
Discrete Applied Mathematics 312 (2022) 15–28

g

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Obstructions for partitioning into forests and outerplanar
graphs
Ringi Kim a,1, Sergey Norin b,2, Sang-il Oum c,d,3

a Department of Mathematics, Inha University, Incheon, Republic of Korea
b Department of Mathematics and Statistics, McGill University, Montréal, Canada
c Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea
d Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea

a r t i c l e i n f o

Article history:
Received 13 January 2020
Received in revised form 5 June 2020
Accepted 12 September 2020
Available online 26 September 2020

a b s t r a c t

For a class C of graphs, we define C-edge-brittleness of a graph G as the minimum ℓ

such that the vertex set of G can be partitioned into sets inducing a subgraph in C and
there are ℓ edges having ends in distinct parts. We characterize classes of graphs having
bounded C-edge-brittleness for a class C of forests or a class C of graphs with no K4 \ e
topological minors in terms of forbidden obstructions. We also define C-vertex-brittleness
of a graph G as the minimum ℓ such that the edge set of G can be partitioned into sets
inducing a subgraph in C and there are ℓ vertices incident with edges in distinct parts.
We characterize classes of graphs having bounded C-vertex-brittleness for a class C of
forests or a class C of outerplanar graphs in terms of forbidden obstructions. We also
investigate the relations between the new parameters and the edit distance.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

How far is a graph G from a graph class C?
A natural and well-studied (see e.g. [1,5]) measure of this distance is defined as follows. The edit distance eC(G) from a

raph G to a graph class C is the minimum of |E(G′)△E(G)| taken over all G′
∈ C with V (G′) = V (G). If C is monotone, that

is, C is closed under isomorphisms and taking subgraphs, then eC(G) is simply the minimum number of edges one needs
to delete from G to obtain a graph in C. In this paper, we only consider simple graphs and monotone graph classes.

In addition to the edit distance we consider two alternative distance parameters, which measure how difficult it is to
partition a graph G into parts which belong to the class C. For a graph G, the C-edge-brittleness of G, denoted by ηC(G), is
the minimum integer ℓ such that there is a partition (V1, V2, . . . , Vn) of V (G) such that G[Vi] ∈ C for all i and the number of
edges having ends in distinct Vi’s is ℓ.4 A dual parameter, the C-vertex-brittleness of G, denoted by κC(G), is the minimum
integer ℓ such that there is a partition (E1, E2, . . . , En) of E(G) with the property that the subgraph of G induced by the
edges in Ei belongs to C for each i and the number of vertices incident with edges in distinct Ei’s is ℓ.
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Fig. 1. The diamond graph D.

Finally, we add yet another parameter to our list, which comes from a packing problem dual to the covering problem
which defines the edit distance. For a graph G, the C̄-capacity of G, denoted by νC(G), is the maximum integer ℓ such that
there exist edge-disjoint subgraphs H1,H2, . . . ,Hℓ of G such that Hi does not belong to C for each i.

The following easy observation describes the basic relations between the edit distance and the above parameters.

Observation 1.1. Let C be a monotone graph class such that K1, K2 ∈ C, and C is closed under taking disjoint unions.5 Then
for every graph G we have eC(G) ≤ ηC(G), κC(G)/2 ≤ eC(G), and νC(G) ≤ eC(G).

Proof. Let (V1, V2, . . . , Vn) be a partition of V (G) such that G[Vi] ∈ C for all i and ηC(G) edges of G have ends in distinct
parts of this partition. Let G′

=
⋃n

i=1 G[Vi]. Then G′
∈ C, as C is closed under taking disjoint unions, and G′ is obtained

from G by deleting ηC(G) edges, implying the first inequality.
Let F be a set of edges such that |F | = eC(G) and G \ F ∈ C. For the second inequality, consider a partition of E(G) into

E(G)−F and |F | parts of size one corresponding to elements of F . The subgraph of G induced by each part of this partition
lies in C by our assumptions, while the number of vertices incident with two edges in two distinct parts is clearly at most
2|F | = 2eC(G). It follows that κC(G) ≤ 2eC(G), as desired.

Finally, let ℓ = νC(G), and let H1,H2, . . . ,Hℓ be as in the definition of νC(G). Let F be as in the previous paragraph.
Then, F ∩ E(Hi) ̸= ∅ for every i. Thus |F | ≥ ℓ, implying the last inequality. □

Recall that for a graph G, a subdivision of G is a graph obtained from G by replacing edges of G with internally disjoint
paths of length at least 1. For graphs G and H , we say H is a topological minor of G if G has a subgraph that is a subdivision
of H . A graph H is a minor of a graph G if H can be obtained from G by a sequence of edge contractions, edge deletions,
and vertex deletions. A graph is outerplanar if it can be drawn on the plane without edge crossings such that there is a
face incident with all vertices. We say G is H-free, if no topological minor of G is isomorphic to H . For a set H of graphs,
we say G is H-free if G is H-free for every H ∈ H. A diamond is the graph obtained from K4 by removing one edge, see
Fig. 1.

The goal of this paper is to investigate structural reasons that guarantee that a graph is far from a given class C, using
each of the above measures of distance. In other words, we attempt to determine qualitative obstructions to partitioning
a graph into graphs in C. We concentrate on the class A of forests, the class O of outerplanar graphs, and the class D of
diamond-free graphs, that is intermediate between A and O.

These classes are not only monotone, but also closed under topological minors. For this paper, we say that a class C of
graphs is an ideal if C is closed under isomorphisms and taking topological minors. As will be shown later (Proposition 1.8),
if C is an ideal, then taking topological minors does not increase edit distance to C, C-vertex-brittleness, or C̄-capacity.
Thus a characterization of minimal ideals which have unbounded edit distance to C (respectively, C-vertex-brittleness,
and C̄-capacity) is an explicit and convenient description of the obstructions we are interested in. Moreover, we will
show that C-edge-brittleness is bounded by a function of the edit distance to C for the classes that we consider (although
not in general). Thus we will also obtain a description of obstructions for unbounded C-edge-brittleness.

Our first two theorems give a characterization of minimal ideals which have unbounded distance to the class of forests.
Let G be a graph, S ⊊ V (G), and let k be a positive integer. A graph Fan(G, S, k) is obtained from k vertex-disjoint

copies of G by identifying all the copies of v for each v ∈ S and identifying all the copies of e for each e ∈ E(G[S]). Thus,
for example, Fan(G,∅, k) is the disjoint union of k copies of G, and Fan(K2, {v}, k) for v ∈ V (K2) is a star with k leaves.
Let FAN(G, S) denote the ideal consisting of all graphs isomorphic to a topological minor of Fan(G, S, k) for some positive
integer k. We say that a graph parameter f is bounded on a class G of graphs if there is a constant M such that |f (G)| ≤ M
for all G ∈ G.

Theorem 1.2. Let G be an ideal. Then, the following are equivalent.

1. νA is bounded on G.
2. eA is bounded on G.
3. ηA is bounded on G.
4. FAN(K3, S) ̸⊆ G for every S ⊆ V (K3), |S| ≤ 2.

5 We write Kn and Km,n for the complete graph on n vertices and the complete bipartite graph on m + n vertices partitioned into sets of m and
n vertices.
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Fig. 2. Two graphs W+

5 and K+

2,3 .

Thus the parameters νA, eA, and ηA are tied. On the other hand, it is easy to see that κA(K2,n) = 2, while νA(K2,n) ≥

⌊n/2⌋. The next theorem characterizes the graph classes with bounded C-vertex-brittleness, showing that this example
is essentially the only source of discrepancy.

Theorem 1.3. Let G be an ideal. Then, κA is bounded on G if and only if FAN(K3, S) ̸⊆ G for every S ⊆ V (K3), |S| ≤ 1.

Next we extend Theorem 1.2 to the class of diamond-free graphs. Let D be the diamond graph in Fig. 1. Let D denote the
class of D-free graphs. For convenience let us define another special ideal K2,∗ consisting of graphs which are isomorphic
to a topological minor of K2,n for some n. It is easy to see that K2,∗ = FAN(K3, S) for S ⊆ V (K3) with |S| = 2.

Theorem 1.4. Let G be an ideal. Then, the following are equivalent.

1. νD is bounded on G.
2. eD is bounded on G.
3. ηD is bounded on G.
4. FAN(D, S) ̸⊆ G for every S ⊆ V (D) with |S| ≤ 1, and K2,∗ ̸⊆ G.

The analogue of Theorem 1.3 also holds.

Theorem 1.5. Let G be an ideal. Then, κD is bounded on G if and only if FAN(D, S) ̸⊆ G for every S ⊆ V (D) such that |S| ≤ 1,
or S consists of the pair of degree-2 vertices of D.

We were unable to obtain an analogue of Theorems 1.2 and 1.4 for outerplanar graphs. The difficulty partially stems
from the fact that ηO is no longer tied to the other parameters, as the next proposition shows.

Proposition 1.6. For every integer ℓ > 0 there exists a graph G = G(ℓ) such that eO(G) = 1 and ηO(G) ≥ ℓ.

We were, however, able to characterize the minimal ideals with unbounded O-vertex-brittleness. For an integer k ≥ 3,
let W+

k denote the graph obtained from the wheel on k + 1 vertices by subdividing every edge of the rim. Equivalently,
W+

k is obtained from a cycle on 2k vertices by adding an extra vertex adjacent to all the vertices of some independent
set of size k in the cycle. Let K+

2,3 denote the graph obtained from K2,3 by adding an edge joining the degree-3 vertices,
see Fig. 2.

Theorem 1.7. Let G be an ideal. Then, G has bounded κO if and only if it contains none of the following ideals.

• FAN(K4, S) with S ⊆ V (K4), |S| ≤ 1.
• FAN(K2,3, S) with S ⊆ V (K2,3) such that |S| ≤ 1 or S consists of two degree-2 vertices.
• FAN(K+

2,3, S) with S ⊆ V (K+

2,3) consisting of all degree-2 vertices.
• FAN(W+

k , S) where k ≥ 3, and S ⊆ V (W+

k ) is the set of all degree-2 vertices.

We finish this section with the proof that taking topological minors does not increase our measures of distance to an
ideal, except possibly for edge-brittleness.

It is convenient to present our proof using the language of embeddings. It is easy to see that a subdivision of a
graph G′ is isomorphic to a subgraph of a graph G if and only if there exists a map φ defined on V (G′) ∪ E(G′) such
that φ maps V (G′) injectively into V (G), and φ maps the edges of G′ into internally disjoint paths, so that φ(uv) has ends
φ(u) and φ(v) for every uv ∈ E(G′). We refer to a map with these properties as an embedding of G′ into G, and write
φ : G′ ↪→ G to denote that φ is such an embedding. For a subgraph F of G′, let φ(F ) denote the subgraph of G such
that V (φ(F )) = {φ(v) : v ∈ V (F )} ∪ (

⋃
e∈E(F ) V (φ(e))) and E(φ(F )) =

⋃
e∈E(F ) E(φ(e)). Note that φ(F ) is isomorphic to a

subdivision of F .

Proposition 1.8. Let C be an ideal. If G′ is a topological minor of a graph G, then

eC(G′) ≤ eC(G), κC(G′) ≤ κC(G), and νC(G′) ≤ νC(G).
17
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Fig. 3. An example showing that κA and νA may increase by contracting the edge e.

Fig. 4. An example showing that eO may increase by contracting the edge vw.

Proof. Let φ : G′ ↪→ G be an embedding. Let F ⊆ E(G) with |F | = eC(G) be such that G \ F ∈ C. Let F ′
= {f ∈ E(G′) :

E(φ(f ))∩ F ̸= ∅.}. Then there is a restriction of φ that is an embedding of G′
\ F ′ into G \ F . It follows that G′

\ F ′
∈ C, and

so eC(G′) ≤ |F ′
| ≤ |F | = eC(G). This proves the first inequality.

For the second inequality, let E = (E1, . . . , Ek) be a partition of E(G) so that the set W of all vertices incident with edges
in distinct parts of E satisfies |W | = κC(G)(G). Let v1, v2, . . . , vn be an arbitrary ordering of V (G′), and let E ′

= (E ′

1, . . . , E
′

k)
be a partition of E(G′) such that for e′

= vivi′ ∈ E(G′) with i < i′ we have e′
∈ E ′

s, where s is chosen so that the unique
edge e of φ(e′) incident with φ(vi) satisfies e ∈ Es. Let W ′ be the set of all vertices of vi ∈ V (G′) such that φ(vi) ∈ W or
there exists i′ < i so that some internal vertex of φ(vivi′ ) lies in W . It is easy to see that |W ′

| ≤ |W | and any vertex of
G′ incident with edges in distinct parts of E ′ lies in W ′. Thus κC(G)(G′) ≤ |W ′

| ≤ |W | = κC(G)(G). This proves the second
inequality.

Finally, let H1, . . . ,Hℓ be pairwise edge-disjoint subgraphs of G′ such that Hi ̸∈ C and ℓ = νC(G′). Then φ(H1), . . . , φ(Hℓ)
are edge-disjoint subgraphs of G, and we have φ(Hi) ̸∈ C as C is an ideal. It follows that νC(G) ≥ ℓ = νC(G′). □

The bounds in Proposition 1.8 do not necessarily hold if G′ is a minor of G. For example, let G be the graph given
in Fig. 3 and let G′

= G/e for the edge e shown in the figure. The partition of E(G) into three internally disjoint paths
connecting the degree-3 vertices shows that κA(G) = 2. It is easy to see that κA(G/e) = 3, νA(G) = 1, and νA(G/e) = 2.
The inequality ηC(G′) ≤ ηC(G) does not necessarily hold even if G′ is a topological minor of a graph G. For example, let C
be the class of all Kn-free graphs, let G′

= Kn and let G be obtained by replacing one edge of Kn by a path of length two.
It is easy to see in this case that ηC(G′) = n− 1, ηC(G) = 2. Similarly an example in Fig. 4 shows that eO may increase by
contracting an edge.

This paper is organized as follows. Section 2 reviews necessary definitions. In Section 3 we use the Erdős-Pósa property
of connected subgraphs of graphs of bounded tree-width to prove several general useful lemmas. Theorems 1.2 and 1.4
are derived from these lemmas in Section 4. We investigate vertex-brittleness in Section 5 and prove a characterization
of minimal ideals with unbounded C-vertex-brittleness for C ∈ {A,D,O} in terms of traps, a technical notion introduced
in that section. In Section 6 we finish the proofs of Theorems 1.3, 1.5, and 1.7 by classifying the traps for the classes
of acyclic, diamond-free, and outerplanar graphs. The examples of graphs with properties claimed in Proposition 1.6 are
provided in Section 7. Section 8 contains the concluding remarks.

2. Preliminaries

For graphs G and H , G ∪ H and G ∩ H are graphs with (V (G ∪ H), E(G ∪ H)) = (V (G) ∪ V (H), E(G) ∪ E(H)) and
(V (G ∩ H), E(G ∩ H)) = (V (G) ∩ V (H), E(G) ∩ E(H)). Here, G ∪ H and G ∩ H are called the union and the intersection
of G and H , respectively. If V (G) ∩ V (H) = ∅, then G ∪ H is called the disjoint union of G and H .

For a set F of edges of G = (V , E), we write G\F for the subgraph (V , E \F ), which is the subgraph obtained by deleting
edges in F . For a set X of vertices of G = (V , E), we write G \X for the subgraph obtained by deleting all vertices in X and
all edges incident with vertices in X .

For vertices u and v of a graph G, a path from u to v is an alternating sequence v0e1v1 · · · ekvk of distinct vertices
and edges of G such that k ≥ 0, v0 = u, vk = v, and ei = vi−1vi for all i ∈ {1, 2, . . . , k}. The length of a path is its
number of edges. We sometimes identify such a path with the subgraph whose vertex set is {v0, v1, . . . , vk} and edge set
is {e1, e2, . . . , ek}. A set P of paths is internally disjoint if no internal vertex of a path in P is on another path in P .

A graph is connected if for all vertices u and v, there is a path from u to v. A graph is k-connected if |V (G)| > k and
G \ X is connected for all X ⊆ V (G) with |X | < k.

A set X of vertices is independent if no two vertices are adjacent.
We will use the following version of Menger’s theorem in Section 3.

Theorem 2.1 (Menger [6]). Let S, T be disjoint sets of vertices in a graph G. Then G has k pairwise edge-disjoint paths from S
to T if and only if there exists no set X of vertices such that S ⊆ X, T ∩ X = ∅, and G has less than k edges having one end
in X and the other end not in X.
18
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. General lemmas

In this section we use the standard toolkit on graphs of bounded tree-width to prove a result (Corollary 3.4) allowing
s to ‘‘pin down’’ the subgraphs of graphs G which do not belong to a given monotone class C, or to find within G a nicely

structured subgraph H which is far from C according to all our measures. It is the key ingredient in the proofs of all our
theorems.

The following theorem appeared in Gyárfás and Lehel [4] implicitly and Cockayne, Hedetniemi, and Slater [3] explicitly.

Theorem 3.1. Let T be a tree, and T be a family of subtrees of T . For every positive integer k,

• either there exist k pairwise vertex-disjoint members of T , or
• there is a subset Z ⊆ V (T ) with |Z | < k such that every member of T intersects Z.

A tree-decomposition of a graph G is a pair (T , β), where T is a tree and β is a function that assigns a subset of vertices
of G to each vertex t of T , such that for every uv ∈ E(G), there exists t ∈ V (T ) with {u, v} ⊆ β(t), and for every v ∈ V (G),
he set {t : v ∈ β(t)} induces a non-empty connected subgraph of T . The width of a tree-decomposition (T , β) is equal to
axv∈V (T )(|β(v)| − 1), and the tree-width of a graph G is equal to the minimum width of a tree-decomposition of G. The

ollowing theorem characterizes graphs of large tree-width.

heorem 3.2 (Robertson and Seymour [7]). For every planar graph G, there exists a constant w = w(G) such that every graph
not containing G as a minor has tree-width at most w.

A standard application of Theorem 3.1 gives the following.

Lemma 3.3. There exists a function f (w, k) satisfying the following. For positive integers w and k, if G is a graph with
tree-width at most w, and H is a family of 2-connected subgraphs of G, then either

• there exist v ∈ V (G) and H1,H2, . . . ,Hk ∈ H such that V (Hi) ∩ V (Hj) ⊆ {v} for all 1 ≤ i < j ≤ k, or
• there exists X ⊆ V (G) such that |X | ≤ f (w, k) and |V (H) ∩ X | ≥ 2 for every H ∈ H.

Proof. Let (T , β) be a tree-decomposition of G of width at mostw. For each H ∈ H, let A(H) = {v ∈ V (T ) : β(v)∩V (H) ̸= ∅}

or each H ∈ H. As elements of H are connected, by Theorem 3.1 either

(i) there exist H1,H2, . . . ,Hk ∈ H such that A(Hi) ∩ A(Hj) = ∅ for all 1 ≤ i < j ≤ k, or
(ii) there exists Z ⊆ V (T ) with |Z | < k such that A(H) ∩ Z ̸= ∅ for every H ∈ H.

As (i) implies the first outcome of the lemma, we assume that (ii) holds.
Let Y =

⋃
z∈Z β(z). Then |Y | ≤ (k − 1)(w + 1), and V (H) ∩ Y ̸= ∅ for every H ∈ H. Fix y ∈ Y , and let

H(y) = {H ∈ H : y ∈ V (H)}. Applying Theorem 3.1 to the collection of sets A′(H) = {v ∈ V (T ) : β(v) ∩ (V (H) − {y}) ̸= ∅}

for H ∈ H(y), we conclude that either

(i′) there exist H1,H2, . . . ,Hk ∈ H such that V (Hi) ∩ V (Hj) ⊆ {y} for all 1 ≤ i < j ≤ k, or
(ii′) there exists Z(y) ⊆ V (T ) with |Z(y)| < k such that A′(H) ∩ Z(y) ̸= ∅ for every H ∈ H.

If (i′) holds for some y ∈ Y , then we obtain the first outcome of the lemma. Otherwise, (ii′) holds for every y ∈ Y .
Let X(y) =

⋃
z∈Z(y) β(z), and let X = Y ∪ (

⋃
y∈Y X(y)). By construction we have |V (H) ∩ X | ≥ 2 for every H ∈ H, and

|X | ≤ |Y |k(w + 1) ≤ k(k − 1)(w + 1)2. Thus f (w, k) = k(k − 1)(w + 1)2 satisfies the lemma. □

The main result of this section is obtained by combining Lemma 3.3 and Theorem 3.2.

Corollary 3.4. Let F be a finite collection of 2-connected graphs, at least one of which is subcubic and planar. Let C be the
ideal consisting of all F-free graphs. Then for every ℓ there exists N = N(F, ℓ) such that for every graph G at least one of the
following holds.

(i) Fan(F , S, ℓ) is a topological minor of G for some F obtained from a graph in F by subdividing at most one edge and
S ⊆ V (F ) with |S| ≤ 1, or

(ii) there exists X ⊆ V (G) with |X | ≤ N such that |V (J) ∩ X | ≥ 2 for every subgraph J of G such that J ̸∈ C.

Proof. Let F0 ∈ F be subcubic and planar. Suppose that the disjoint union ℓF0 of ℓ copies of F0 is a minor of G. Then, as
F0 is subcubic, equivalently Fan(F0,∅, ℓ) is a topological minor of G and so (i) holds. Thus we may assume that ℓF0 is not
a minor of G. Thus by Theorem 3.2 there exists w = w(ℓ, F0) such that G has tree-width at most w.

The upper bound on tree-width allows us to apply Lemma 3.3. Rather than doing so directly it is convenient for us to
start by considering the implications of the first outcome of this lemma. Assume that (i) does not hold.

Let J be a collection of subgraphs of G, so that each J ∈ J is isomorphic to a subdivision of a graph in F , and there
exists v ∈ V (G) such that V (J) ∩ V (J ′) ⊆ {v} for every pair of distinct J, J ′ ∈ J .
19
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Let J0 = {J ∈ J : v ̸∈ V (J)}. Then the graphs in J0 are pairwise vertex-disjoint. As Fan(F ,∅, ℓ) is not a topological
minor of G for every F ∈ F , by our assumption, there are fewer than ℓ elements of J0 isomorphic to a subdivision of F .
hus |J0| ≤ |F|(ℓ− 1).
Let J1 = J − J0. Let F ′ be a finite collection of graphs such that every graph obtained from an element of F by

subdividing at most one edge is isomorphic to an element of F ′. Let s = |F ′
| and let m = maxF∈F ′ |V (F )|. Note that for

every J ∈ J1 there exist F ∈ F ′ and an embedding φ : F ↪→ J such that φ(u) = v for some vertex u of F . We say that the
pair (F , u) for which such an embedding exists is a signature of J . If some pair (F , u) is a signature of ℓ distinct elements
of J1, then Fan(F , {u}, ℓ) is a topological minor of G, a contradiction. As there are at most sm possible signatures, we
conclude that |J1| ≤ sm(ℓ− 1). Thus |J | ≤ (|F| + sm)(ℓ− 1).

We now apply Lemma 3.3 to G, the family H of all subgraphs of G isomorphic to a subdivision of a graph in F , and
k = (|F| + sm)(ℓ− 1) + 1. As shown above the first conclusion of the lemma cannot hold, and so there exists X ⊆ V (G)
such that |X | ≤ f (k, w) and |X ∩ V (J)| ≥ 2 for every J ∈ H. It follows that (ii) holds with N = f (k, w). □

Note that if the first outcome of Corollary 3.4 holds for a graph G then νC(G) ≥ ℓ and κC(G) ≥ ℓ by Proposition 1.8
and the following lemma.

Lemma 3.5. Let H be an ideal. Let G be a graph such that G ̸∈ H and let S ⊊ V (G) be independent. Then νH(Fan(G, S, ℓ)) ≥ ℓ.
If additionally G \ S and G are connected then κH(Fan(G, S, ℓ)) ≥ ℓ.

Proof. Let F = Fan(G, S, ℓ), and let G1,G2, . . . ,Gℓ be the subgraphs of F such that Gi is isomorphic to G for every 1 ≤ i ≤ ℓ
and V (Gi) ∩ V (Gj) = S for i ̸= j. Since G1,G2, . . . ,Gℓ are edge-disjoint, we deduce that νH(F ) ≥ ℓ by definition.

Suppose now that Gi\S is connected for every i. Let E = (E1, . . . , En) be a partition of E(F ) such that F [Ej] ∈ H for every
≤ j ≤ n, where F [E] denotes the subgraph of F induced by the edges in E. Let X = X(E) be the set of all the vertices of
incident with edges in at least two different parts of E . As Gi is isomorphic to F [E(Gi)] we have F [E(Gi)] ̸∈ H for every
≤ i ≤ ℓ. Thus there exist e, e′

∈ E(Gi) belonging to different parts of E . As Gi \ S is connected and S is independent,
there exists a path P in Gi \ S joining an end of e to an end of e′. Then V (P)∩ X ̸= ∅ and so (V (Gi)− S)∩ X ̸= ∅. It follows
that |X(E)| ≥ ℓ for every partition E as above, and so κH(Fan(G, S, k)) ≥ ℓ. □

4. Bounded νC, eC, ηC

In this section we derive from Corollary 3.4 the following theorem, which generalizes Theorems 1.2 and 1.4.

Theorem 4.1. Let F be a finite collection of 2-connected graphs. Let C be an ideal consisting of all F-free graphs, and suppose
that D ̸∈ C. Then for an ideal G the following are equivalent.

(i) νC is bounded on G.
(ii) eC is bounded on G.
(iii) ηC is bounded on G.
(iv) FAN(F , S) ̸⊆ G for every F obtained from a graph in F by subdividing at most one edge and S ⊆ V (F ) with |S| ≤ 1, and

K2,∗ ̸⊆ G.

Proof. By Observation 1.1, (iii) implies (ii), and (ii) implies (i).
By Lemma 3.5, νC is unbounded on FAN(F , S) for every F ̸∈ C and every S ⊆ F with |S| ≤ 1. Moreover, K2,3 ̸∈ C and

FAN(K2,3, S) ⊆ K2,∗ where S is the set of degree-3 vertices of K2,3. It follows that (i) implies (iv).
It remains to show that (iv) implies (iii). Let ℓ be a positive integer chosen so that Fan(F , S, ℓ) ̸∈ G for every pair F , S

as in (iv) and K2,ℓ ̸∈ G. By Corollary 3.4, there exists N such that for every graph G ∈ G there exists X ⊆ V (G) with |X | ≤ N
such that |V (J) ∩ X | ≥ 2 for every subgraph J of G with J ̸∈ C.

Given G ∈ G and X ⊆ V (G) as above we will bound ηC(G) by a function of N and ℓ.
Fix x ∈ X , let X ′

= X − {x}, and suppose that there exists a collection of pairwise edge-disjoint paths P in G with
|P| ≥ 2ℓ|X | such that each P ∈ P has one end in x, the other end in X ′, and is internally disjoint from X ′. By the
pigeonhole principle, there exist x′

∈ X ′ and P ′
⊆ P such that |P ′

| ≥ 2ℓ+ 1 and x′ is an end of every P ∈ P ′. Let P ′′
⊆ P ′

be chosen maximal so that the paths in P ′′ are pairwise internally vertex-disjoint. Then |P ′′
| ≤ ℓ, as otherwise G contains

a subdivision of K2,ℓ contrary to our assumptions. As every path in P ′
− P ′′ shares an internal vertex with some path in

P ′′, there exist P ∈ P ′′ and distinct P ′, P ′′
∈ P ′

− P ′′ such that each of V (P ′) and V (P ′′) contains an internal vertex of P .
Let Q be a subpath of P ′ chosen minimal so that Q has one end x and the other end in V (P) − {x}. Let R be a subpath of
P ′′ that is minimal so that R has one end x and the other end in V (P) ∪ V (Q ) − {x}. It is easy to see that (P ∪ Q ∪ R) \ x′

contains a subdivision of D, with x corresponding to one of the degree-3 vertices of the diamond, and an end of either
Q or R corresponding to the second one. Thus there exists a subdivision J of a graph D ∈ C, so that |V (J) ∩ X | ≤ 1, a
contradiction.

Therefore, the collection P satisfying the above assumptions does not exist. By Theorem 2.1, there exists a set
W (x) ⊆ V (G) such that W (x) ∩ X = {x} and there are fewer than 2ℓ|X | edges with one end in W (x) and the other in
V (G) − W (x). Let E(x) denote this set of edges.
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We are now ready to define a partition of V (G) which will certify that ηC(G) is bounded. Let X = {x1, . . . , x|X |}, and
efine Vi = W (xi) −

⋃
j<i W (xj) for 1 ≤ i < |X | and V|X | = V (G) −

⋃
j<|X |

W (xj). Then (V1, . . . , V|X |) is indeed a partition
f V (G), and Vi ∩ X = {xi} for every i. By the choice of X it follows that G[Vi] is F-free for every i, and so G[Vi] ∈ C.
oreover, every edge of G with ends in different parts of our partition belongs to

⋃
|X |−1
i=1 E(x). Thus there are at most

|X | − 1)(2ℓ|X | − 1) such edges. It follows that ηC(G) ≤ (N − 1)(2ℓN − 1) for every G ∈ G and (iii) holds. □

heorem 1.2. Let G be an ideal. Then, the following are equivalent.

1. νA is bounded on G.
2. eA is bounded on G.
3. ηA is bounded on G.
4. FAN(K3, S) ̸⊆ G for every S ⊆ V (K3), |S| ≤ 2.

roof. Theorem 4.1 applied with F = {K3} implies that the conditions 1, 2, and 3 of Theorem 1.2 are all equivalent to

4′. FAN(F , S) ̸⊆ G for every F obtained from K3 by subdividing at most one edge and S ⊆ V (F ) with |S| ≤ 1, and
K2,∗ ̸⊆ G.

t remains to observe that the above condition is equivalent to condition 4 of Theorem 1.2. Indeed, K2,∗ = FAN(K3, S) for
⊆ V (K3) with |S| = 2. Moreover, every ideal FAN(F , S) described in the condition above contains an ideal FAN(K3, S ′)

or some S ′
⊆ V (K3) with |S ′

| ≤ 1. □

heorem 1.4. Let G be an ideal. Then, the following are equivalent.

1. νD is bounded on G.
2. eD is bounded on G.
3. ηD is bounded on G.
4. FAN(D, S) ̸⊆ G for every S ⊆ V (D) with |S| ≤ 1, and K2,∗ ̸⊆ G.

roof. Our argument is essentially identical to the proof of Theorem 1.2 above. Theorem 4.1 applied with F = {D} implies
hat the conditions 1, 2, and 3 of Theorem 1.4 are all equivalent to

4′. FAN(F , S) ̸⊆ G for every F obtained from D by subdividing at most one edge and S ⊆ V (F ) with |S| ≤ 1, and
K2,∗ ̸⊆ G.

t is trivial that the condition 4′ implies the condition 4 of Theorem 1.4. Observe that for every pair (F , S) as in the above
ondition we have FAN(D, S ′) ⊆ FAN(F , S) for some S ′

⊆ V (D) with |S ′
| ≤ 1. It follows that the above condition 4′ is

equivalent to the condition 4 of Theorem 1.4, as desired. □

5. Bounded vertex-brittleness

In this section we prove a technical characterization of minimal ideals with unbounded C-vertex-brittleness.

Lemma 5.1. Let n be an integer. Let G be a graph and u, v be non-adjacent vertices of G such that G \ {u, v} is connected.
If G has 3n internally disjoint paths from u to v, and every subgraph of G isomorphic to a subdivision of K2,3 contains both u
and v, then G has a subgraph isomorphic to a subdivision of Fan(K2,3, S, n), where S consists of two degree-2 vertices of K2,3.

Proof. Let Γ1,Γ2, . . . ,Γ3n be internally disjoint paths in G from u to v, and let Γ ′

i = Γi \ {u, v} for i = 1, 2, . . . , 3n. Since
u and v are non-adjacent, Γ ′

i contains at least one vertex.
Let G′ be the graph obtained from G \ {u, v} by contracting Γ ′

i for all i = 1, 2, . . . , 3n. Let zi be the new vertex in G′

obtained by contracting Γ ′

i , and let Z = {z1, z2, . . . , z3n}. Since G \ {u, v} is connected, so is G′. Let T be a minimal tree in
G′ containing all vertices in Z . Since T is minimal, every leaf of T is contained in Z .

We first claim that T is a path.
Suppose T contains a vertex x of degree at least 3. We choose three vertices zi1 , zi2 , zi3 ∈ Z such that the paths in T

joining x and zi1 , zi2 , zi3 are internally disjoint, and have no internal vertices in Z .
We may assume zi1 = z1, zi2 = z2 and zi3 = z3 by relabeling Γ1,Γ2, . . . ,Γ3n if necessary.
For j = 1, 2, 3, let Qj be the path of G consisting of the edges of the path from x to zj in T . Assume first that x ∈ Z ,

then, without loss of generality, let x = z4. It is easy to see that Q1, Q2, and Q3 are internally disjoint. Let xj be the end
vertex of Qj in V (Γ ′

4).
We may assume by permuting Γ1, Γ2, and Γ3 if necessary that x2 is contained in the subpath of Γ ′

4 from x1 to x3. Note
that x1, x2, and x3 are not necessarily distinct. For j = 1, 2, 3, the union Γj ∪ Qj ∪ Γ

′

4 is a tree, and so it contains a unique
path from u to x2.

The three paths form a subdivision of K2,3 where x2 and u are the degree-3 vertices in G \ v, a contradiction to the
assumption that every subgraph of G isomorphic to a subdivision of K contains both u and v.
2,3
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So, x /∈ Z . In this case, Γj ∪ Qj contains a path from u to x disjoint from v for every j = 1, 2, 3. The resulting paths are
internally disjoint and so G \ v once again contains a subdivision of K2,3, a contradiction, finishing the proof of the claim.

By relabeling if necessary, we may assume that z1, z2, . . . , z3n lie on T in this order. For i = 1, 2, . . . , 3n− 1, let Wi be
he path in G \ {u, v} corresponding to the path in T from zi to zi+1, and let xi and yi be the ends of Wi in Γ ′

i and Γ ′

i+1,
espectively. Clearly, W1,W2, . . . ,W3n−1 are internally disjoint.

For each j = 1, 2, . . . , n, the union of Γ3j−2,Γ3j, W3j−2, W3j−1 and the subpath in Γ3j−1 from y3j−2 to x3j−1 forms a
ubdivision Rj of K2,3. Then, the union of R1, R2, . . . , Rn is isomorphic to the desired subdivision of Fan(K2,3, S, n), where
is as in the lemma statement. □

For a graph G and a degree-2 vertex v of G, we denote by G/v the graph obtained from G by contracting one of the
dges incident with v. Note that G/v is a topological minor of G.
We now present the main technical definition of this section. Let H be a graph. An H-snare is a pair (J, S) of a graph J

nd S ⊆ V (J) such that H is a topological minor of J , S is an independent set in J , and J \ S is connected. We say that (J, S)
s an H-trap if (J, S) is an H-snare, and (J, S) is minimal in the following sense: (J ′, S ∩ V (J ′)) is not an H-snare for every
proper subgraph J ′ of J , and (J/v, S) is not an H-snare for every vertex v ∈ V (J) − S of degree two. We will characterize
minimal ideals with unbounded C-vertex-brittleness in terms of FAN(J, S) for traps (J, S) in Theorem 5.3.

The next lemma shows that for every graph H the size of every H-trap (J, S) is bounded by a function of H and |S|.

Lemma 5.2. Let H be a connected graph and let (J, S) be an H-trap. Then |V (J)| ≤ 5|E(H)| + 4|V (H)| + 9|S|.

roof. Let φ : H ↪→ J be an embedding, and let H ′
= φ(H). Let C1, C2, . . ., Cm be all the components of H ′

\ S. If m = 1
hen by the definition of an H-trap, J = H ′. In this case it is easy to see that |φ(e) ∩ S| ≤ 1 and |V (φ(e))| ≤ 3 for every
∈ E(H). So the lemma holds. Thus we assume that m ≥ 2.
Note that for every component C of H ′

\ S either we have φ(v) ∈ V (C) for some v ∈ V (H), or C is a subgraph
f φ(uv) \ {φ(u), φ(v)} for some uv ∈ E(H). In the second case, either C = φ(uv) \ {φ(u), φ(v)}, or there exists
∈ S ∩ (V (φ(uv)) − {φ(u), φ(v)}) such that s has a neighbor in C . As every such vertex s has degree two in H ′, we

onclude that

m ≤ |V (H)| + |E(H)| + 2|S|.

Let J ′ be a subgraph of J \ S chosen so that J ′ is connected, V (J ′) ∩ V (Ci) ̸= ∅ for every 1 ≤ i ≤ m, |E(J ′) − E(H ′)| is
inimum, and subject to that |E(J ′)| is minimum.
Then (H ′

∪ J ′, S ∩ V (H ′)) is an H-snare, and so J = H ′
∪ J ′. Moreover, J ′ is a tree by minimality of E(J ′).

Suppose for a contradiction that J ′ ∩ Ci is disconnected for some 1 ≤ i ≤ m. Then there exists a cycle F in J ′ ∪ Ci such
that E(F )−E(H ′) ̸= ∅. Then J ′′ = (J ′ ∪Ci)\ e contradicts the choice of J ′ for every e ∈ E(F )−E(H ′). Thus J ′ ∩Ci is connected
or every 1 ≤ i ≤ m.

Let Ji = J ′ ∩ Ci, and let T be a tree obtained from J ′ by contracting Ji to a single vertex for each i. Then every leaf or
egree-2 vertex of T corresponds to Ji for some i by the choice of J ′ and the definition of an H-trap. For every tree, the
umber of vertices of degree at least three in the tree is less than that of leaves. Since T has at most m vertices of degree
t most 2, we deduce that |V (T )| ≤ 2m, implying that |E(J ′) − E(H ′)| ≤ 2m.
We claim that if a vertex v of J is not in φ(V (H)) ∪ S, then it is incident with an edge in E(J ′) − E(H ′). Suppose not.

f degJ (v) ≥ 3, then since v is not incident with any edge in E(J ′) − E(H ′) and J = H ′
∪ J ′, degH ′ (v) ≥ 3, which implies

hat v ∈ φ(V (H)), a contradiction. So, degJ (v) ≤ 2. If degJ (v) ≤ 1, then since v /∈ φ(V (H)), (J \ v, S − {v}) is an H-snare, a
ontradiction. If degJ (v) = 2, then v ∈ φ(uw) \ {φ(u), φ(w)} for some uw ∈ E(H). And since v /∈ S, (J/v, S) is an H-snare,
contradiction. Therefore, the claim holds.
By the above claim, we have

|V (J)| ≤ 2|E(J ′) − E(H ′)| + |V (H)| + |S| ≤ 4m + |V (H)| + |S| ≤ 5|V (H)| + 4|E(H)| + 9|S|.

his completes the proof. □

The next theorem is the main result of this section and the key step in the proof of Theorems 1.3, 1.5 and 1.7.

heorem 5.3. Let F be a finite collection of 2-connected graphs. Let C be an ideal consisting of all F-free graphs, and suppose
hat K2,3 ̸∈ C. Then κC is bounded on an ideal G if and only if for every F ∈ F and every F-trap (J, S) we have FAN(J, S) ̸⊆ G.

Proof. For every F ∈ F and every F-trap (J, S), J is connected since F is connected. So, by Lemma 3.5, κC is unbounded
on FAN(J, S) for every F ∈ F and every F-trap (J, S). This implies the ‘‘only if’’ part of the theorem statement.

Now we prove the ‘‘if’’ part. Suppose FAN(J, S) ̸⊆ G for every F ∈ F and every F-trap (J, S).
Let F ′ be a graph obtained from a graph in F by subdividing at most one edge and S ′

⊆ V (F ′) with |S ′
| ≤ 1. Then,

either (F ′, S ′) is an F-trap or there exists S ⊆ V (F ) with |S| ≤ 1 such that FAN(F , S) ⊆ FAN(F ′, S ′), which implies that
FAN(F ′, S ′) ̸⊆ G since for every F ∈ F and S ⊆ V (F ) with |S| ≤ 1, (F , S) is an F-trap. Thus, there exists a positive integer ℓ
such that Fan(F ′, S ′, ℓ) ̸∈ G for every F ′ obtained from a graph in F by subdividing at most one edge and every S ′

⊆ V (F ′)
with |S ′

| ≤ 1
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As F contains a topological minor of K2,3, Corollary 3.4 is applicable and thus there exists N = N(F, ℓ) such that every
G ∈ G has a subset X ⊆ V (G) such that |V (J) ∩ X | ≥ 2 for every subgraph J of G with J ̸∈ C.

By Lemma 5.2 there exists an absolute bound on the number of vertices of J for each F ∈ F and each F-trap (J, S)
with |S| ≤ N . Thus there exist R = R(F,N) and a collection J∗ = {(J1, S1), . . . , (JR, SR)} such that every F-trap (J, S) with
|S| ≤ N is isomorphic to an element of J∗. That is, explicitly, J∗ satisfies the following: for every F ∈ F and every F-trap
(J, S) with |S| ≤ N , there exist (Ji, Si) ∈ J∗ and an isomorphism ψ : V (Ji) → V (J) between Ji and J such that ψ maps Si
bijectively on to S. By our assumption there exists a positive integer ℓ′ so that Fan(Ji, Si, ℓ′) ̸∈ G for every (Ji, Si) ∈ J∗.

Consider now G ∈ G and X as obtained from Corollary 3.4 above. An X-bridge in G is a maximal subgraph B of G such
that B and B \ X are connected, and X ∩ V (B) is independent in B. Thus every X-bridge consists of a component C of G \ X
together with all the neighbors of vertices of C in X and edges from C to these neighbors. Conversely every component
of G \ X gives rise to a unique X-bridge. Let B be the collection of all X-bridges B in G such that B ̸∈ C.

We bound |B| as follows. For every B ∈ B there exists F ∈ F so that (B, X ∩ V (B)) is an F-snare. Thus there exist an
F-trap (J(B), S(B)) and an embedding φB : J(B) ↪→ B such that V (φB(J(B)))∩X = φ(S(B)). Then, there exist (Ji, Si) ∈ J∗ and an
isomorphism ψB : V (Ji) → V (J(B)) mapping Si onto S(B). We define the signature of B to be a pair of i and the restriction
of the map φ ◦ ψB to Si. Thus there are at most R|X |! ≤ R · N! possible signatures. Moreover, note that if X-bridges
B1, B2, . . . , Bℓ′ all have the same signature (i, πi), then combining φB1 , . . . , φBℓ′ one can define a natural embedding of
Fan(Gi, Si, ℓ′) into G, contradicting the choice of ℓ′. The pigeonhole principle implies that |B| ≤ ℓ′RN!.

Next we use Lemma 5.1 to break up every B ∈ B. Consider distinct u, v ∈ V (B) ∩ X and let B′
= B \ (X − {u, v}). By

the choice of X every subdivision of K2,3 in B′ contains both u and v. Moreover, Fan(K2,3, S, ℓ′) is not a subgraph of B′.
Thus by Lemma 5.1 B′ does not contain 3ℓ′ internally disjoint paths from u to v. By Menger’s theorem, there exists a set
Y (B, u, v) ⊆ V (B) − X with |Y (B, u, v)| ≤ 3ℓ′ so that u and v belong to different components of B′

\ Y (B, u, v).
Let Y be the union of X and all sets Y (B, u, v) as above. Then |Y | ≤ N +3ℓ′

(N
2

)
|B| ≤ N +2N2

|B|ℓ′. Let E be the partition
of E(G) into edge sets of Y -bridges in G and the one-element parts corresponding to edges with both ends in Y . Then every
vertex incident with edges in two distinct parts of E belongs to Y by construction. Moreover, every Y -bridge is either an
X-bridge B such that B ∈ C, or a part of an X-bridge in B in which case it contains no path between two distinct elements
of X , by construction of Y . Thus every Y -bridge belongs to C. It follows that κC(G) ≤ N + 2N2

|B|ℓ′
≤ N + 2N2R(N!)(ℓ′)2,

and so κC is bounded on G. □

6. Classifying traps

Theorem 5.3 reduces the proofs of Theorems 1.3, 1.5 and 1.7 to the problem of classification of respective traps, which
is the goal of this section.

As A consists of all K3-free graphs the next lemma implies Theorem 1.3.

Lemma 6.1. If (J, S) is a K3-trap then J is isomorphic to K3 and |S| ≤ 1.

Proof. As J contains K3 as a topological minor, there exists a cycle C in J . If V (C) ∩ S = ∅ then (C,∅) is a K3-snare and
so by minimality J = C and |V (C)| = 3 as desired. Otherwise, there exists s ∈ V (C) ∩ S. Let u, v be the neighbors of s in
C . As S is independent we have u, v ∈ V (J) − S. As J \ S is connected there exists a path P from u to v in J \ S. Adding s
and edges su and sv to P we obtain a cycle C ′ in J such that V (C ′)∩ S = {s}. As (C ′, {s}) is a K3-snare, we once again have
J = C ′ and |V (C ′)| = 3. □

Similarly, Theorem 1.5 is implied by the following.

Lemma 6.2. If (J, S) is a D-trap then J is isomorphic to D.

Proof. Let H be a subgraph of J isomorphic to a subdivision of D, chosen so that |V (H) ∩ S| is minimum. Let S ′
= V (H)∩S.

Let u, v be the two vertices of H of degree three and let P1, P2, P3 be the internally disjoint paths from u to v such that
H = P1 ∪ P2 ∪ P3

Suppose first that H \ S ′ is connected. Then (H, S ′) is a D-snare and so H = J by minimality. If |S ′
| ≤ 1 then J is

isomorphic to D, as otherwise one can choose a degree-2 vertex in V (J) − S ′ to suppress so that the resulting graph is
still a subdivision of D, contradicting minimality of (J, S). If |S ′

| = 2 then no Pi contains S ′ since otherwise J \ S ′ is not
connected. So, similar to the case that |S ′

| ≤ 1, one can prove that J is isomorphic to D.
23



R. Kim, S. Norin and S. Oum Discrete Applied Mathematics 312 (2022) 15–28

x

|

d
c

c
o
a
x
o

X

L

P
c
t
b

w
i

(

i
K
w

(
n

Q
b
p

(

Q
H

S

Suppose now for a contradiction that H \ S ′ is not connected. Then either

• |V (Pi) ∩ S ′
| ≥ 2 for some 1 ≤ i ≤ 3, or

• some internal vertex of Pi lies in S ′ for every 1 ≤ i ≤ 3.

We start considering the first case. Suppose without loss of generality that there exist distinct s1, s2 ∈ V (P1) ∩ S ′. Let
Q denote the subpath of P1 with ends s1 and s2. By connectivity of J \ S there exists a path R in J \ S with one end in

∈ V (Q ) − S ′, the other end y ∈ V (H) − V (Q ) − S ′, internally disjoint from H .
If y ∈ V (P1) then replacing the subpath of P1 with ends x and y by R, we obtain a subdivision H ′ of D such that

V (H ′) ∩ S| < |V (H) ∩ S|, contradicting the choice of H . If y ̸∈ V (P1), then we obtain a similar contradiction, this time by
eleting the internal vertices of the subpath of P1 with ends x and v, and adding R. This finishes the analysis of the first
ase.
For the second case let si ∈ S ′ be an internal vertex of Pi for i = 1, 2, 3. Let C and C ′ be the components of H \{s1, s2, s3}

ontaining u and v, respectively. Since J \ S is connected, there exists a path R in J \ S with one end x ∈ V (C) − S, the
ther end y ∈ V (C ′)− S, internally disjoint from H . As in the previous case we now obtain a contradiction by rerouting H
long R. If x, y ∈ V (Pi) for some 1 ≤ i ≤ 3, then we replace the subpath of Pi with ends x and y by R. Otherwise, assuming
∈ V (Pi) we, as before, delete the internal vertices of the subpath of Pi with ends x and v, and add R. In both cases we
btain a subdivision H ′ of D such that |V (H ′) ∩ S| < |V (H) ∩ S|, a contradiction. □

Finally, the next lemma contains the technical part of the proof of Theorem 1.7: A classification of K2,3-traps. For a set
of vertices, an X-path in G is a path in G with both ends in X and no internal vertices in X .

emma 6.3. If (J, S) is a K2,3-trap, then either

• J is isomorphic to K2,3 or
• J is isomorphic to either K+

2,3 or W+

k for some k ≥ 3 and S is the set of all degree-2 vertices of J .

roof. Assume for a contradiction that (J, S) is a K2,3-trap for which the conclusion of the lemma does not hold. We
hoose a subgraph H of J isomorphic to a subdivision of K2,3 that minimizes the number of vertices of H in S, and subject
o that the number of degree-3 vertices of H in S is minimized. Let a, b be the degree-3 vertices in H , and let Γ1,Γ2,Γ3
e internally disjoint paths in H joining a and b. To simplify our presentation, we will write a subpath in H to denote a

subpath of Γ1, Γ2, or Γ3. For distinct vertices s, t on the same path Γi for some i = 1, 2, 3 where {s, t} ̸= {a, b}, if s is
not adjacent to t , then let I(s, t) be the set of vertices in the component of H \ {s, t} not containing a or b, and otherwise,
e let I(s, t) = ∅. Let O(s, t) = V (H) − ({s, t} ∪ I(s, t)). We remark that if s, t ∈ S, then I(s, t) − S ̸= ∅ because S is an

ndependent set.

1) H \ S is not connected.
If H \ S is connected, then (H, V (H) ∩ S) is a K2,3-snare. It follows from minimality of (J, S) that J = H . If for some

, Γi contains at least two degree-2 vertices, then it has a degree-2 vertex v not in S, which implies that (H/v, S) is a
2,3-snare, a contradiction to the minimality of (J, S). Since J = H is a subdivision of K2,3, Γi has length 2 for i = 1, 2, 3,
hich implies that J is isomorphic to K2,3, a contradiction to our assumption.

2) If I(x, y) ∩ S ̸= ∅ for some distinct x, y /∈ S on the same path Γi for some i = 1, 2, 3, and {x, y} ̸= {a, b}, then J \ S has
o V (H)-path joining x and y.
Suppose there exists such a path Q . We consider the subgraph H ′ of J obtained from H by removing I(x, y) and adding

. Clearly, H ′ is isomorphic to a subdivision of K2,3. However, |V (H ′) ∩ S| < |V (H) ∩ S| since Q contains no vertex in S,
ut I(x, y) contains a vertex in S. This yields a contradiction to the minimality of the number of vertices of H in S. This
roves (2).

3) If J \ S has a V (H)-path Q from x to y, and x and y are not on the same path Γi for i = 1, 2, 3, then I(a, x) ∩ S = ∅ or
y is adjacent to b.

Suppose I(a, x) ∩ S ̸= ∅ and I(y, b) has at least one vertex. Then, the subgraph H ′ of J obtained from H by removing
I(a, x) and adding Q is isomorphic to a subdivision of K2,3 and |V (H ′) ∩ S| < |V (H) ∩ S| since every internal vertex of Q
is not in S but I(a, x) contains a vertex in S. This is a contradiction to the minimality of the number of vertices of H in S.
This proves (3).

(4) a, b /∈ S.
Suppose not. Without loss of generality, we may assume a ∈ S. Suppose V (H) ∩ S ̸⊆ {a, b}. Then, there is a vertex

s ∈ (V (H) ∩ S) − {a, b} such that I(a, s) has no vertex in S.
Since J \ S is connected, there is a V (H)-path Q in J \ S connecting I(a, s) and O(a, s). Let x and y be the end vertices of
in I(a, s) and O(a, s), respectively. By (2), y is not on the same path Γi with s. Let H ′ be the subgraph of J obtained from
by removing I(a, y) and adding Q . Then H ′ is isomorphic to a subdivision of K2,3. In addition, |S ∩ V (H ′)| ≤ |S ∩ V (H)|

since Q contains no vertices in S, and the number of degree-3 vertices of H ′ in S is less than that of H since x and b are
the degree-3 vertices of H ′ and x /∈ S, contradicting the assumption on the choice of H . Hence, S ∩V (H) ⊆ {a, b}, and thus

∩ V (H) = {a, b} by (1).
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Fig. 5. Two possible arrangements of two V (H)-paths Q1 and Q2 in the proof of Lemma 6.3.

Let Q1 be a V (H)-path in J \ S joining two components of H \ S, and let H1 be the union of H and Q1. We may assume
hat Q1 has one end in s1 ∈ V (Γ1) and the other end in t1 ∈ V (Γ2).

Let Q2 be a V (H1)-path in J \ S with one end in s2 ∈ V (Γ3) joining the two components of H1 \ S. Let t2 be the second
nd of Q2.
See Fig. 5 for an illustration. If t2 is an internal vertex of Q1, then (H1 ∪ Q2) \ {b} has three internally disjoint paths of

ength at least two from a to t2. They form a subdivision of K2,3 containing only one vertex in S, a contradiction. Hence,
2 is contained in V (H), and we may assume that t2 ∈ V (Γ2), and we may further assume that t2 is not closer to a than
1 in Γ2. Note that t1 and t2 are not necessarily distinct. Then, there are three internally disjoint paths of length at least
in the union of H , Q1 and Q2 from s1 to s2 not using any vertex in I(a, t1) or I(t2, b). They form a subdivision K of K2,3
ontaining exactly two vertices in S not both of which have degree three in K , contradicting the choice of H . This proves
4).

5) If a V (H)-path in J \ S from x to y joins distinct components of H \ S and (I(a, x) ∪ I(b, x)) ∩ S ̸= ∅, then y is adjacent
o a and b, and both I(a, x) and I(b, x) contain vertices in S.

Without loss of generality, suppose I(a, x)∩ S ̸= ∅. By (3), we know that y is adjacent to b. Since x and y are in distinct
components of H \ S, S ∩ I(x, b) ̸= ∅. Then, by (3) again, y is adjacent to a. This proves (5).

(6) There exists a V (H)-path R in J \ S with at least one end not in {a, b} connecting distinct components of H \ S.
Suppose every V (H)-path Q in J \ S connecting distinct components of H \ S joins a and b. Then, each of Γ1, Γ2, and Γ3

contains exactly one vertex in S. If Q has length at least 2, then using Q instead of the path Γi containing a vertex of S,
we obtain a subgraph H ′ isomorphic to a subdivision of K2,3 with |V (H ′) ∩ S| < |V (H) ∩ S|, contradicting the choice of H .
Hence, the length-one path ab is a unique V (H)-path joining two distinct components of H \ S. Let H ′′ be the subgraph of
J obtained from H by adding the edge ab. Then (H ′′, V (H ′′) ∩ S) is a K2,3-snare and so J = H ′′. If J \ S contains a degree-2
vertex x, then (J/x, S) is a K2,3-snare, a contradiction, so, Γi has length 2 for i = 1, 2, 3. Hence, J is isomorphic to K+

2,3, in
contradiction to our assumption. This proves (6).

We may assume that path R satisfying (6) joins x ∈ V (Γ1)−S and y ∈ V (Γ2)−S where {x, y} ̸= {a, b}. By (2), it follows
that x, y /∈ {a, b}.

Since x and y are contained in distinct components of H \ S, Γ1 or Γ2 contains a vertex in S. We may assume that Γ1
contains at least one vertex in S. Then, by (5), we know that |V (Γ1) ∩ S| ≥ 2, Γ2 has length two, and y is the internal
vertex of Γ2. This also means a and b belong to the same component of H \ S.

Let Q be a minimal set of V (H)-paths in J \ S such that R ∈ Q and the union of H \ S and all paths in Q is connected.
Suppose Q contains a V (H)-path Q from w to z where w ∈ V (Γ1) and z ∈ V (Γ3). By (5), since Γ1 contains a vertex

in S, Γ3 must have length two and have no vertices in S. Since a, b, y, z are contained in the same component of H \ S, x
and w belong to distinct components of H \ S by the minimality of Q. We may assume that x ∈ I(a, w). Since R,Q ∈ Q,
by the definition of Q, there exist s1, s2, s3 ∈ V (Γ1) ∩ S such that s1 ∈ I(a, x), s2 ∈ I(x, w) and s3 ∈ I(w, b). Then, R and
Q are internally disjoint by (2), and so there are three internally disjoint paths in the union of H , R, and Q of length at
least 2 joining x and z not using any vertex in I(w, b). They form a subdivision of K2,3 which contradicts the choice of H .
Therefore, there is no V (H)-path in Q joining Γ1 and Γ3, which implies that every V (H)-path in Q joins V (Γ1)−{a, b} and
V (Γ2) − {a, b}, or V (Γ3) − {a, b} and V (Γ2) − {a, b} by (2). Since {y} = V (Γ2) − {a, b}, we conclude that every V (H)-path
in Q contains y as an end vertex.

(7) All V (H)-paths in Q are internally disjoint.
Suppose Q1,Q2 ∈ Q have a common internal vertex. Let xi be the end vertex of Qi other than y for i = 1, 2, and let

w be the intersection of Q1 and Q2 closest to x2 in Q2. If x1 and x2 are in the same path Γi for some i = 1, 3, then there
must be a vertex in I(x1, x2) ∩ S by the minimality of Q, and it leads to a contradiction by (2). Hence, we may assume
that x1 ∈ V (Γ1) and x2 ∈ V (Γ3). Then, there are three internally disjoint paths from a to w in the union of H , Q1 and Q2
of length at least two, not using any vertex in I(x1, b)∪ I(x2, b), which form a subdivision H ′ of K2,3. Since I(x1, b)∩ S ̸= ∅,
we have |V (H ′) ∩ S| < |V (H) ∩ S|, which yields a contradiction to our assumption. This proves (7).

If H contains exactly two vertices in S, then H \ S has exactly two components, and so Q = {R}, and |I(a, x) ∩ S| =

|I(x, b) ∩ S| = 1. Then, (J \ ay, S) is an K2,3-snare, a contradiction to the definition of a K2,3-trap. Therefore, H contains at
least three vertices in S. Let C be the cycle consisting of Γ and Γ , and let s , s , . . . , s be the vertices in S ∩ V (H) in
1 3 1 2 k
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he cyclic order. In particular, k ≥ 3. We may assume, by rotating if necessary, that I(a, s1) contains no vertices of S and
1 ∈ I(a, s2).

Since S is independent, C \ S consists of exactly k paths. We define paths Q1,Q2, . . . ,Qk in G from y to each path of
\ S as follows:

• For i = 1, 2, . . . , k−1, if si and si+1 are in Γj for some j = 1, 3, then let Qi be the V (H)-path in Q connecting I(si, si+1)
and y, and if si ∈ V (Γ1) and si+1 ∈ V (Γ3), then let Qi be the length-one path yb.

• Let Qk be the length-one path ay.

By (7), Q1,Q2, . . . ,Qk are internally disjoint, and by the definition of Q, they have no vertices in S. Let H ′
= C ∪ Q1 ∪

· · ∪ Qk. Then (H ′, V (C) ∩ S) is a K2,3-snare, and so J = H ′. By minimality of J , each Qi has length one, and the end of Qi
s the unique vertex on C between si and si+1 in the cyclic order where sk+1 := s1. It follows that J is isomorphic to W+

k
nd S is the set of degree-2 vertices of J . This contradiction finishes the proof. □

Now we prove Theorem 1.7. It is well known that a graph is outerplanar if and only if it has no topological minor
isomorphic to K4 or K2,3 [2].

Theorem 1.7. Let G be an ideal. Then, G has bounded κO if and only if it contains none of the following ideals.

• FAN(K4, S) with S ⊆ V (K4), |S| ≤ 1.
• FAN(K2,3, S) with S ⊆ V (K2,3) such that |S| ≤ 1 or S consists of two degree-2 vertices.
• FAN(K+

2,3, S) with S ⊆ V (K+

2,3) consisting of all degree-2 vertices.
• FAN(W+

k , S) where k ≥ 3, and S ⊆ V (W+

k ) is the set of all degree-2 vertices.

roof. Let F = {K4, K2,3}. By Theorem 5.3, κO is bounded on an ideal G if and only if FAN(J, S) ̸⊆ G whenever (J, S) is
K4-trap or a K2,3-trap. Thus it suffices to show that for every such (J, S) the ideal FAN(J, S) contains one of the ideals

listed in the statement of Theorem 1.7. If (J, S) is a K2,3-trap then this follows from Lemma 6.3.
If (J, S) is a K4-trap then either J = K4, in which case |S| ≤ 1 and FAN(J, S) is one of the ideals in the statement of

Theorem 1.7, or J contains a topological minor isomorphic to K2,3. In the last case, there exists a K2,3-trap (J ′, S ′) such that
FAN(J ′, S ′) ⊆ FAN(J, S) and the desired conclusion holds as we already established it for K2,3-traps. □

7. Graphs with large O-edge-brittleness and small edit distance from O

In this section we prove Proposition 1.6.
A hemmed graph is a pair (G, P), where P is a path in G. Given a hemmed graph (G, P), with V (P) = {v1, v2, . . . , vk},

indexed in the order of appearance on P , σ (G, P) is defined to be a hemmed graph (G′, P ′) where V (G′) = V (G) ∪

{u1, . . . , uk−1} for new vertices u1, . . . , uk−1 and P ′ is a path with vertex set {v1, u1, v2, u2, . . . , uk−1, vk} in order.

Lemma 7.1. Let G be a graph, C be a monotone graph class, and P be a path in G such that G[V (P)] ̸∈ C. Let (G′, P ′) = σ (G, P).
Then ηC(G′) ≥ ηC(G) + 1.

Proof. Let V ′ be a partition of V (G′) such that G[V ] ∈ C for all V ∈ V ′ and ηC(G′) edges of G′ have ends in distinct parts of
V ′. By the choice of P , the set V (P) intersects at least two parts of V ′, and it follows that at least one edge of P ′ has ends
in distinct parts of V ′. Let V be the restriction of V ′ to V (G). By the observation above, at most ηC(G′)− 1 edges of G have
ends in distinct parts of V ′, implying ηC(G) ≤ ηC(G′) − 1, as desired. □

We say that a hemmed graph (G, P) is outerplanar, if G admits an outerplanar drawing such that P is a part of the
boundary of the outer face. The following useful observation follows immediately from the definitions.

Observation 7.2. Let (G, P) be an outerplanar hemmed graph. Then σ (G, P) is outerplanar.

We are now ready to prove Proposition 1.6.

Proposition 1.6. For every integer ℓ > 0 there exists a graph G = G(ℓ) such that eO(G) = 1 and ηO(G) ≥ ℓ.

Proof. Let G1 = K4 and let P1 be any path in G1 with V (P1) = V (G1). Define the hemmed graph (Gℓ, Pℓ) for ℓ ≥ 2
recursively, as (Gℓ, Pℓ) = σ (Gℓ−1, Pℓ−1).

We will show that eO(Gℓ) = 1 and ηO(Gℓ) ≥ ℓ+ 1, implying the proposition.
Let f ∈ E(G1) − E(P1) be the edge of G1 joining one of the ends of P1 to an internal vertex of P1. Then (G1 \ f , P1) is

an outerplanar hemmed graph. Inductively, it follows from Observation 7.2 that (Gℓ \ f , Pℓ) is outerplanar. In particular,
Gℓ \ f is outerplanar, implying eO(Gℓ) = 1.

Lemma 7.1 implies that ηO(Gℓ) ≥ ηO(Gℓ−1)+ 1 for every ℓ ≥ 2. Therefore, since ηO(G1) ≥ 2, we have ηO(Gℓ) ≥ ℓ+ 1,
as claimed. □
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Fig. 6. Obstructions for partitioning into forests.

Fig. 7. Obstructions for partitioning into diamond-free graphs.

Fig. 8. Obstructions for partitioning into outerplanar graphs.

8. Concluding remarks

One can interpret our results as Ramsey-type results regarding the edit distance, the C̄-capacity, the edge-brittleness,
and the vertex-brittleness as described in the following corollaries immediately implied by Theorems 1.2, 1.4, 1.3, and
1.7.

Corollary 8.1. Let n be a positive integer. If a graph has sufficiently large νA, eA, or ηA, then it contains a topological minor
isomorphic to Fan(K3,∅, n), Fan(K3, {v}, n), or K2,n for a vertex v ∈ V (K3). See Fig. 6.

Corollary 8.2. Let n be a positive integer. If a graph has sufficiently large νD , eD , or ηD , then it contains a topological minor
isomorphic to Fan(D,∅, n), Fan(D, {u}, n), Fan(D, {v}, n), or K2,n where u is a vertex of degree 2 and v is a vertex of degree 3
in D. See Fig. 7.

Corollary 8.3. Let n be a positive integer. If a graph has sufficiently large κA, then it has a topological minor isomorphic to
an(K3,∅, n) or Fan(K3, {v}, n) where v ∈ V (K3).

orollary 8.4. Let n be a positive integer. If a graph has sufficiently large κO , then it has a topological minor isomorphic to
ne of the following. See Fig. 8.

• Fan(K4,∅, n), Fan(K4, {v}, n) where v ∈ V (K4).
• Fan(K2,3,∅, n), Fan(K2,3, {u}, n), Fan(K2,3, {w}, n), Fan(K2,3, {u, u′

}, n) where u and u′ are degree-2 vertices of K2,3 and
w is a degree-3 vertex of K2,3.

• Fan(K+

2,3, S
′, n) where S ′ is the set of all degree-2 vertices of K+

2,3.
• Fan(W+

k , S
+

k , n) for some k ≥ 3 where S+

k is the set of degree-2 vertices of W+

k .

We investigated qualitative relationship between several measures (eC , ηC , νC , and κC) of distance from an ideal C.
heorem 4.1 shows that if D /∈ C and C is determined by excluding a finite number of 2-connected graphs as topological
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inors, then eC , ηC , and νC are tied to each other.6 The last condition can likely be relaxed at the expense of a more
echnical argument, but the condition D /∈ C is crucial as Proposition 1.6 shows. It would be interesting to determine the
xact threshold at which the change of behavior occurs.

uestion 8.5. What are the minimal minor-closed classes C such that ηC is not bounded by a function of eC?

Similarly, it would be interesting to determine the threshold beyond which Theorem 5.3 fails.
Note that if a class C satisfies the conclusion of Theorem 5.3, then in particular, κC is bounded by a function of νC .

his does not hold for general ideals. Indeed, let P be the ideal of planar graphs, and let Q be the ideal of graphs with
aximum degree at most 3 embeddable in the projective plane. As the disjoint union of any two non-planar graphs has
o projective planar embedding, it follows that νP (G) ≤ 1 for every G ∈ Q. On the other hand, it is easy to see that κP is
nbounded on Q (and thus eP and ηP are also unbounded by Observation 1.1).

uestion 8.6. What are the minimal minor-closed classes C such that κC (respectively, eC) is not bounded by a function of νC?
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