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Abstract 
Though causal order of message delivery simplifies 

the design and development of  distributed applications, 
the overhead of enforcing it is  n o t  negligible. Causal 
order algorithm which does n o t  send any  redundant in- 
format ion  is  e f i c i e n t  in the sense of communicat ion 
overhead. W e  characterize and classify the redundant 
information in to  f o u r  categories: information regard- 
ing just delivered, already delivered, just replaced, 
and already replaced messages. W e  propose a n  ef- 
ficient causal order algorithm which prevents propa- 
gation of these redundant information.  O u r  algorithm 
sends less amount  of  control in format ion  needed t o  en-  
sure causal order t h a n  other existing algorithms. Since 
our  algorithm’s communicat ion overhead increases rel- 
atively slowly as the number  of processes increases, it 
shows good scalability feature. T h e  potential of our  
algorithm is  shown b y  s imulat ion study. 

1 Introduction 
Nowadays distributed systems are widely used and 

their technology has reached a certain degree of ma- 
turity. However, even with substantial research ef- 
forts on this topic, understanding the behavior of a 
distributed program still remains to be a challenge- 
able work. For a proper understanding of a dis- 
tributed program and its execution, we need to de- 
termine the causal order among the events that occur 
in distributed computation [ll]. 

Causal order of message delivery specifies the rel- 
ative order in which two messages can be delivered 
to the application process. Many applications such 
as observation of a distributed system, teleconferenc- 
ing, management of replicated database, etc. require 
causal order of message delivery [l, 4, 8, 111. Causal 
order algorithm ensures that every transmitted mes- 
sage is delivered in causal order. It provides a built-in 
message synchronization and relieves the programmer 
from inconsistencies caused by transmission delays in 
a distributed computation [2]. 

With the advent of causal order of message deliv- 
ery, it becomes a key issue in distributed computation, 
and several researchers have proposed causal order al- 
gorithms [a, 3,4 ,  6, 7 ,8 ,9 ,  101. It should be noted that 
control information should be transmitted with each 
message in order to maintain causal order. Hence, it 
is important to reduce this communication overhead 
because the impact of the overhead increases propor- 
tionally with the number of recipients [l]. 
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In the Birman and Joseph’s algorithm [3], causal 
history includes entire predecessor messages, thus this 
algorithm incurs a significant overhead. Raynal et 
al. [9] proposed a simple algorithm (RST algorithm), 
which carries an n x n matrix on each message. The 
message overhead of this algorithm is O(n2)  where n 
is the number of processes in the system. Prakash 
et al. [8] tried to reduce communication overhead by 
exploiting precedence relation itself among messages 
(PRS algorithm). In this algorithm, a message carries 
information only about its direct predecessor messages 
with respect to each of its destination process. By en- 
forcing causal order between every pair of immediate 
causal predecessor and successor messages, causal or- 
der among all messages is automatically ensured. But, 
these algorithms are not focused on finding conditions 
for the control information to be minimal. 

Our objective is finding conditions for the con- 
trol information to be minimal and proposing an effi- 
cient causal order algorithm which appends minimal 
amount of control information to each message. 

To be an efficient causal order algorithm, it should 
transmit redundant information (which is not explic- 
itly required in preserving causal order) as small as 
possible. We classify redundant information into four 
categories: information regarding j u s t  delivered, al- 
ready delivered, j u s t  replaced, and already replaced 
messages, they are explained in section 3.  Elimina- 
tion of redundant information results in retaining only 
causal dependents that are explicitly required for pre- 
serving causal order. 

We propose an efficient causal order algorithm 
which sends less amount of control information than 
other existing algorithms. Our algorithm is based on 
pruning the redundant information as early as possi- 
ble. Even though the worst case communication over- 
head complexity of our algorithm is not superior to 
other existing algorithms, average case communica- 
tion overheads are much smaller than other existing 
algorithms. Comparative savings in the amount of 
communication overhead of our algorithm is shown by 
simulation. 

2 Preliminaries 
Distributed s y s t e m , P ,  is composed of a collection of 

n sequential processes with no common shared mem- 
ory, P = { p l , p 2 ,  ..., p,}. We assume a reliable asyn- 
chronous communication network with no specific net- 
work topology, and message transmission between any 



two nodes may not enforce FIFO order with unpre- 
dictable but finite delay. We assume software multi- 
cast which is an implementation of multicast by re- 
peated unicast. 

The execution of a process is a partially ordered se- 
quence of events, namely, send events,  receive events, 
deliver events and internal  events. An internal event 
represents a local computation at  the process. We 
distinguish the event of receiving a message from the 
event of delivery since this allows us to model proto- 
cols that delay message delivery until some delivery 
condition is satisfied [4]. 

Information about the order of occurrence of events 
can be captured based on the causal dependency be- 
tween them. Such dependency can be expressed 
by Lamport’s happened before relation (+) between 
events [ 5 ] .  
Definition 1 Causal  relation , denoted by -+, is 
a transitive closure of the relation with the following 
properties: 

1. If e and e’ are events in the same process and e 
occurred before e’, then e + e‘ 

2. If e corresponds to the sending of a message and 
e’ corresponds to the receipt of it, then e -+ e‘. 

Definition 2 Causal  order of message delivery 
is respected if, for any two messages ml and m2 
that have the same destination process, s e n d ( m 1 )  + 
send(m2) implies deliver(m1) + deliver(m2). 

For messages ml and m2, the notation ml 4 m2 
will be used as a shorthand for s e n d ( m 1 )  -+ send(m2). 
And we will call ml causal before message of m2 and 
m2 causal after message of ml. 

3 Redundant Information 
We can classify information about a message m into 

4 different states; information state in the source pro- 
cess, in the destination process, in the process between 
source and destination, and in the process following the 
destination. Any process having information about 
m should have one of these information states. And 
if two processes are in the same state, they can be 
treated as one process from the viewpoint of the in- 
formation. Therefore, systems with more than 4 pro- 
cesses can be transformed in 4-process systems. From 
the viewpoint of information flow of a message, mul- 
ticast communication can be transformed in unicast 
communication. Hence, any valid communication in a 
distributed computation, where there is a causal order 
of message delivery, can be transformed in one of the 
abstract communication patterns in Fig. 1. 

Basically source process and processes between 
source and destination in causal chain do not know 
whether a message ml is delivered to its destination 
or not, so these cases can be transformed to Type-1. 
Destination process knows that ml is delivered to it, 
so this case is transformed to Type-2. If, for some 
reason, it has to keep information about ml, it will 
be redundant information. Communication pattern 
in the process following the destination of ml can be 
transformed to Type-3 because it knows that ml is de- 

information about ml for some reason, it will also be 
redundant. Communication patterns in the process 

livered to  its destination already. So, if it has to keep 

Figure 1: 
process pk’s viewpoint of message ml)  

Abstract communication patterns (from 

between source and destination can have different be- 
havior if there are some other messages inserted after 
ml. Type-4 and 5 are for these cases. 

All these abstract communication patterns, except 
Type-1, can contain redundant information about ml. 
We call these 4 types of redundant information j u s t  
delivered, already delivered, just replaced and already 
replaced, respectively. 

Causal dependent which is not included in redun- 
dant information should be carried by each message 
in order to ensure causal order of message delivery. 
In Fig. 1, causal relation among messages is ml 4 

(m3 +)m2. Followiing description is based on the in- 
formation about ml from the viewpoint of process p k .  

In Type-1, since pk does not know whether ml is 
delivered to p i  or not, information about ml is not a 
redundant information, it should be carried by ma in 
order to ensure caue8al order. 

In Type-2, p k  knows that ml is delivered at  its des- 
tination process. By the definition of delivery con- 
dition, any causal after message of m2 need not be 
dependent on ml. Hence, m2 need not have to carry 
information about ml .  We call it j u s t  delivered type 
redundant information. We can delete this type of re- 
dundant information at  the receiver process just after 
delivery. 

Type-3 is a generalization of Type-2. After deliv- 
ery of m4, p k  knows that ml has already been deliv- 
ered to p j .  Hence, if p k  has information about ml, 
pk can delete it because it will not violate causal or- 
der message delivery. We call it already delivered type 
redundant information. 

In Type-4, ml is replaced by a causal after mes- 
sage m4, namely, if we deliver a message m to p,  in 
causal order with respect to m4, it will ensure causal 
order delivery of m with respect to ml also. Hence, 
m2 need not have to carry information about ml; it is 

it j u s t  replaced type redundant information. We can 
delete this type of redundant information just before 

only required to carry information about m4. We call 
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sending a message. But, since m4 is destined for p j  
and is dependent on ml 's delivery, in order to ensure 
causal order delivery of m4 at p j ,  it has to  carry in- 
formation about ml. In this case, it is not redundant 
information. 

Type-5 is a generalization of Type-4. Message ml 
is replaced by causal after message m5 at process pi .  
Hence, after delivery of 77x6, if p k  has information 
about ml, pk can delete it because it will not vio- 
late the causal order of message delivery. We call it 
already replaced type redundant information. In order 
to enforce causal order delivery of m2 to p j ,  m2 needs 
to carry information about m5 only. Causal order de- 
livery of m2 at p j  with respect to m5 will also ensure 
causal order delivery of ml because m5's delivery is 
constrained by ml. 

We can delete already delivered and already replaced 
type of redundant informations by comparing causal 
dependency in p i  and causal dependency piggybacked 
on m at the reception of m at pi .  

4 The Algorithm 
4.1 Data Structure and Notations 

A message sent by process p i  at local time T is de- 
noted as ml and its destination processes are denoted 
as m:.D. 

Each process pi  maintains a logical clock ri to count 
the number of messages it has sent so far. The times- 
tamp value of r is initialized to zero. Each time a 
message is sent, ri is incremented by one. 

Each process maintains a vector CI of length n to 
store control information which is necessary to pre- 
serve causal order message delivery. We denote it as 
CI, if stored a t  process p i ,  1 5 i 5 n, and CI,  if pig- 
gybacked on message m, respectively. Each element 
of the vector is a set of 2-tuples of the form ( ~ i ,  m.D) 
which uniquely identifies the message. If (r,{IC}) is 
included in CI i [ j ] ,  it implies that any message sent by 
pi  to Pk in the future is constrained to be delivered to  
pk only after the r-th message sent by p .  has been de- 
livered to pk .  Initially, each element of d l  is an empty 
set. To make delivery condition check easy, delivery 
constraints DCi are separated from CIi to extract 
dependency that is related to each process in m.D. 
When sending m to pk ,  if ( r , m . D )  is in CIi[ j ]  and IC 
is included in m.D where j # IC,i.e., IC E m;.D E GI,, 
then ( j ,  T )  will be inserted into DCi[IC] and k is deleted 
from m;.D. 

Each process pi also locally maintains an integer 
array of size n, called DLV,, to keep delivery infor- 
mation. The DLV, stores the timestamp value of the 
latest message delivered to pi from other processes. 
Therefore, if DLV,[j] equals T ,  it means that all mes- 
sages sent by process p j  to p i ,  whose timestamp value 
is less than or equal to r ,  have been delivered to pi .  

The subscript or superscript is dropped if there is 
no ambiguity. 
4.2 The Algorithm 

Causal order of message delivery is implemented 
by the underlying system by executing the following 
procedure at  the time of sending and receiving of a 
message m at pi .  

4.2.1 Send Procedure 

Sender process pi  multicasts m to each process p .  E 
m.D along with its control information ri, m.D, d I i ,  
and DCi[j] .  
Procedure SEND 
begin 

ri := ~i 4- 1; 
DCi := 4; 
for j E m.D and mi E CIi : do 

(SI) 

(S'4 
if ( j ' E  mi.D) then 

DCi[j] := DCi[j] U { ( k , r ) } ;  
mi.D := m;.D - j ;  

endif 
enddo 
for mi, ml E CI; : do (S3) 

if (m;.D = 4 and r < U )  

CIi := CIi - mi; 
enddo 
for j E m.D : do 

CIi[i] := CI;[i] U {(ri ,m.D)}; 

(S4) 

(S5) 

SEND ( p i ,  ri, m.D, CIi,  DCi[j], m) t o p j ;  
enddo 

end 

4.2.2 Receive Procedure 

Receiver process pi  receives message m from process 
p '  along with control information r,, m.D, CI,, and 
Lk,. This procedure should be done in an atomic 
action. 
Procedure RECEIVE 
begin 

wait (V( lc ,~)  E DC, : ( r  5 DVL;[k]));  (RI) 
Deliver m to p i ;  (R2) 
DVLi[j] := 7,; (R3) 
CIm[j]  := CI,[j] U {(T,, m.D - i ) } ;  (R4) 
for m; E CIi,  mz E CI,  : do (R5) 

if (mi 61 CI,  and r < U )  

CIi := CIi -mi ;  
if (m: 9 CI; and r > U )  

C I ,  := C I ,  - mi;  
enddo 
for mi E CIi ,  ml E CI,  and r = U : do (R6) 

m;.D := mi.D n m1.D; 
CI ,  := CI,  - mi;  

enddo 
GI, := CIt U CI,; 
for mi,  m; E GI; : do 

(R7) 
(R8) 

if (r  < U and 1 E mL.D n ml.D) 
m;.D := m;.D - 1;  

enddo 
for mi, m;i E CIi : do 

if (m;.D = I#I and r < U )  

GI,  ;= CIi - mi; 
(R9) 

enddo 
end 
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4.3 Description 
All the dependency in DC, is causal before mes- 

sage of m. Thus, step S 2  eliminates redundant in- 
formation about message which is guaranteed to be 
delivered by m, i.e., just replaced type redundant in- 
format ion. 

In order to deliver m at p i ,  delivery condition check 
should be the first work to be done. A message m that 
arrives at  process pi  can be delivered to pi only after 
all the messages, included in its piggybacked causal 
dependency that have pi as one of their destinations, 
have been delivered to pi.  
Since all causal dependency to be checked to enforce 
causal order are included in DC, at send time, step 
R1 checks delivery condition by comparing DC, and 
DLV,. 

V ( ~ , T )  E DCm[i] : (T 5 DLV,[k])  

Just delivered type redundant information is pruned 
by step R4. Step R5 and R6 delete redundant in- 
formation regarding already delivered and already re- 
placed messages. Step R6 applies only for multicast 
communication. If two informations about the same 
message, one from CIi and the other from CI,, show 
difference in their destination processes, then only the 
destination processes which exist commonly at  both 
sides can be retained, all other processes in destina- 
tion field should be deleted because they are redun- 
dant informations. 

If there exist more than one dependency destined 
for pl from the same process, all dependency except 
the latest one from the same sender will be deleted 
at  step R8. Deletion of entry from mT D by S2, R6 
and R8 may cause m.D to be empty. ‘“I‘t means that 
m is delivered to all its destination processes or its 
delivery is guaranteed by its causal after message. For 
use in pruning of redundant information, by step S3 
and R9, process pi always keeps the information about 
the latest message for each sender process, as far as pi 
knows, even though its destination field is empty. 

5 Correctness Proof 
Theorem 1 [Safety] The algorithm ensures causal 
order of message delivery. 
Proof : Assume there are two messages m, and 
my such that both are sent t o p .  and m, 4 m . To 
ensure causal order message dehvery, m, shouyd be 
delivered before my. Two cases should be considered. 

Case(i): m, and m are sent from the same pro- 
cess pi .  Without loss ofYgenerality, we can assume that 
there does not exist m, such that m, -+ m, -+ my 
and they are sent at  logical time T, 

tively. Since m, -+ my,  T, is less than T ~ .  f m, was 
already delivered, my can be delivered in causal order. 
If m, is not known to be delivered or not guaranteed 
to be delivered, information about m, should be pig- 
gybacked on my in DCmV [ j ] ,  i.e., ( i ,  T,) is included in 
DC,, [j]. Since DLK [i] is updated only when mes- 
sage from pi is delivered and m, is not delivered at  p j ,  
DLV,[i] is less than T,. Thus by the constraint in step 
R1, my’s delivery will be delayed until m,’s delivery. 

and ?, respec- 

Case(ii): mz and m are sent from different pro- 
cesses. In this case, &om the definition of causal 
relation, there should be a message m, sent from 
the same process of m,’s sender process such that 
m, + m, + m . In multicast case m, may be m, 
itself. Proof of t i i s  case is done by induction on the 
causal chain. Let there exist a causal chain from m, 
to my as follows. 

m, + ml --f ... -+ mi + ._. + m, -i my 
Base step: When n. equals 1, mi is immediate causal 

before message of my and immediate causal after mes- 
sage of m,. Thus, information about mi is piggy- 
backed on my and mi will carry information about 
message m,. If mi is destined for p j ,  delivery con- 
dition in R1 ensures that my is delivered to p j  only 
after mi has been delivered to p j  and mi’s delivery 
is delayed until m, ’s delivery. Otherwise, information 
about m, is not rep1,aced by mi, so it is piggybacked 
on my via mi. Delivery condition in R1 ensures that 
my is delivered to p j  only after m, has been delivered 
to p j .  So, my is delivered to p j  after m, has been 
delivered. 

Induction hypothesis: Causal order delivery is en- 
forced when n equal:; 16, i.e., m, + m1 ... mk -+ my is 
enforced. 

Induction step: When another message m, is in- 
serted, after applying causal relation to define a par- 
tial order on this causal chain and m,, without loss of 
generality, we can assmume that m, is inserted between 
mk and my. my carries information about m, and m, 
carries information a,bout all causal before messages 
of it, implicitly or ex:plicitly. Hence, by step R1, m,’s 
delivery is delayed until its causal before message’s de- 
livery to p j ,  and my’s delivery to p j  is delayed until 
m,’s delivery. Consequently, my is delivered to p j  in 

Theorem 2 [Liveness] The algorithm ensures that 
every message is eventually delivered to its destination 
process. 
Proof : We will prove the theorem by contradic- 
tion which is similar to the proof in [9]. S‘ ince we 
assumed reliable network, no message is lost in net- 
work. Without loss of generality, we can assume that 
there is no message i:n transit. When a message is re- 
ceived by process p; ,  it is delivered to its destination 
process as soon as the delivery condition specified at  
R1 is satisfied. We will show that no message can wait 
indefinitely. Let’s consider all messages that have not 
been delivered to process pi.  We can apply causal re- 
lation to define a pairtial order on the send events of 
these undelivered messages. Let m, be the message 
in this partial order whose send event does not have 
a predecessor. Since we picked up m, from the set of 
undelivered messages, the following condition should 
be true: 

3(k, T )  E DC,, [i] such that DLV,[k] < T .  
This implies that thlere is a message m‘ with desti- 
nation pi such that mi ---f m, and m; gas not been 
delivered to pi. This means that mz is also included 
in the set of undelivered messages, which contradicts 
the assumption; among the undelivered messages to 
p i ,  m,’s send event does not have a predecessor. W 

causal order with respect to m,. 
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6 Performance Study 
6.1 Space and Communication Cost 

In computing space and communication cost, we 
should consider the following three data structures: 
C I ,  DC,  and D L V .  But since DC is a part of C I ,  we 
need to consider DLV and C I  only. 

DLV is one dimensional array, therefore its cost is 
O(n) .  Moreover, it is not sent with the message, so it 
is excluded in computing communication cost. 

The size of CI vector is limited by n and each com- 
ponent of CI is a set of 2-tuples. Thus the size of each 
set is upper bounded by n. In our algorithm, each 
component can have maximum of n - 1 tuples, one 
for each process. If each process unicasts a message to 
every process and any two messages in different pro- 
cesses are concurrent, the communication and space 
overhead can be in the worst case position. There- 
fore, in the worst case, total O(n2)  number of tuples 
can be in CI, and CIm. But as will be seen in simu- 
lation results, our algorithm has much less overhead. 
The average case overhead is nearly O(n) ,  and is more 
scalable than other existing algorithms. 

Since each process needs to store only two data 
structures: C I  and D L V ,  space complexity of the pro- 
posed algorithm is the same as that of communication 
cost. 

6.2 Simulation Environment 
Transmission cost of sending a multicast message 

through a network is the total amount of informa- 
tion that is transmitted through the network. But, 
since we assumed software multicast and no specific 
network topology, we assume all multicasts with the 
same number of recipients have identical cost for fixed 
size of data transmission. Data size is not varied from 
algorithm to algorithm. So we exclude these kinds of 
factors in computing communication cost in simula- 
tion. Therefore, the cost of sending a message m is 
defined as the sum of overhead, i.e., CI,  + DC, in 
bytes for all destination processes. We study the cost 
of preserving causal order under unicast and multicast 
environment. 

An event-driven simulation program, written in C, 
is developed and compared our algorithm with RST 
and PRS algorithm. The simulation environment is 
described next. 

0 Time interval between two send events is an ex- 
ponentially distributed random variable with a 
mean of 0.1 seconds. 

0 Multicast destinations are evenly distributed, and 
the number of destinations for each multicast is 
evenly distributed with mean value of n/2. 
The data shown in the figures are the results of 
average of 5 runs. For each run, every process 
received 10000 messages to go to stable state and 
50000 messages for gathering results. Thus the 
value shown in the figures is the average of the 
simulation data from 2500000 messages for 10 
node system to  12500000 messages for 50 node 
system. 

Analysis 

We assumed that each timestamp has 4-bytes integer 
size and each process ID is assigned sequentially and 
is two bytes long. 
6.3 Simulation Result 

Figure 2 shows the number of dependents transmit- 
ted per message. Small number of dependents implies 
the possibility of having small communication over- 
head. The number of dependents of RST algorithm is 
n2, and the number of dependents of PRS algorithm 
equals to the number of destination processes since 
only one process is specified in every dependent [8]. 
In our algorithm, multicasting a message to k desti- 
nation processes is treated as one dependent, so the 
average number of dependents of our algorithm can 
be small. But there is at least one dependent for each 
sender process, the number of dependents is generally 
larger than the number of destination processes. Sim- 
ulation result shows that our algorithm carries small- 
est number of dependents. We can get more savings 
in multicast communication as expected, but PRS al- 
gorithm does not show a good feature. Considering 
the average size of one dependent and the number of 
dependents transmitted, we can estimate communica- 
tion overhead. Average size of one dependent of our 
algorithm is greater than that of PRS algorithm, and 
RST algorithm has the smallest size. If PRS algorithm 
is to  be in a better position than RST algorithm for 
communication overhead, it should have the number 
of dependents less than gn2 even without any book- 
keeping overhead, but it approaches this bound. 

The results shown in Fig. 3 correspond to that of 
Fig. 2. Our algorithm gets less weight than other al- 
gorithms, thus the negative effects due to control in- 
formation is relatively small, especially in multicast 
case. And the overhead size of our algorithm increases 
slowly as the number of processes in the system in- 
creases, so we can say that our algorithm is scalable 
and applicable for large system. PRS algorithm does 
not show good results, in particular, in unicast mode, 
it has more cost than RST algorithm when the number 
of process exceeds 25. 

7 Conclusion 
In this paper,'we proposed a new approach to 

achieve efficient causal order algorithm. It treats a 
send event as a single object until it will be deleted. 
We characterize and identify redundant information 
by analyzing communication patterns. There are four 
categories of redundant information: information re- 
garding just delivered, already delivered, just replaced, 
and already replaced messages. 

An efficient causal order algorithm which has min- 
imal amount of communication overhead can be ob- 
tained if these redundant informations are not trans- 
mitted at  all. Our algorithm saves much amount of 
overhead in sending a message by eliminating the re- 
dundant information efficiently. It has low communi- 
cation overhead and was proved to satisfy the safety 
and liveness properties. Even though the worst case 
communication overhead complexity of our algorithm, 
O ( n 2 ) ,  is not superior to other existing algorithms, av- 
erage case overheads of our algorithm are extremely 
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smaller than that of existing algorithms. Simulation 
results show that our algorithm has less overhead and 
better scalability than other algorithms. Especially in 
multicast communication, efficiency of our algorithm 
is remarkable. Since the algorithm does not assume 
any prior knowledge of the network topology and re- 
quires less bandwidth, our algorithm can be well suited 
for applications in mobile computing. 
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