
An Efficient Causal Order Algorithm for Message Delivery in Distributed System

Ikhyeon Jangt , Jaehyung Park$, Jung Wan Cho$, and Hyunsoo Yoon$

tCTI Team, DACOM R&D Center
Taejon, Korea 305-350

Abstract
Though causal order of message delivery simplifies

the design and development of distributed applications,
the overhead of enforcing it is n o t negligible. Causal
order algorithm which does n o t send any redundant in-
format ion is e f i c i e n t in the sense of communicat ion
overhead. W e characterize and classify the redundant
information in to f o u r categories: information regard-
ing just delivered, already delivered, just replaced,
and already replaced messages. W e propose a n ef-
ficient causal order algorithm which prevents propa-
gation of these redundant information. O u r algorithm
sends less amount of control in format ion needed t o en-
sure causal order t h a n other existing algorithms. Since
our algorithm’s communicat ion overhead increases rel-
atively slowly as the number of processes increases, it
shows good scalability feature. T h e potential of our
algorithm is shown b y s imulat ion study.

1 Introduction
Nowadays distributed systems are widely used and

their technology has reached a certain degree of ma-
turity. However, even with substantial research ef-
forts on this topic, understanding the behavior of a
distributed program still remains to be a challenge-
able work. For a proper understanding of a dis-
tributed program and its execution, we need to de-
termine the causal order among the events that occur
in distributed computation [ll].

Causal order of message delivery specifies the rel-
ative order in which two messages can be delivered
to the application process. Many applications such
as observation of a distributed system, teleconferenc-
ing, management of replicated database, etc. require
causal order of message delivery [l, 4, 8, 111. Causal
order algorithm ensures that every transmitted mes-
sage is delivered in causal order. It provides a built-in
message synchronization and relieves the programmer
from inconsistencies caused by transmission delays in
a distributed computation [2].

With the advent of causal order of message deliv-
ery, it becomes a key issue in distributed computation,
and several researchers have proposed causal order al-
gorithms [a, 3,4 , 6, 7 ,8 ,9 , 101. It should be noted that
control information should be transmitted with each
message in order to maintain causal order. Hence, it
is important to reduce this communication overhead
because the impact of the overhead increases propor-
tionally with the number of recipients [l].

1071-0485/97 $10.00 0 1997 IEEE 270

$Dept. of CS and CAIR, KAIST
Taejon, Korea 305-701

In the Birman and Joseph’s algorithm [3], causal
history includes entire predecessor messages, thus this
algorithm incurs a significant overhead. Raynal et
al. [9] proposed a simple algorithm (RST algorithm),
which carries an n x n matrix on each message. The
message overhead of this algorithm is O(n2) where n
is the number of processes in the system. Prakash
et al. [8] tried to reduce communication overhead by
exploiting precedence relation itself among messages
(PRS algorithm). In this algorithm, a message carries
information only about its direct predecessor messages
with respect to each of its destination process. By en-
forcing causal order between every pair of immediate
causal predecessor and successor messages, causal or-
der among all messages is automatically ensured. But,
these algorithms are not focused on finding conditions
for the control information to be minimal.

Our objective is finding conditions for the con-
trol information to be minimal and proposing an effi-
cient causal order algorithm which appends minimal
amount of control information to each message.

To be an efficient causal order algorithm, it should
transmit redundant information (which is not explic-
itly required in preserving causal order) as small as
possible. We classify redundant information into four
categories: information regarding j u s t delivered, al-
ready delivered, j u s t replaced, and already replaced
messages, they are explained in section 3. Elimina-
tion of redundant information results in retaining only
causal dependents that are explicitly required for pre-
serving causal order.

We propose an efficient causal order algorithm
which sends less amount of control information than
other existing algorithms. Our algorithm is based on
pruning the redundant information as early as possi-
ble. Even though the worst case communication over-
head complexity of our algorithm is not superior to
other existing algorithms, average case communica-
tion overheads are much smaller than other existing
algorithms. Comparative savings in the amount of
communication overhead of our algorithm is shown by
simulation.

2 Preliminaries
Distributed s y s t e m , P , is composed of a collection of

n sequential processes with no common shared mem-
ory, P = { p l , p 2 , ..., p,}. We assume a reliable asyn-
chronous communication network with no specific net-
work topology, and message transmission between any

two nodes may not enforce FIFO order with unpre-
dictable but finite delay. We assume software multi-
cast which is an implementation of multicast by re-
peated unicast.

The execution of a process is a partially ordered se-
quence of events, namely, send events, receive events,
deliver events and internal events. An internal event
represents a local computation at the process. We
distinguish the event of receiving a message from the
event of delivery since this allows us to model proto-
cols that delay message delivery until some delivery
condition is satisfied [4].

Information about the order of occurrence of events
can be captured based on the causal dependency be-
tween them. Such dependency can be expressed
by Lamport’s happened before relation (+) between
events [5] .
Definition 1 Causal relation , denoted by -+, is
a transitive closure of the relation with the following
properties:

1. If e and e’ are events in the same process and e
occurred before e’, then e + e‘

2. If e corresponds to the sending of a message and
e’ corresponds to the receipt of it, then e -+ e‘.

Definition 2 Causal order of message delivery
is respected if, for any two messages ml and m2
that have the same destination process, s e n d (m 1) +
send(m2) implies deliver(m1) + deliver(m2).

For messages ml and m2, the notation ml 4 m2
will be used as a shorthand for s e n d (m 1) -+ send(m2).
And we will call ml causal before message of m2 and
m2 causal after message of ml.

3 Redundant Information
We can classify information about a message m into

4 different states; information state in the source pro-
cess, in the destination process, in the process between
source and destination, and in the process following the
destination. Any process having information about
m should have one of these information states. And
if two processes are in the same state, they can be
treated as one process from the viewpoint of the in-
formation. Therefore, systems with more than 4 pro-
cesses can be transformed in 4-process systems. From
the viewpoint of information flow of a message, mul-
ticast communication can be transformed in unicast
communication. Hence, any valid communication in a
distributed computation, where there is a causal order
of message delivery, can be transformed in one of the
abstract communication patterns in Fig. 1.

Basically source process and processes between
source and destination in causal chain do not know
whether a message ml is delivered to its destination
or not, so these cases can be transformed to Type-1.
Destination process knows that ml is delivered to it,
so this case is transformed to Type-2. If, for some
reason, it has to keep information about ml, it will
be redundant information. Communication pattern
in the process following the destination of ml can be
transformed to Type-3 because it knows that ml is de-

information about ml for some reason, it will also be
redundant. Communication patterns in the process

livered to its destination already. So, if it has to keep

Figure 1:
process pk’s viewpoint of message ml)

Abstract communication patterns (from

between source and destination can have different be-
havior if there are some other messages inserted after
ml. Type-4 and 5 are for these cases.

All these abstract communication patterns, except
Type-1, can contain redundant information about ml.
We call these 4 types of redundant information j u s t
delivered, already delivered, just replaced and already
replaced, respectively.

Causal dependent which is not included in redun-
dant information should be carried by each message
in order to ensure causal order of message delivery.
In Fig. 1, causal relation among messages is ml 4

(m3 +)m2. Followiing description is based on the in-
formation about ml from the viewpoint of process p k .

In Type-1, since pk does not know whether ml is
delivered to p i or not, information about ml is not a
redundant information, it should be carried by ma in
order to ensure caue8al order.

In Type-2, p k knows that ml is delivered at its des-
tination process. By the definition of delivery con-
dition, any causal after message of m2 need not be
dependent on ml. Hence, m2 need not have to carry
information about ml . We call it j u s t delivered type
redundant information. We can delete this type of re-
dundant information at the receiver process just after
delivery.

Type-3 is a generalization of Type-2. After deliv-
ery of m4, p k knows that ml has already been deliv-
ered to p j . Hence, if p k has information about ml,
pk can delete it because it will not violate causal or-
der message delivery. We call it already delivered type
redundant information.

In Type-4, ml is replaced by a causal after mes-
sage m4, namely, if we deliver a message m to p, in
causal order with respect to m4, it will ensure causal
order delivery of m with respect to ml also. Hence,
m2 need not have to carry information about ml; it is

it j u s t replaced type redundant information. We can
delete this type of redundant information just before

only required to carry information about m4. We call

27 I

sending a message. But, since m4 is destined for p j
and is dependent on ml 's delivery, in order to ensure
causal order delivery of m4 at p j , it has to carry in-
formation about ml. In this case, it is not redundant
information.

Type-5 is a generalization of Type-4. Message ml
is replaced by causal after message m5 at process pi .
Hence, after delivery of 77x6, if p k has information
about ml, pk can delete it because it will not vio-
late the causal order of message delivery. We call it
already replaced type redundant information. In order
to enforce causal order delivery of m2 to p j , m2 needs
to carry information about m5 only. Causal order de-
livery of m2 at p j with respect to m5 will also ensure
causal order delivery of ml because m5's delivery is
constrained by ml.

We can delete already delivered and already replaced
type of redundant informations by comparing causal
dependency in p i and causal dependency piggybacked
on m at the reception of m at pi .

4 The Algorithm
4.1 Data Structure and Notations

A message sent by process p i at local time T is de-
noted as ml and its destination processes are denoted
as m:.D.

Each process pi maintains a logical clock ri to count
the number of messages it has sent so far. The times-
tamp value of r is initialized to zero. Each time a
message is sent, ri is incremented by one.

Each process maintains a vector CI of length n to
store control information which is necessary to pre-
serve causal order message delivery. We denote it as
CI, if stored a t process p i , 1 5 i 5 n, and CI, if pig-
gybacked on message m, respectively. Each element
of the vector is a set of 2-tuples of the form (~ i , m.D)
which uniquely identifies the message. If (r,{IC}) is
included in CI i [j] , it implies that any message sent by
pi to Pk in the future is constrained to be delivered to
pk only after the r-th message sent by p . has been de-
livered to pk . Initially, each element of d l is an empty
set. To make delivery condition check easy, delivery
constraints DCi are separated from CIi to extract
dependency that is related to each process in m.D.
When sending m to pk , if (r , m . D) is in CIi[j] and IC
is included in m.D where j # IC,i.e., IC E m;.D E GI,,
then (j , T) will be inserted into DCi[IC] and k is deleted
from m;.D.

Each process pi also locally maintains an integer
array of size n, called DLV,, to keep delivery infor-
mation. The DLV, stores the timestamp value of the
latest message delivered to pi from other processes.
Therefore, if DLV,[j] equals T , it means that all mes-
sages sent by process p j to p i , whose timestamp value
is less than or equal to r , have been delivered to pi .

The subscript or superscript is dropped if there is
no ambiguity.
4.2 The Algorithm

Causal order of message delivery is implemented
by the underlying system by executing the following
procedure at the time of sending and receiving of a
message m at pi .

4.2.1 Send Procedure

Sender process pi multicasts m to each process p . E
m.D along with its control information ri, m.D, d I i ,
and DCi[j] .
Procedure SEND
begin

ri := ~i 4- 1;
DCi := 4;
for j E m.D and mi E CIi : do

(SI)

(S'4
if (j ' E mi.D) then

DCi[j] := DCi[j] U { (k , r) } ;
mi.D := m;.D - j ;

endif
enddo
for mi, ml E CI; : do (S3)

if (m;.D = 4 and r < U)

CIi := CIi - mi;
enddo
for j E m.D : do

CIi[i] := CI;[i] U {(ri ,m.D)};

(S4)

(S5)

SEND (p i , ri, m.D, CIi, DCi[j], m) t o p j ;
enddo

end

4.2.2 Receive Procedure

Receiver process pi receives message m from process
p ' along with control information r,, m.D, CI,, and
Lk,. This procedure should be done in an atomic
action.
Procedure RECEIVE
begin

wait (V(lc ,~) E DC, : (r 5 DVL;[k])); (RI)
Deliver m to p i ; (R2)
DVLi[j] := 7,; (R3)
CIm[j] := CI,[j] U {(T,, m.D - i) } ; (R4)
for m; E CIi, mz E CI, : do (R5)

if (mi 61 CI, and r < U)

CIi := CIi -mi ;
if (m: 9 CI; and r > U)

C I , := C I , - mi;
enddo
for mi E CIi , ml E CI, and r = U : do (R6)

m;.D := mi.D n m1.D;
CI , := CI, - mi;

enddo
GI, := CIt U CI,;
for mi, m; E GI; : do

(R7)
(R8)

if (r < U and 1 E mL.D n ml.D)
m;.D := m;.D - 1;

enddo
for mi, m;i E CIi : do

if (m;.D = I#I and r < U)

GI, ;= CIi - mi;
(R9)

enddo
end

272

4.3 Description
All the dependency in DC, is causal before mes-

sage of m. Thus, step S 2 eliminates redundant in-
formation about message which is guaranteed to be
delivered by m, i.e., just replaced type redundant in-
format ion.

In order to deliver m at p i , delivery condition check
should be the first work to be done. A message m that
arrives at process pi can be delivered to pi only after
all the messages, included in its piggybacked causal
dependency that have pi as one of their destinations,
have been delivered to pi.
Since all causal dependency to be checked to enforce
causal order are included in DC, at send time, step
R1 checks delivery condition by comparing DC, and
DLV,.

V (~ , T) E DCm[i] : (T 5 DLV,[k])

Just delivered type redundant information is pruned
by step R4. Step R5 and R6 delete redundant in-
formation regarding already delivered and already re-
placed messages. Step R6 applies only for multicast
communication. If two informations about the same
message, one from CIi and the other from CI,, show
difference in their destination processes, then only the
destination processes which exist commonly at both
sides can be retained, all other processes in destina-
tion field should be deleted because they are redun-
dant informations.

If there exist more than one dependency destined
for pl from the same process, all dependency except
the latest one from the same sender will be deleted
at step R8. Deletion of entry from mT D by S2, R6
and R8 may cause m.D to be empty. ‘“I‘t means that
m is delivered to all its destination processes or its
delivery is guaranteed by its causal after message. For
use in pruning of redundant information, by step S3
and R9, process pi always keeps the information about
the latest message for each sender process, as far as pi
knows, even though its destination field is empty.

5 Correctness Proof
Theorem 1 [Safety] The algorithm ensures causal
order of message delivery.
Proof : Assume there are two messages m, and
my such that both are sent t o p . and m, 4 m . To
ensure causal order message dehvery, m, shouyd be
delivered before my. Two cases should be considered.

Case(i): m, and m are sent from the same pro-
cess pi . Without loss ofYgenerality, we can assume that
there does not exist m, such that m, -+ m, -+ my
and they are sent at logical time T,

tively. Since m, -+ my, T, is less than T ~ . f m, was
already delivered, my can be delivered in causal order.
If m, is not known to be delivered or not guaranteed
to be delivered, information about m, should be pig-
gybacked on my in DCmV [j] , i.e., (i , T,) is included in
DC,, [j]. Since DLK [i] is updated only when mes-
sage from pi is delivered and m, is not delivered at p j ,
DLV,[i] is less than T,. Thus by the constraint in step
R1, my’s delivery will be delayed until m,’s delivery.

and ?, respec-

Case(ii): mz and m are sent from different pro-
cesses. In this case, &om the definition of causal
relation, there should be a message m, sent from
the same process of m,’s sender process such that
m, + m, + m . In multicast case m, may be m,
itself. Proof of t i i s case is done by induction on the
causal chain. Let there exist a causal chain from m,
to my as follows.

m, + ml --f ... -+ mi + ._. + m, -i my
Base step: When n. equals 1, mi is immediate causal

before message of my and immediate causal after mes-
sage of m,. Thus, information about mi is piggy-
backed on my and mi will carry information about
message m,. If mi is destined for p j , delivery con-
dition in R1 ensures that my is delivered to p j only
after mi has been delivered to p j and mi’s delivery
is delayed until m, ’s delivery. Otherwise, information
about m, is not rep1,aced by mi, so it is piggybacked
on my via mi. Delivery condition in R1 ensures that
my is delivered to p j only after m, has been delivered
to p j . So, my is delivered to p j after m, has been
delivered.

Induction hypothesis: Causal order delivery is en-
forced when n equal:; 16, i.e., m, + m1 ... mk -+ my is
enforced.

Induction step: When another message m, is in-
serted, after applying causal relation to define a par-
tial order on this causal chain and m,, without loss of
generality, we can assmume that m, is inserted between
mk and my. my carries information about m, and m,
carries information a,bout all causal before messages
of it, implicitly or ex:plicitly. Hence, by step R1, m,’s
delivery is delayed until its causal before message’s de-
livery to p j , and my’s delivery to p j is delayed until
m,’s delivery. Consequently, my is delivered to p j in

Theorem 2 [Liveness] The algorithm ensures that
every message is eventually delivered to its destination
process.
Proof : We will prove the theorem by contradic-
tion which is similar to the proof in [9]. S‘ ince we
assumed reliable network, no message is lost in net-
work. Without loss of generality, we can assume that
there is no message i:n transit. When a message is re-
ceived by process p; , it is delivered to its destination
process as soon as the delivery condition specified at
R1 is satisfied. We will show that no message can wait
indefinitely. Let’s consider all messages that have not
been delivered to process pi. We can apply causal re-
lation to define a pairtial order on the send events of
these undelivered messages. Let m, be the message
in this partial order whose send event does not have
a predecessor. Since we picked up m, from the set of
undelivered messages, the following condition should
be true:

3(k, T) E DC,, [i] such that DLV,[k] < T .
This implies that thlere is a message m‘ with desti-
nation pi such that mi ---f m, and m; gas not been
delivered to pi. This means that mz is also included
in the set of undelivered messages, which contradicts
the assumption; among the undelivered messages to
p i , m,’s send event does not have a predecessor. W

causal order with respect to m,.

273

6 Performance Study
6.1 Space and Communication Cost

In computing space and communication cost, we
should consider the following three data structures:
C I , DC, and D L V . But since DC is a part of C I , we
need to consider DLV and C I only.

DLV is one dimensional array, therefore its cost is
O(n) . Moreover, it is not sent with the message, so it
is excluded in computing communication cost.

The size of CI vector is limited by n and each com-
ponent of CI is a set of 2-tuples. Thus the size of each
set is upper bounded by n. In our algorithm, each
component can have maximum of n - 1 tuples, one
for each process. If each process unicasts a message to
every process and any two messages in different pro-
cesses are concurrent, the communication and space
overhead can be in the worst case position. There-
fore, in the worst case, total O(n2) number of tuples
can be in CI, and CIm. But as will be seen in simu-
lation results, our algorithm has much less overhead.
The average case overhead is nearly O(n) , and is more
scalable than other existing algorithms.

Since each process needs to store only two data
structures: C I and D L V , space complexity of the pro-
posed algorithm is the same as that of communication
cost.

6.2 Simulation Environment
Transmission cost of sending a multicast message

through a network is the total amount of informa-
tion that is transmitted through the network. But,
since we assumed software multicast and no specific
network topology, we assume all multicasts with the
same number of recipients have identical cost for fixed
size of data transmission. Data size is not varied from
algorithm to algorithm. So we exclude these kinds of
factors in computing communication cost in simula-
tion. Therefore, the cost of sending a message m is
defined as the sum of overhead, i.e., CI, + DC, in
bytes for all destination processes. We study the cost
of preserving causal order under unicast and multicast
environment.

An event-driven simulation program, written in C,
is developed and compared our algorithm with RST
and PRS algorithm. The simulation environment is
described next.

0 Time interval between two send events is an ex-
ponentially distributed random variable with a
mean of 0.1 seconds.

0 Multicast destinations are evenly distributed, and
the number of destinations for each multicast is
evenly distributed with mean value of n/2.
The data shown in the figures are the results of
average of 5 runs. For each run, every process
received 10000 messages to go to stable state and
50000 messages for gathering results. Thus the
value shown in the figures is the average of the
simulation data from 2500000 messages for 10
node system to 12500000 messages for 50 node
system.

Analysis

We assumed that each timestamp has 4-bytes integer
size and each process ID is assigned sequentially and
is two bytes long.
6.3 Simulation Result

Figure 2 shows the number of dependents transmit-
ted per message. Small number of dependents implies
the possibility of having small communication over-
head. The number of dependents of RST algorithm is
n2, and the number of dependents of PRS algorithm
equals to the number of destination processes since
only one process is specified in every dependent [8].
In our algorithm, multicasting a message to k desti-
nation processes is treated as one dependent, so the
average number of dependents of our algorithm can
be small. But there is at least one dependent for each
sender process, the number of dependents is generally
larger than the number of destination processes. Sim-
ulation result shows that our algorithm carries small-
est number of dependents. We can get more savings
in multicast communication as expected, but PRS al-
gorithm does not show a good feature. Considering
the average size of one dependent and the number of
dependents transmitted, we can estimate communica-
tion overhead. Average size of one dependent of our
algorithm is greater than that of PRS algorithm, and
RST algorithm has the smallest size. If PRS algorithm
is to be in a better position than RST algorithm for
communication overhead, it should have the number
of dependents less than gn2 even without any book-
keeping overhead, but it approaches this bound.

The results shown in Fig. 3 correspond to that of
Fig. 2. Our algorithm gets less weight than other al-
gorithms, thus the negative effects due to control in-
formation is relatively small, especially in multicast
case. And the overhead size of our algorithm increases
slowly as the number of processes in the system in-
creases, so we can say that our algorithm is scalable
and applicable for large system. PRS algorithm does
not show good results, in particular, in unicast mode,
it has more cost than RST algorithm when the number
of process exceeds 25.

7 Conclusion
In this paper,'we proposed a new approach to

achieve efficient causal order algorithm. It treats a
send event as a single object until it will be deleted.
We characterize and identify redundant information
by analyzing communication patterns. There are four
categories of redundant information: information re-
garding just delivered, already delivered, just replaced,
and already replaced messages.

An efficient causal order algorithm which has min-
imal amount of communication overhead can be ob-
tained if these redundant informations are not trans-
mitted at all. Our algorithm saves much amount of
overhead in sending a message by eliminating the re-
dundant information efficiently. It has low communi-
cation overhead and was proved to satisfy the safety
and liveness properties. Even though the worst case
communication overhead complexity of our algorithm,
O (n 2) , is not superior to other existing algorithms, av-
erage case overheads of our algorithm are extremely

274

*

E

I S M -

16M -
1" -
1200 -

1000 -

6W

400
__..-.-

IO 15 20 25 30 35 40 45 50

1x00

16WJ -
-

2 1"- 2 & 12W -
8 i 1000r

It "f nodes (multicast) tt of n d r s (micast)

Figure 2: Average number of dependents carried by each message

9 m

8000

7wo
6000

5000

3000

I 0 0 0

0
IO 15 20 25 30 3S 40 45 SO

#of nodcs (multicast) # "f " d e s (unicast)

Figure 3: Average overhead size of each transmitted message

smaller than that of existing algorithms. Simulation
results show that our algorithm has less overhead and
better scalability than other algorithms. Especially in
multicast communication, efficiency of our algorithm
is remarkable. Since the algorithm does not assume
any prior knowledge of the network topology and re-
quires less bandwidth, our algorithm can be well suited
for applications in mobile computing.

References
F. Adelstein and M. Singhal. Real-Time Causal
Message Ordering in Multimedia Systems. In
Proc. 15th Int. Conf. on Distributed Computing
Systems, pp.36-43, Jun. 1995.

R. Baldoni, A. Mostefaoui, and M. Raynal.
Causal Delivery of Messages with Real-Time
Data in Unreliable Networks. Real- Time Systems,
10(3):245-262, May 1996.

K. Birman and T. A. Joseph. Reliable Commu-
nication in the Presence of Failures. ACM Trans.
on Computer Systems, 5(1):47-76, Feb. 1987.

K. Birman, A. Schiper, and P. Stephenson.
Lightweight Causal Atomic Group Multicast.
ACM Trans. on Comp. Sys., 9(3):272-314, 1991.

L. Lamport, Time, Clocks, and the Ordering of
Events in a Distributed System, Comm. ACM,
21(7):558-564, Jul. 1978.

A. Mostefaoui and M. Raynal. Causal Multicasts
in Overlapping Groups: Towards a Low Cost Ap-
proach. In IEEiP Int. Conf. on Future Trends of
Dist. Comp. Sys., Lisboa, 1993.

L. L. Peterson, N. C. Buchholz, and R. D.
Schlichting. Preserving and Using Context In-
formation in Interprocess Communication. A CM
Trans. on Comp. Sys., 7(3):217-246, Aug. 1989.

R. Prakash, M. Raynal, and M. Singhal. An Effi-
cient Causal Ordering Algorithm for Mobile Com-
puting Environments. In Proc. 16th Int. Conf. on
Dist. Comp. Sys,, pp.744-751, Hong Kong, 1996.

M. Raynal, A. Schiper, and S. Toueg. The Causal
Ordering Abstraction and a Simple Way to Im-
plement It. Injormation Processing Letters 39,
pp.343-350, Sep. 1991.

L. Rodrigues and P. Verissimo. Causal Separators
and Topological Timestamping: An Approach
to Support Causal Multicast in Large-scale Sys-
tems. In Proc. 15th Int. Conf. on Dist. Comp.
Sys., pp.83-91, Vancouver, 1995.

R. Schwarz andl F. Mattern. Detecting Causal
Relationship in Distributed Computations: In
Search of the Holy Grail. Distributed Computing,
7(3):149-174, 1994.

275

