
An analysis of Punctuated Equilibria

in Simple Genetic Algorithms

Sangyeop Oh and Hyunsoo Yoon

Dept. of CS & CAIR, KAIST, Daejon, Korea

fsyoh,hyoong@camars.kaist.ac.kr

Abstract. In the running of a genetic algorithm, the population is liable

to be con�ned in the local optimum, that is the metastable state, mak-

ing an equilibrium. It is known that, after a long time, the equilibrium is

punctuated suddenly and the population transits into the better neigh-

bor optimum. We adopt the formalization of Computational Ecosystems

to show that the dynamics of the Simple Genetic Algorithm is repre-

sented by a di�erential equation focusing on the population mean of a

phenotype. Referring to the studies of di�erential equations of this form,

we show that the duration time of metastability is exponential in the

population size and other parameters, on the one dimensional bistable

�tness landscape which has one metastable and one stable state.

1 Introduction

Genetic Algorithms (GAs) are optimization methods modeled from some oper-
ations which are used during the natural reproduction and the natural selection
[3]. Since the concepts of GAs are introduced by Holland [?], various GAs show
practical successes in various �elds. Among them, the Simple Genetic Algorithm
(SGA) is the simplest genetic algorithm containing the essential operators : se-
lection, mutation, and crossover.

Like the other optimization methods, SGAs have the problem of metastabil-
ity that the population is liable to be trapped in a local optimum, making an
equilibrium. If there is a better optimum state in the vicinity, the local optimum
is the metastable state since the punctuated equilibrium appears [11]. The punc-
tuated equilibrium is the phenomenon in which the system in a metastable state
shows a sudden transition into the more stable neighbor state after a long time.
Punctuated equilibria are analyzed in various �elds including Computational
Ecosystems (CEs) and neo-Darwinian evolution models [1, 8].

The analysis of CEs is based on the time derivative of the probability distri-
bution P , where P (r; t) is the probability that the system state is r at time t
in the ensemble of possible system states. They use dP=dt to �nd d < z > =dt

where < z > is the ensemble mean of the interested system character z [5].

In the neo-Darwinian model, the population mean �x of a genetically deter-
mined character is governed by the equation d�x = F 0(�x) + "dB where F is a
landscape on x, B(t) is a standard Brownian process, and " is a small con-
stant. They use the theoretical results from di�usion processes [7] to show that



the punctuated equilibria appear in the natural evolution with the exponential
duration time of metastability as " decreases to zero [8].

In this paper, we adopt the formalization of Computational Ecosystems to
show that the dynamics of the Simple Genetic Algorithm is represented by a
di�erential equation like d�x = F 0(�x) + "dB focusing on the population mean of
a phenotype. Referring to the studies of di�erential equations of this form, we
show that the duration time of metastability is exponential in the population size
and other parameters, on the one dimensional bistable �tness landscape which
has one metastable and one stable state.

In section 2, the CE and the equation from the di�usion process are described.
We analyze the dynamics of the SGA adopting the methods of CEs in section
3. The bistable �tness landscape is introduced and the simulation results are
shown in section 4. In section 5 we discuss the results obtained in previous
sections focusing on the duration time of metastability. Conclusion and further
work are covered in section 6.

2 Background

2.1 Computational Ecosystems

The CE is a very similar model to GAs. A population containsN agents, and each
agent chooses one from R resources to get some payment which is determined
by the payment function f . f is the function of the chosen resource and the
population state which is represented by a vector r = (r1; r2; � � � ; rR) whose i-th
element is the ratio of agents choosing the resource i. During a unit time, each
agent has the � chances to change the resource to the new one according to �i,
which is the probability that resource i perceived to be the best choice and is
the function of r.

The possible population states at time t compose the ensemble represented by
P (r; t) which is the probability of the population state to be r at t. Considering
only one possible change of an agent's resource in a short time interval,

dP (n; t)

�dt
= �P (n; t)

X
i6=j

nj�i +
X
i6=j

P (n[j;i]; t)(nj + 1)�
[j;i]
i (1)

where n[j;i] is such that n
[j;i]
j = nj +1, n

[j;i]
i = ni � 1 and all other elements are

the same as n. And �i and �
[j;i]
i are evaluated at n and n[j;i], respectively.

The ensemble mean < ri > of ri satis�es

d < ri >

dt
= �(< �i > � < ri >): (2)

using equation (1) [5].



2.2 Di�usion processes

Consider the one dimensional di�usion process z(t) satisfying

dz(t) = F 0(z) + "dB(t) (3)

where B(t) is the standard Brownian process and " is a small constant. Let F
satisfy the following conditions :

{ F is a di�erentiable function de�ned on �1 < z <1,
{ there exists z1 < z2 < z3 such that F is strictly increasing on (�1; z1] [
[z2; z3] and strictly decreasing on [z1; z2] [ [z3;1), and

{ F (z1) < F (z3).

If z(0) = z1, then the punctuated equilibrium appears and the duration time
T of metastability satis�es

T / exp(
2(F (z1)� F (z2))

"2
) (4)

when " � 1. And the transition is unidirectional in the sense that the system
remains in the stable state permanently [7]. These results about the duration
time can be expanded to the cases that F has more than two peaks or z is
multidimensional [7, 2].

3 Analysis

The analysis of genetic algorithms in the genotype is somewhat complex since it
considers vector values and matrix operations. We focus on the phenotype xi of
an individual where xi corresponds to the genotype i.

3.1 Simple Genetic Algorithms

A SGA in this paper deals with a population which consists of N individuals.
Each individual is a binary string of L bits, each bit has one of two values 0
and 1, and there are R = 2L genotypes. The phenotype for the genotype i is xi
and the �tness f is the function on the phenotype domain. The population state
is represented by n = (n1; n2; : : : ; nR) or r = (r1; r2; : : : ; rR) where ni(t) is the
number of individuals with the genotype i and r = n=N .

The population of the next generation is produced from the current one
through some SGA operators : roulette wheel selection, 1-point crossover and
simple mutation [3]. After two individuals are selected from the current pop-
ulation by the roulette wheel selections, the 1-point crossover and the simple
mutation are applied to the pair. In the 1-point crossover, each individual is
cut at the same point and divided into two substrings, and then the second
substrings are exchanged. The cutting point is determined randomly among all
the points between two bits. And then, the simple mutation toggles each bit of



individuals with the probability pm. After the mutations, one of two children is
chosen randomly and added into the next generation.

Repeating this process N times, the new generation with the generation gap
1 can be completely produced. For the simplicity, the crossover is not considered
in the analysis and is mentioned in section 5.2. The parameters and the functions
related to selection, crossover and mutation are superscripted with s, c and m

respectively.

3.2 Brownian part

As it is de�ned in the CE, let P (r; t) be the probability that the population
state is r at time t. Then the ensemble mean and the population mean of z are
represented, respectively as < z >=

P
r zP (r; t) and �z =

P
i zri.

Let � be the average number of generations per unit time. Then the SGA
changes the population state ��t times during �t. When an individual is chosen
after selection, crossover and mutation, the phenotype of the individual can be
considered as a random variable X . Using the central limit theorem [10], the
population mean �X of the phenotypes follows

�x(t+�t)� �x(t) =< �x(t+�t) > ��x(t) + ��tG (5)

where G is a Gaussian random variable with mean 0 and variance V ( �X).
Since the dispersion of the ensemble starts from the instantiated state with

�x(t), < �x(t) >= �x(t). The accumulation of Gaussian random variables, each of
which has the variance 1, makes the standard Brownian process. Then, since
V ( �X) = V (X)=N by the central limit theorem,

d�x(t) = d < �x(t) > +�

r
V (X)

N
dB(t): (6)

Ignoring the crossover, the random variable X of phenotype is composed of
Xs and Xm,

X = Xs +Xm (7)

whereXs is the result of the selection andXm is the change due to the mutation.
The e�ects of the mutation is dependent on how the genotype is decoded into the
phenotype, and then into the �tness. To obtain a general feature of the simple
mutation, we de�ne the phenotype as xi = li=L, where li is the number of bits
with the value 1 in the genotype i. In case of L = 1, Xm has the probability
distribution with mean (1 � 2l(t)=L)pm and variance pm � (1 � 2l(t)=L)2p2m.
Thus, in general, Xm has the Gaussian distribution with

E(Xm) = (1� 2l(t)=L)pm and

V (Xm) = [pm � (1� 2l(t)=L)2p2m]=L ' pm=L (8)

by the central limit theorem.
Considering only the selection, the variance of the phenotype seems to be

dependent on f (1)= �f , where f (m) is the m-th derivative of f(x). Even when the



�tness landscape is 
at, the selection makes the variance decrease by the factor
of 1=N [9], and then

0 < Vsteepest � V (X) � Vflat =
Npm

L
(9)

where Vsteepest and Vflat are variances when j f (1)= �f j is maximum and zero,
respectively. That is, V (X) is �nite within the range of equation (9).

3.3 Ensemble mean part

Consider the case of the generation gap 1=N , in which a child is produced from
the SGA operators, a victim is chosen randomly from the current generation and
then it is replaced by the child, producing the next generation. When genotypes
of the child and the victim are i and j respectively, this random event corresponds
with the resource changing from j to i for an agent in CEs. That is, the SGA
with the generation gap 1=N is the special case of the CE, when �i is interpreted
as the probability that the child with the genotype i would be produced by the
SGA operations.

However, if the generation gap is 1, equation (1) can not be used by the SGA
since it is the result of considering maximally one change of an agent in a given
time interval. Thus we focus on the macroscopic equation (2) whose right hand
side is interpreted as N� generations per unit time multiplied by the e�ect of one
generation, (< �i > � < ri >)=N on condition that the generation gap is 1=N .
If one generation contains N changes of individuals and they are all relatively
independent, the e�ect of one generation is enlarged to be (< �i > � < ri >).
Strictly speaking, the changes of individuals in one generation of the SGA is
not independent since the victim is selected in round robin. But it makes the
same e�ect to the independent case since the round robin guarantees that each
individual has the same probability to be selected as a victim. Modifying the
de�nition of � as the average number of generations per unit time, equation (2)
can also be used for the SGA with the generation gap 1.

From equation (2), we can obtain

d < �x(t) >

dt
= �

RX
i=1

xi(�i(t)� ri(t)): (10)

Considering only the selection,

RX
i=1

xi(
f(xi)ri

�f
� ri) =

(x� �x)f
�f

=
1
�f

1X
m=0

f (m)(�x)

m!
(x� �x)m+1: (11)

On condition that

f(x) ' f(�x) + (x� �x)f (1)(�x) (12)



for each individual in the population, equation (11) becomes

RX
i=1

xi(
f(xi)ri

�f
� ri) = s2X

@ log f(�x)

@�x
(13)

where s2X = (x� �x)2, the population variance.
The change due to the mutation is, from equation (8),�

d < �x(t) >

�dt

�m
= pm(1� 2�xs) ' pm(1� 2�x): (14)

3.4 Dynamics due to selection and mutation

Let V s be the some constant representing the selection term of V (X) within the
range of equation (9). If we assume that s2X is independent of �x for the simplicity
then the global �tness function F can be de�ned by

F (�x) = s2X log f(�x) + pm(�x � �x2): (15)

This assumption will be mentioned again in section 5.3. Finally, from equations
(6), (8), (13) and (14), we can summarize the dynamics of the SGA as

d�x(t)

�dt
=
@F (�x)

@�x
+

r
V s + pm=L

N

dB(t)

dt
(16)

considering selections and mutations except the crossover.

4 Simulation

4.1 Bistable landscape

Punctuated equilibria appear if F has the landscape as is shown in section 2.2.
In this simulation, we restrict f to have three features. First, F satis�es the
conditions in section 2.2 except that F is not di�erentiable at �nite number of
points. Secondly, the selection pressures from the barrier are the same for the
metastable and stable attractors. And lastly, the condition of equation (12) is
satis�ed for each individual. Strictly speaking, the third is not always true since
there are some generations in which some individuals are in the right side of the
barrier and the others remain in the left side. But this dispersion is condensed
into a population in one side very quickly and hence we ignore the e�ect. The
phenotype x is de�ned by xi = li=L as in the case of mutation analysis.

The typical f and F are shown in �gure 1, where d = f(0) � f(1=3) is the
barrier depth in f landscape. Other �tness function like the generalized deceptive
functions [12] could also be used if it has the deceptiveness and the multistep
trajectory from the local optimum to the global optimum state, but are not
covered in this paper.

Figure 2 shows typical punctuated equilibria appeared in the running of the
SGA. The population starts from the state �x = 0, converges quickly into the
metastable state, and shows perturbations around it. After a long duration, �x
transits the �tness barrier to the stable state suddenly.
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Fig. 1. A �tness function with barrier depth d
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Fig. 2. The punctuated equilibria are shown on the graph of �x as generations are

succeeded. (a) and (b) are �x and s
2

X
respectively, where N = 20, pc = 1:0, pm = 0:012

and d = 0:5. (c) and (d) are �x and s
2

X
respectively, where N = 30, pc = 0:0, pm = 0:008

and d = 0:5.

4.2 The time of metastability

Beginning with the population state with �x = 0, we record the duration T of
metastability varying some parameters, where T is de�ned as the number of
generations till the transition to the stable state occurs. The time required for
the transition is so short relative to T that it is ignored. Considered parameters
are the population size N , the barrier depth d in f landscape, and the mutation
probability pm.

Figure 3 is the simulation results when pc = 0. Figure 3(a) and 3(b) shows
that T is a rapidly increasing function of N and d. And �gure 3(c) shows that



T is a rapidly decreasing function of pm.
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Fig. 3. The duration T of metastability versus some parameters. Each point is an

average of 30 runs. Default parameter values are L = 30, N = 40, pc = 0, pm = 0:01

and d = 0:7.

In case of pc = 1, �gure 4 is the counterpart of �gure 3. This shows that the
crossover makes the duration be longer for any parameter set in this simulation
environment.
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Fig. 4. The duration T of metastability versus some parameters. Each point is an

average of 30 runs. Default parameter values are L = 30, N = 40, pc = 1, pm = 0:01

and d = 0:7.

5 Discussion

5.1 E�ects of selection and mutation

Since equation (16) has the form of equation (3), the duration T of metastability
satis�es

T / e
2DN

V s+pm=L (17)



by equation (4), where D is the barrier depth in F landscape.

The mean population phenotype �x(t) oscillates around the equilibrium value
xe which is determined from the non-Brownian part of equation (16), @F (�x)=@�x =
0. Given pm and d, the relation between s2X and xe can be obtained from this
equation and is approximately consistent with the graphs of �gure 2.

Among the SGA runs in the simulation, there is not any case that the pop-
ulation returns to the metastable state once the punctuated equilibrium occurs,
provided that pm � 1. This means that the transition is unidirectional.

Figure 3(a) qualitatively con�rms that T is exponential in the population
size N . But �gure 3(b) needs an explanation since the barrier depth d is the
quantity of f landscape. Let xe be the root of @F (�x)=@�x = 0 in the metastable
area. Then, from equation (17),

T / eK[log f(xe)�log(1�d)] =

�
f(xe)

1� d

�K
(18)

where K is a constant. That is, the shape of the graph of T is that of 1=(1� d)
rather than that of ed. Figure 3(c) shows that why the condition of pm � 1
is needed for the punctuated equilibria to be appeared, and is consistent to
equation (17).

5.2 E�ects of crossovers

In a bistable problem, individuals can be divided into two types according to
which basin of attractor they belong to : A-type and B-type, respectively in
metastable and stable area. Let rB and fB be the ratio and the average �tness
of B-type individuals, respectively.

For most generations, rB = 0, and rB becomes positive at long intervals by
crossovers or mutations. When this event occurred at � -th generation,

rB(� + 1) ' [rsB(�)]
2 + �rsA(�)r

s
B(�) (19)

since the term of [rsA(�)]
2 and the e�ect of mutation can be ignored. The param-

eter � is the rate that B-type children are produced from the crossover of one
A-type and one B-type parents.

When the phenotype is de�ned as x = l=L, the crossover has the tendency
that the x's of two parents are averaged. If one A-type and one B-type parents
crossover then the children would be around the barrier terminating the appear-
ance of the B-type, and hence � � 1. That is, the crossover not only enhances
the appearance of B-type individual, but also would eliminate it. Figure 5 shows
that the crossover interrupts the appearance of the B-type as a whole if the
genotype is decoded into the �tness as is done in section 4. On condition that
� is larger than a particular criterion, this interrupt would be replaced by the
enhancement. But the crossover is highly dependent on the de�nitions of x and
f , and the generalization is not considered in this paper.



0

50

100

150

200

g c g c g c

fr
eq

ue
nc

y

select cross
-over mutate

0

2

4

6

8

10

g c g c g c

fr
eq

ue
nc

y

select

crossover

mutate

(a) (b)

Fig. 5. The individual with the maximal phenotype in the population is traced. It

sometimes goes and comes across the particular phenotype criterion value after each

SGA operation. The criterion is 1=3 for (a), and 14=30 for (b). For the parameters in

this simulation, the individuals in 1=3 � x � 14=30 disappear by the selections. Hence

we focus on (b) to elucidate the contributions of GA operations to the transition

into the stable state. The number of goings or comings in a run is counted until the

transition occurs, and then averaged over 100 runs. g and c represent `going' and

`coming', respectively. Paremeter values are L = 30, N = 20, pm = 0:012 and d = 0:5.

5.3 Variance of phenotype

Since the population variance s2X is the sample variance corresponding to the
ensemble variance V (X), the sampling of s2X has the distribution with mean
E(s2X) = V (X) and variance V (s2X) = 2(V (X))2=(N � 1), in which V (s2X)
represents the sampling perturbation [10].

The selection makes V (X) decrease according to the relative gradient of f ,
(@f=@x)= �f . As the relative gradient of f decreases, the selection force decreases
and V (X) increases. However the increment is small relative to the change of
log f as shown in �gure 6 and this supports the assumption for equation (15).

As the population size N increases, the diversity of genotypes within the
population increases but it does not directly mean that the phenotype variance
increases. Instead, �gure 7 shows two things that, as N increases, the increment
of V (X) is negligibly small compared with the linear increment, and the am-
plitude of sampling perturbations of s2X decreases as predicted above. The �rst
supports the assumption that V s is approximately independent ofN . The second
means that, as N increases, the e�ect of increasing V (X) could be dominated
by that of decreasing V (s2X ) in the small range of N .

6 Conclusion and future work

In this paper, we have analyzed the dynamics of the SGA to get a di�erential
equation about the population mean of phenotype values. It is divided into the
Brownian part and non-Brownian part by the central limit theorem, as shown in
equation (6). Detailing the equation, we have considered selections and mutations
except the crossover for the simplicity, and the result is equation (16).
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Fig. 6. The population variance s2
X
of phenotype at each generation. Parameter values

are N = 20, pc = 0 and pm = 0:01 except that d = 0 and d = 0:5 for (a) and (b)

respectively. The �tness function of (c) is the same as that of (b) except that the

gradient is increased to 1500 on x > 1=3. The population goes into the stable area

after several generations in these cases, where the gradients are 0, 1:5 and 1500 for (a),

(b) and (c), respectively.
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Fig. 7. The population variance s2
X
of phenotype at each generation. Parameter values

are pc = 0, pm = 0:005 and d = 0:5, except that N = 40, N = 400, and N = 1600 for

(a), (b) and (c), respectively.

The non-Brownian part is the dynamics of the ensemble mean of pheno-
type values and has been analyzed adopting the method of the CE. The e�ect
of roulette wheel selections is proportional to the population variance and the
logarithm of the �tness function in condition of equation (12). The e�ects of mu-
tations and crossovers are dependent on how the genotype is decoded into the
phenotype, and then into the �tness. When the phenotype is de�ned as x = l=L,
the e�ect of simple mutations is proportional to the mutation probability and
(1=2� �x).

For the equation (16) has the typical form which has been analyzed in di�u-
sion processes, we can adopt the theoretical results from them. That is, running
the SGA on the bistable global �tness landscape F which is de�ned as equation
(15), (i) the punctuated equilibrium appears, (ii) the duration time of metasta-
bility is exponential as shown in equation (17), and (iii) the transition is unidi-
rectional. These theoretical results are qualitatively con�rmed by the simulation



results.
These results about the duration time could be expanded to the cases that

F has more than two peaks or x is multidimensional [7, 2].
Though this paper shows some interesting results, it has some defects to

be supplemented. The major one is that the e�ect of crossovers is just roughly
analyzed. When the phenotype is de�ned as x = l=L, 1-point crossovers make the
duration of metastability be longer. The next one is that, we have regarded the
variance of the phenotype V (X) to be constant, on a basis of simulation results.
For the more accurate analysis, the relation between V (X) and GA parameters
such as the population size and the gradient of the �tness landscape should be
examined.

Since GAs have direct relations with CEs, the results obtained from the
studies of CEs could be applied to GAs. These include the issues about time
delay, cooperation, competition, chaos, and so on [6, 4]
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