment with endpoints hy(p) and h,(p) lying
on opposite sides of u. The interior points of this segment do not belong to the closure
of any other Voronoi region. The functions hy and h,: y — R? defined this way are
continuous.

Proof. If x € VR(y, S), then there is u € y such that d(x, u) = mingegd(x,s). In
particular, d(x, u) = d(x, y),and sox € W,,.

Recall now that, by Lemma 4, K, is a ray or line, and note that K, N VR(y, S)
is not empty: it contains at least # and a small segment around it. Consider now two
points p,q € K, N VR(y, S), and a point y € K, between p and ¢g. Let v be a point
on | J{s € S| s # y)} closest to y (v exists since | J{s € S | s # y} is compact).
Since p,q € VR(y, S), we have d(p,u) < d(p,v) and d(q,u) < d(q,v). Since
{x € R? | d(x,u) < d(x,v)} is a closed half-plane, this implies d(y, u) < d(y,v) =
minges\(1 d(y, ), andso y € VR(y, S). If y belongs to the closure of VR(s, S) for some
s € S\{y}, then we have d(y,v) = d(y,s) = d(y, u). So y belongs to the bisector of
u and v, which implies that d(p, u) > d(p,v) or d(q,u) > d(q, v). Remember that
d(p,u) <d(p,v)andd(q,u) <d(q,v),so p or g belongs to the bisector of u and v.
Then the bisector of u and v is the line pg, and so v = u, a contradiction. It follows that
K, NVR(y, S) is a segment, and its interior points do not lie in the closure of any other
Voronoi region.

Suppose now that %, is not continuous. Then there exists a sequence of points in
y converging to u € y whose h,-values do not converge to hy(u). Since VR(y, S) is



448 H. Alt, O. Cheong, and A. Vigneron

bounded, there exists a subsequence converging to some w # h,(u). Because of the
continuity of ¥,, ¥, (w) = u and so, by Lemma 4, w lies on the straight line through u
and &, (u). Since dVR(y, S) is closed, w € dVR(y, S). This implies that w belongs to the
closure of two different Voronoi cells, although it lies in the interior of K, N VR(y, §),
which is a contradiction to the above. O

We summarize important topological properties of Voronoi diagrams in the following
theorem:

Theorem 8. Let S be a harmless site collection.

(1) The union of the Voronoi regions covers the interior of w, and no Voronoi region
is empty.
(ii) For R C S and s € R we have VR(s, S) C VR(s, R).
(iii) The intersection of two Voronoi regions lies on the boundary of both.
(iv) A Voronoi region VR(s, S) is simply connected, for point sites it is even star-
shaped from s.
(v) The boundary of each Voronoi region VR(s, S) is a Jordan curve except if s is
an endpoint where several curves meet. In this case the Voronoi region might be
a line segment or the point itself.
(vi) Any triple of sites defines at most two Voronoi vertices.

Proof. (i) Since the union of all sites is a compact set, for any point x € w the minimum
distance to that union is assumed, so x lies in some Voronoi region. Any Voronoi region
contains the site itself and therefore is not empty.

(i) Lets € R C S, and let x € VR(s, S). This means that there is a point p € s with
d(x, p) <d(x,s) forall s € S. Clearly this implies x € VR(s, R).

(iii) Let x € VR(s, S) N VR(¢, S). There must be points u € s, v € ¢t lying on the
maximal empty circle around x. By Lemma 7 any point in the interior of the line segments
xu and xv lies in VR(s, S)\VR(z, S) and VR(t, S)\VR(s, S), respectively. This shows
that x lies on the boundary of both.

(iv) First assume that s is a curve. Let o be some closed curve within VR(s, §). Let
g be some arbitrary point surrounded by o and let K := {x € VR(s,S) | x = ¢q}. K
intersects « in at least two points a, b € VR(s, S) surrounding ¢, and so g € VR(s, S)
by Lemma 7. Since this holds for any point g in the region encircled by «, o is within
VR(s, S) contractible to a point. Since this holds for any «, VR(s, S) is simply connected.

Now assume that s is a pointand p € V R(s, S). Let p’ be a point in the interior of the
segment ps. We denote by C (resp. C’) the circle centered at p (resp. p’) through s. Since
the interior of C does not intersect any site, the same is true for C’, hence p’ € VR(s, S).

(v) Let s be a curve, and consider the functions A, h,: s — 0VR(s, S) defined in
Lemma 7. For all x € s, we have h,(x) = h,(x) = x. By Lemmas 6 and 7 we know
that i, and &, are homeomorphisms. Thus the images A := hy(s) and B := h,(s) are
simple arcs. For continuity reasons their endpoints have the endpoints p, g of s as closest
points. Altogether, the boundary of dVR(s, §) consists of A, B and two segments 7, J
(that may degenerate to a single point) of the normals through p, g, respectively (see
Fig.7).Since I, A, J, B are pairwise nonintersecting, their concatenation forms a Jordan
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Fig.7. Voronoi region VR(s, S).

curve. If s is a circular segment then one of A, B may degenerate to a single point, the
center of 5. Similar techniques prove the statement if s is an isolated point or an endpoint
of a curve. If several curves share s as an endpoint VR(s, ) may degenerate to a line
segment (Fig. 8(a), VR(s, S) is the segment uv) or just s itself (Fig. 8(b)). The former
phenomenon occurs when the closed half-spaces beyond the normals of those curves in
s intersect only in a straight line, the latter when they intersect only in s itself.

(vi) Assume three sites 51, 57, s3 € S define three Voronoi vertices vy, vy, v3. If some
VR(s;, S) is a point or line segment then, by our definition, its boundary consists of at
most two vertices, contradiction. Otherwise, it follows from (v) that each VR(s;, S) is
bounded by a Jordan curve. For each pair (s;, v;) we can draw a path connecting s; to
v; in the interior of VR(s;, §), so that these paths are disjoint. However, that is a planar
embedding of K3 3, a contradiction. O

Theorem 8(iv) implies that the edges of the Voronoi graph are indeed well-defined and
are curves. Finally, we consider the complexity of this Voronoi graph.

Theorem 9. Given a harmless site collection S of n sites (not counting the outer circle
w). The Voronoi graph V (S) is a planar connected graph with at most n + 1 faces, at
most 3n — 3 edges, and at most 2n — 2 vertices.

Proof. Each face of the graph is a Voronoi region, and there are n of those plus the outer
face. All Voronoi regions are simply connected, so V (S) is connected. Let v and e denote
the number of vertices and edges of the graph. By definition, a Voronoi vertex has degree
atleastthree, so2e > 3v. By Euler’sformula, wehave2 < n+1—e+v < n+1—e+2¢/3,
and so e < 3n — 3. That implies v < 2n — 2. O

(a) (b)

Fig. 8. Degenerate Voronoi-cells.



450 H. Alt, O. Cheong, and A. Vigneron
5. Randomized Incremental Construction

The Voronoi diagram of curved objects does not fit into the framework of abstract Voronoi
diagrams by Klein et al. [15] and cannot be computed with their randomized incremental
algorithm. The reason for this is that they assume that the bisector of any pair of sites is
an unbounded simple curve. Even for a point and a circular arc, this is no longer true:
the bisector can be a closed curve as in Fig. 1.

If, however, the objects form a harmless site collection, this situation can be remedied.
In the following we demonstrate how to compute the Voronoi diagram of a harmless site
collection in time O (n logn) using a kind of randomized incremental algorithm, based
on the framework set by Clarkson and Shor [6], Mulmuley [17], and Boissonnat et al. [3].
We have to make sure that during the execution of the algorithm which constructs the
Voronoi diagram by inserting the sites one by one, the intermediate set of sites is always
a harmless site collection, that is that no curve is inserted before both of its endpoints are.

Therefore, we compute the Voronoi diagram of a harmless site collection S in two
stages. In the first stage we compute the Voronoi diagram of n points PU Q. Here P C S
is the set of all point sites. Q is obtained by selecting for each curve site s € S a point g
in the relative interior of s.

The points in Q serve as “placeholders” for the curves they stem from. In the second
stage the curve sites are added one by one in random order. The replacement of the
placeholders by the actual curves is made easy by the fact that we already know where
to insert a new site s.

We will need to represent the Voronoi diagram V (R) of a subset R C S U Q. This
can be done using any standard structure for planar subdivisions, such as the doubly
connected edge list [16], [20]. In the first stage of the algorithm we simply compute
the Voronoi diagram V (P U Q). This can be done using any efficient algorithm for the
construction of Voronoi diagrams and takes time O (n logn).

As discussed in Section 3, we add a large circle w to our site collection S. If necessary,
this circle has to be handled symbolically. After computing V (P U Q), we add w to obtain
V(P U Q U {w}). This can be done in time O (n).

Let now sy, 82, ..., S, be a random permutation of the curve sites in S. Let ¢, de-
note the point in the interior of s, we had chosen. We consider the sites s, in this
order. In every step of the algorithm, we enlarge a point site g, in the current Voronoi
diagram V(P U {w, s1, ..., 8—1,4r, ---,qm}) to the curve site s, and obtain V(P U
{w, s1, ..., 8, qre1s.--,qm}). Let us look at this in more detail.

For brevity, let s := s,,9 == ¢, R :== PU{s|,...,8~1,9r,qr+1,---5qm}, and
R == PU{s1,..., 81,8, qrt1,--->qm}. By Theorem 8, the Voronoi region VR(s, R’)
of s is a simply connected region whose boundary is a closed Jordan curve (recall that s
is not a point site). To obtain V (R’) from V (R) means to remove the portion Z of V (R)
that lies in VR(s, R’), and to add the boundary of VR(s, R’). (See Fig. 9.) We first prove
a lemma.

Lemma 10. The “skeleton” T (the portion of V (R) that lies in VR(s, R’)) contains the
boundary of VR(q, R), is connected, and contains no cycle except for the boundary of
VR(q, R). All its leaves lie on the boundary of VR(s, R'), and its complexity is linear in
the number of these leaves.
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(b)

Fig.9. The Voronoi diagram before and after inserting s. The shaded region in (a) is VR(g, R) and the shaded
region in (b) is VR(s, R’). The skeleton Z is represented by the dashed edges.

Proof. Since ¢ lies on s, clearly VR(gq, R) is completely contained in VR(s, R), and
hence 7 contains the boundary of VR(g, R).If 7 contained any other cycle, some Voronoi
region VR(r, R), r € R, r # g, must lie inside VR(s, R’) which would imply that r lies
in VR(s, R’), which is impossible.

Assume now that 7 is not connected. That means that there are at least two connected
components Z; and Z, of Z. By Theorem 8(iv), none of these can be contained in the
interior of VR(s, R’), they both must have some connection with dVR(s, R’). So there
isapath y C VR(s, R")\Z connecting two points x and y on the boundary of VR(s, R’)
and separating 7, from Z, . Since y NV (R) = @, y lies in the interior of some VR(r, R),
for r € R. This implies that there must be points x” and y’ arbitrarily close to x and y that
lie in VR(r, R’). That means that x and y can be connected by a path ' in VR(r, R’). The
combination y Uy’ is a closed loop in VR(r, R) containing either Z or 7, a contradiction
to Theorem 8(iv). It follows that Z is connected.

Leaves of Z must clearly lie on dVR(s, R'). By removing one edge on dVR(q, R)
from Z, it becomes a tree, all of whose interior vertices have degree at least three.
Consequently, its complexity is linear in the number of its leaves. O

Consider now the boundary of VR(s, R’). As discussed in the proof of Theorem 8(v),
it consists of two segments / and J—possibly degenerated to a point—through the
endpoints p and g of s and two simple curves A and B. The curves A and B consist of
a sequence of

e cdges that lie in the interior of some VR(r, R), r € R, and are hence part of the
bisector of r and s,

e crossings between edges of V(R) and dVR(s, R'), and

e vertices of V(R).

We first determine I, J, and the skeleton Z. This can be done using a graph search
starting at any edge on the boundary of VR(g, R) and takes time linear in the complexity
of Z. The leaves of 7 are the vertices of VR(s, R’), and from that information we can
then construct the curves A and B to obtain VR(s, R’) in time linear in the complexity
of 7 and VR(s, R).
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It remains to bound the running time of the algorithm. As we observed, the first stage
of the algorithm takes time O (n logn). Inserting curve site s, takes time linear in the
complexity of Z and VR(s,, R’) and thus by Lemma 10 linear in the complexity of the
new Voronoi region VR(s,, R).

It remains to bound the expected size of VR(s,, R’). We use a standard backwards-
analysis argument [4], [21]: Fix R/, and let s be a random curve site in R’. The total
complexity of V(R’) is O (n) by Theorem 9, and there are r possible choices for s. Con-
sequently, the expected complexity of VR(s, R’) is O (n/r). Summing this over all curve
sites, we find that the second stage of the algorithm takes expected time O(}_"_, n/r)
which is O (nlogn) as well.

Theorem 11. The two-stage randomized incremental algorithm constructs the Voronoi
diagram of a harmless site collection of n sites in time O (nlogn).
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