A HIGH-SPEED PATTERN DECODER IN MPEG-4
PADDING BLOCK HARDWARE ACCELERATOR
Hyeon-Cheol Mo, Jong-Sun Kim, and Lee-Sup Kim

Department of EECS, KAIST,
373-1 Kusong-dong, Yusong-gu, Tagjon, 305-701, KOREA

ABSTRACT

A new pattern decoder in MPEG-4 padding block is proposed.
Necessities have been growing for the padding block to be
implemented as a dedicated hardware because padding block
belongs to the critical path of MPEG-4 encoding procedure. In
padding block, the pattern decoder is the most complicated part.
Therefore, an efficient hardware design is needed for the pattern
decoder. To implement it as a hardware, the proposed decoder
uses the modified repetitive padding algorithm. In the modified
repetitive padding algorithm, the conventional three cases of
Binary Alpha Block (BAB) pattern were simplified to just one
case. Its regularity makes it easy for the pattern decoder to be
hardware-implemented. The simulation results show that the
proposed pattern decoder can be effectively used for
implementing high-speed MPEG-4 padding block.

1. INTRODUCTION

MPEG-4 [1] standard provides a set of technologies to satisfy the
needs of authors, service providers, and end users such as greater
reusability, flexibility and interactivity of media objects, which
include natural audio, video and synthetic content. The major
difference between MPEG-4 and MPEG-1/2 is that the former
specifies algorithms for the object-oriented coding. In other
words, the data structure in MPEG-4 represents an image frame
by a composition of video objects (VOs). Each video object is
divided into a number of object layers. Under each object layer,
there is an ordered sequence of snapshots in time, called video
object plane (VOP). VOP is the basic unit where MPEG-4
encoding algorithm is applied. It is a rectangular area that
completely covers VO with the minimum number of macro
blocks (MBs). Macro block (MB) is a square rectangular area
with 16 by 16 pixel size.

A special technique is required for coding the MBs that contain
the shape edge of an object in ME/MC process because a VOP
has an arbitrary shape [2]. Their non-object pixels are filled by
the padding technique. The basic operation of padding is
explained in section 2. In section 3, various cases encountered in
padding process and its simplification are described. In section 4,
a hardwired pattern decoder based on the simplified padding
algorithm is introduced. In section 5, simulation results that place
emphasis on the speed are presented. This paper is finished with
the conclusion.

2. MPEG-4 PADDING ALGORITHM

The padding technique was introduced owing to the macroblock-
based algorithm inside MPEG-4. In a single VOP, which is a

minimum sized rectangular bounding box, there are MBs that are
completely outside the object (Fig. 1-a), completely inside the
object (Fig. 1-c), and that straddle the boundaries of the object
(Fig. 1-b). The MBs that lie completely inside the object remain
untouched. In the mean time, for the MBs that straddle the
boundary of the object, the repetitive padding process is carried
out, and the MBs that are completely outside the object are filled
using extended padding. The extended padding is done by
copying the first row or column of the next MB that is chosen
depending on the position of the current MB. The simple copying
operation does not need any hardware acceleration [3].

ST

~

S A © b

Figure 1. MBs of an arbitrary shaped VO (VOP)

The repetitive padding is even more complicated because it
depends on the shape of the object. In the padding process, two
data structures are needed; binary shape data, which is referred to
as binary alpha block (BAB), and luminance data including
chrominance data. By examining the BAB, non-object area is
found and filled with the valid luminance data. The repetitive
padding is carried out through two sequential steps; the
horizontal padding and the vertical padding.

Fig. 2-(a) shows the horizontal padding process that is done by
sequential row operation. All non-object pixels are filled with the
next border value. If non-object pixels are located between two
valid object pixels, the non-object pixels are filled with the
average value of the two valid pixel data. An empty row or an
initially filled row remains untouched.

Fig. 2-(b) shows the vertical padding process following the
horizontal padding process. Likewise, all non-object pixels are
filled vertically with the next border value of the object or the
next pixel value that is filled in the horizontal padding process. If
there are empty pixels between the valid ones, the average value
of them is taken. After all columns of the MB are processed, the
padding is finished.

[1-197

0-7803-6685-9/01/$10.0002001 |EEE

@ (b)

Figure 2. Repetitive padding algorithm (horizontal and vertical)

3. DECODING ALGORITHM
3.1 Conventional Cases

Basically, padding is processed with a row or a column as the
fundamental unit. Therefore, the pattern of a single row or a
column should be fully analyzed before the filling process of
pixel value is started. The patterns of a row or a column in BAB
have a wide variety because it is a slice of VOP which contains
an arbitrary shape. However, they can be categorized into three
cases (Fig. 3). To make the analysis easier, the row is traversed
from the right edge to the left one. In case I, it starts with ‘0’ and
encounters ‘1°. In case II, it starts with ‘1’ and has the ‘hole’. In
case III, it starts with ‘1’ and ends with ‘0’. Owing to the
arbitrary shape characteristics, above three cases can be mixed in
a single row, which necessitates another padding process to the
same row. A padding process to the same row comes to an end
when all the pixels in the row become ‘1’. In the case of bus
width limitation, 16 bits of a row can be divided into appropriate
sub modules. For example, provided the row is divided into two
8 bit of rows, it brings forth increased 5 cases [3]. In this paper,
three-case analysis is adopted.

All the information that is needed from the shape data for a row
or a column is ‘next’ signal, source address where pixel
luminance value is copied from, second source address (if
needed), destination addresses, which is non-object pixel. In Fig.
3, for example, source address is the fifth bit from the right end in
case I, fourth bit in case II, twelfth bit in case III. Second source
address is the eighth bit in case II and it is needed only in the
case II. It is necessary to simplify the cases, since too many cases
increase decoder overhead. In the next section, modification of
the algorithm for the simplicity is addressed.

Luminance‘32‘34‘23‘23‘43‘34‘23‘12‘33‘45‘23‘25‘25‘25‘25‘25‘

shape [x [x [x [x [[[x [x [x[x[x [[o[s[s]°]
Case |

Luminance‘SZ‘34‘23‘23‘43‘34‘23‘12‘33‘29‘29‘29‘25‘25‘25‘25‘

snape [[x [x X [x [x[x[x [Jo[o o[[1]1]]
Case 11

Luminance‘25‘25‘25‘25‘25‘23‘45‘33‘12‘23‘34‘43‘23‘23‘34‘32‘

swepe [0 [0 [o[o [+ [[[[[[[]
Case IIT

Figure 3. Three patterns of the shape-data

3.2 Case Simplification

In three cases above, case Il is more general than others because
it needs two source addresses, while others need only one source
address. Hence, it would be better to aim at case II in simplifying
the cases, and how to integrate the three cases in the form of case
II should be devised. One trial is as follows. In any cases of shape
data pattern, if ‘1’ bit is added on both sides of the shape data, all
three cases become to have the same form as the original case I,
which starts with ‘1” and has hole(s) (Fig. 4). Therefore, if there
is a regular decoding solution for the case II, the decoder can be
easily hardware-implemented.

As mentioned above, two source addresses should be found first,
in case II (‘simplified case’ hereafter). Then, the luminance data
for the addresses are averaged and the result is written in the
destination. However, one of the source addresses is additionally
added ‘1’ bit, special care is needed because the luminance data
for the additionally added ‘1’ bit is zero. In this case, the sum of
luminance, which is not averaged, is the right data to be written.
It will be addressed in the next section for the hardware
implementation again.

[]+ DD X XX x [x i fo oo T o] + [1]

For Case [

L]+ DD I I x o fo oo [[[o] + [
For Case IT

L]+ Lfolofoln [[]+ [
For Case III

Figure 4. Case simplification

3.3 Edge Detection Algorithm for Case II

The primary object of the speculation and modification of the
various cases is to implement the pattern decoder as an efficient
dedicated hardware. Therefore, the decoding solution for the
simplified case should be devised from the hardware point of
view. As stated above, shape data is analyzed by traversing it

[1-198

from right end to the left. Hence, to detect an edge, a special
circuitry, named first-zero detector, is very useful (Fig.5). The
operation is as follows. GND is carried through the NMOS chain
from the right end until it encounters zero because zero-input bit
turns on the PMOS to change the output bit data from GND to
VDD. Once it is changed, VDD is carried through the remained
NMOS chain, which leads to the output as a thermometer code.

Input 1 0 1 1

HHHH

[L

L]
Output 1 1 0 0

Figure 5. First-zero detector

With the first-zero detector, the shape data can be analyzed in

hardware aspect as explained in Fig. 6. (A) is the input shape data.

The information needed from the input shape data is the first and
the second source address, the destination address, and ‘next’
signal. According to the input shape data (A), the first source
address is the third bit and the second source address is the eighth
bit. When the first zero detector is used with (A) as the input, (B)
is obtained as the output. If (B) is right-shifted by one bit, the
first source address is obtained as a thermometer code. (C) is the
result of ‘NAND’ operation between (A) and (B), which is an
intermediate process for (D). (D) is the first-zero-detected result
like (B), which is the exact second source address, which is a
thermometer code as well. (E) is obtained by the ‘XOR’
operation between (B) and (D). (E) is the write-enable signals for
the averaged luminance data to be written.

mowt [[e oo e [o [[[i] @
rrsvooin [T [T [[T [[e e]e] @)
anand® [0 [x X[\ [[[[[[
fisvoor0 [T [[[T TeTeTe e e e o] o)
sxor0 [oolo] oo o o] [[[e]e]e]®

Figure 6. Decoding algorithm for the simplified case

4. HARDWARE IMPLEMENTATION

4.1 Decoder Implementation

Based on the decoding solution above, the pattern decoder can be
implemented as a hardware (Fig. 7). ‘a[0-17]" is the input shape
data and ‘b[0-17]" is the first source address that is left-shifted
by one bit. ‘d[0-17]is the exact second address, and ‘e[0-17] is
the destination address. The ‘next’ signal is made such that when
all the bits of a single row in shape data are all ‘1’ or all ‘0’, the
padding process to the row is finished, and another row is fed to
the padding procedure. In the illustrated decoder, the first and the
last bit stage are for the additionally added ‘1’ bit. If ‘a0’ is
always ‘1°, ‘b0’, ‘d0’ and ‘e0’ are always ‘0’. Hence, strictly

speaking, four transistors and gates in the first stage can be
omitted.

ahimD—[gﬁD—D
next

Yy ¥ ¥ ¥ A A A O
F A e T
di7 del;G L\I_Edel% L\I_Edefét d3 d2 L‘I_Edl L‘I_EdO -

yrye TUEE

Figure 7. Implemented decoder

Fig. 8 shows the example schedule of decoder operation. Once an
input shape data is fed into the FSM, the next input waits for the
end of the precedent pad operation. When all the input bits
become ‘1°, the next shape data is inserted. For the given shape
input data, 4 clock cycles are spent.

4.2 Overall Architecture

As mentioned above, it is necessary to handle the extra control
procedure due to the case simplification, in the padding process,.
The luminance data for the two source addresses are averaged
and the result is written in the appropriate destination. However,
if one of both source addresses contains the additionally added
‘1’ bit, the luminance data for the other source address should be
written without any change. Hence, there should be a correct
selection between the sum of luminance data and the averaged
luminance data, which is the shifted sum, according to whether
the any source address contains the additionally added ‘1’ bit.

Decoder
4 - ~
° ERER
= O =
g 39 3 3
© o © o
2 9
3
| addrrd 1
3l s FSM addr rd 2
©
2 Z last bit addr,
gl ¢ a)load _—
z | pixelrd 1]
ol 5L bghort_pac(jj
[~ 71 c)vert_pal)
pixel rd 2
d)store v
> pixel wr
b »
T =
EEE EEEE
EEEEEER-ERE:
x| —| = B|7 @| gl B3
al o 9o R < s 3l
vaa YYY Yoy
Pixel— Shape—
Memory Memory

Figure 9. Overall architecture

[1-199

Fig. 9 shows the overall architecture of padding block hardware.
The FSM has the four states as load, horizontal pad, vertical pad
and store. In the ‘load’ state, the pixel and shape data is fed into
the inner memory of padding block through the input stream.
After the horizontal and the vertical padding are finished, the
processed output data is streamed out in the ‘store’ state.

On the right of the FSM, there is a data-path for pixel-value
selection. If one of the source addresses contains the additionally
added ‘1’ bit, the sum that is not shifted is selected for the data to
be written.

5. SIMULATION RESULT

The pattern decoder was simulated in 0.25 um CMOS technology.
Fig. 10 shows that the maximum delay time is 0.5 ns, which is
from 100.1 ns to 100.6 ns. The sample delay path which was
chosen is from the ‘a0’ to the ‘b17’, ‘d17’ and ‘el7’ in Fig. 7. As
a result, theoretical maximum speed is 2 GHz. On the assumption
that the speed of FSM is high enough and delay time of
load/store time is short enough, the speed of the padding block
can reach GHz thanks to the reduction of the overhead of the
pattern decoder by the proposed simplification algorithm.

Voltages (lin)

T T T T T
100.5n 100 6n 1007n

T T T
100.1n 100.2n 100.30 1004n
Time (lin) (TIME) 1o0.0n

Figure 10. Maximum delay

The proposed pattern decoder can be effectively used in
implementing much faster padding block compared to the
conventional padding block hardware accelerator whose
maximum speed is only 100 MHz [3].

6. CONCLUSIONS

This paper proposes a hardware-implemented pattern decoder in
MPEG-4 padding block. Lack of coherence in various cases of
the conventional pattern detection algorithm prevented the
decoder from being implemented as an efficient hardware.
Therefore, simplification of 3 cases is indispensable. A new
decoding algorithm for simplified single case is schemed out
using the first-zero detector. Finally, its possible hardware
implementation and overall padding block architecture are
introduced. Simulation results show that the possible maximum
speed of the padding block could reach GHz with the reduction
of the delay of load/store and the FSM unit.

7. ACKNOWLEDGMENT

This work was supported by KOSEF through the MICROS at
KAIST, Korea.

8. REFERENCES

[1] Overview of the MPEG-4 Standard, ISO/IEC
JTC1/SC29/WG11 N3536 Beijing — July 2000

[2] E. A. Edirisinghe, J. Jiang, C. Grecos, “Object boundary
padding technique for improving MPEG-4 video
compression efficiency”. Electron. Lett., 1999, pages 1453-
1455.

[3] C. Heer, K. Migge. “VLSI Hardware accelerator for the
MPEG-4 padding algorithm”. IS&T/SPIE Conference on
Media Processors, 1999

Clock

State Load Hor:pad

next

shape_rd 111000111000110001 100011000000001111

shape_rd_fsm 111000111000110001

z10001 1000000001111

§111000111 00111111

;\111000111 LRRRRARY]

§111111111 IRRRRRARE

111000111000111111 § 111000111411111111

shape_wr IRRRRRRRRARARARAREI don't care 100011111 {11111
addr_rd1" IRRRRRRRRRARARARRIY 111111111111000000 111111000000000000 don't care 111111111111110000
addr_rd2 111111111111110000 111111111000000000 111000000000000000 don' care 111111000000000000
addr_wr 000000000000001110 000000000111000000 000111000000000000 don't care 000000111111110000

Figure 8. Example schedule of decoding operation

One cycle ended

[1-200

