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Deep learning framework for material design space
exploration using active transfer learning and data
augmentation
Yongtae Kim1,4, Youngsoo Kim2,4, Charles Yang3, Kundo Park1, Grace X. Gu 3 and Seunghwa Ryu 1✉

Neural network-based generative models have been actively investigated as an inverse design method for finding novel materials
in a vast design space. However, the applicability of conventional generative models is limited because they cannot access data
outside the range of training sets. Advanced generative models that were devised to overcome the limitation also suffer from the
weak predictive power on the unseen domain. In this study, we propose a deep neural network-based forward design approach
that enables an efficient search for superior materials far beyond the domain of the initial training set. This approach compensates
for the weak predictive power of neural networks on an unseen domain through gradual updates of the neural network with active
transfer learning and data augmentation methods. We demonstrate the potential of our framework with a grid composite
optimization problem that has an astronomical number of possible design configurations. Results show that our proposed
framework can provide excellent designs close to the global optima, even with the addition of a very small dataset corresponding
to less than 0.5% of the initial training dataset size.
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INTRODUCTION
In order to discover or design novel materials having outstanding
properties, significant effort has been paid to devise various
material design approaches such as biomimicry, design of
experiment methods, and other conventional optimization
methods1–13. However, these approaches often require in-depth
physics-based analysis of the relationship between materials
descriptors and properties. Hence, a fundamental understanding
on the underlying physical mechanisms determining the material
properties is a primer for the material design. Machine learning
models are alternative promising tools for materials design,
because they enable design space exploration only with a
database representing the relationship between the descriptors
of material (inputs) and the properties (outputs). Trained machine
learning models can infer the relationship with several orders of
magnitude speedup compared to actual data generation from
experiments or physics-based simulations tools14–22. In many
applications, the machine learning models, such as Gaussian
process regression, radial basis function network, support vector
machine, and deep neural network (DNN), are adopted as
surrogate forward models, which predict the outputs from the
corresponding inputs23–25. These models are combined with high-
throughput screening and various optimization methods to obtain
new materials with targeted properties26–29. However, it requires a
lot of effort to find desired materials in vast design space with a
forward design approach, because a large number of candidates
must be tested to search for the optimal material due to the
absence of the gradient of predicted output with respect to input
features19,30–32.
In this regard, inverse design methods, which adapt machine

learning models as a designer directly suggesting promising
candidate materials based on target properties, are being

intensively studied to avoid the aforementioned arduous design
space exploration process18,33–38. Autoencoder (AE), variational
autoencoder (VAE), and generative adversarial network (GAN) are
three of the most commonly used DNN based generative
models18,36,38. These methods are very efficient if the target
design is located within or close to the seen domain, i.e., the
domain of the training dataset34,39–42. However, they cannot
generate data in the unseen domain, i.e., the domain outside the
ranges of the training dataset defined by the input feature space
and output values. Hence, their applicability is limited, because it
is computationally infeasible to generate training data large
enough to cover the entire high-dimensional design space of
most material design problems.35 Moreover, DNN is likely to have
lower predictive performance on unseen domains unless the DNN
learns a governing equation representing the relationship
between the inputs and the outputs which require domain
expertise and some heuristics to create an appropriate mathema-
tical formulation43–49.
Thus, in most cases, it is inevitable to rely on the lower

predictive power of DNN and repeat the validation of many
suggested promising candidates through laborious simulations or
experiments until the material with the desired property is
obtained35. In addition, even if active learning is adopted to
increase the prediction reliability of a DNN in the domain near the
target design, a large number of data should be validated and
utilized to update the DNN35,50. This is because the proposed data
is likely to be positioned far from the target design due to the
poor reliability of the DNN originally trained with the initial
training dataset. Hence, the design process requires a very large
computational cost.
In this study, we propose a systematic neural network-based

forward design approach to efficiently search for the desired

1Department of Mechanical Engineering & KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea.
2Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea. 3Department of Mechanical Engineering,
University of California, Berkeley, CA, USA. 4These authors contributed equally: Yongtae Kim, Youngsoo Kim. ✉email: ryush@kaist.ac.kr

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00609-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00609-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00609-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00609-2&domain=pdf
http://orcid.org/0000-0001-7118-3228
http://orcid.org/0000-0001-7118-3228
http://orcid.org/0000-0001-7118-3228
http://orcid.org/0000-0001-7118-3228
http://orcid.org/0000-0001-7118-3228
http://orcid.org/0000-0001-9516-5809
http://orcid.org/0000-0001-9516-5809
http://orcid.org/0000-0001-9516-5809
http://orcid.org/0000-0001-9516-5809
http://orcid.org/0000-0001-9516-5809
https://doi.org/10.1038/s41524-021-00609-2
mailto:ryush@kaist.ac.kr
www.nature.com/npjcompumats


materials outside the training data domain which overcomes the
aforementioned limitations of the existing methods. It is known
that DNN trained by gradient descent algorithms with unbounded
activation function is capable of making reliable predictions on
the unseen domain close to the training dataset with linear
approximation44,51,52. Hence, our framework gradually expands
the reliable prediction domain of DNN toward the region of
desired properties by updating DNN via active transfer learning.
Relatively sparse and small additional datasets including materials
with incrementally superior properties are iteratively added to the
training set based on a data augmentation technique to increase
generalization of DNN, i.e., ability to make accurate and stable
predictions on unseen data53. The limitation of a forward design
approach is mitigated by using a hyper-heuristic genetic algorithm
on top of the updated DNN. Our study demonstrates that
materials with desired properties can be designed out of inferior
original training datasets with small dataset augmentation and
validation.

RESULTS
Schematic of the forward design framework
The schematic of our framework is depicted in Fig. 1. DNN trained
with the initial training dataset is capable of making a reliable
prediction on the design space slightly larger than the training
data domain, as represented in the bluish region. To find the
materials with desired properties, which are positioned outside
the domain of initial training data, DNN should be able to make a
reliable prediction on the domain containing the desired design.
In this regard, using the trained DNN to predict the properties of
new material designs proposed by the genetic algorithm, a
relatively small set of materials superior to those in the existing
dataset is suggested. Since the newly proposed materials are
outside of the current training set and the DNN predictions on
them are not accurate, their properties are evaluated again with
accurate physics-based simulations (if high-throughput experi-
mental facility is available, one can use experiments). Those data
are integrated to the training dataset with a data augmentation
technique, and the DNN is updated based on the new training
data with active transfer learning as represented with a black

arrow. This process is repeated until the DNN is able to make a
reliable prediction in the domain close to the optimal point
represented as the large redpoint. The DNN after the last update is
used to find the optimal design. A detailed explanation of our
framework is provided in the following sections.

Architectures of the deep neural network (DNN)
To leverage the prediction of DNN on the unseen domain, the
DNN architecture consists of an unbounded activation function,
i.e., leaky rectified linear unit activation function (leaky ReLU) with
coefficient 0.146,52 (See the comparison with other activation
functions in Supplementary Figure 1). The architectures are
constructed based on residual network (Resnet) with full pre-
activation, which is known for good generalization performance
with a sufficient number of learnable parameters, with batch
normalization layer as regularization methods54,55 (See the details
of DNN architecture in Supplementary Figure 2). We check the
predictive performance of the DNN in the seen and unseen
domains by setting the randomly chosen 10% of data as validation
sets, and the dataset with the highest 10% output values as
validation sets, respectively. In the optimization procedure, one
has to explore the dataset having output values higher than those
of the initial training set. Hence, validation on the dataset with the
highest 10% output values for the DNN trained on the dataset
with the lowest 90% output values would represent the predictive
performance of the DNN in the unseen domain during the
optimization procedure. The flowchart representing the process
for constructing the DNN architecture is depicted in Supplemen-
tary Figure 3.

Prediction results upon seen domain and unseen domain
In this study, we demonstrate the applicability of our framework
by solving a representative problem with a large design space -
the design of composite microstructures with superior mechanical
properties, i.e., stiffness, strength, and toughness, which are close
to the global optimum located far beyond the domain of initial
training data. The details of data generations are presented in the
Methods section and Fig. 2. The training results of DNN regarding
stiffness and strength upon seen and unseen domains are
represented in Fig. 3. The prediction accuracy gradually decreases
as data is located further away from the training data, as reported
in the literature44,52. The training results on seen domain generally
show better results compared to the results on the unseen
domain, as expected. Still, despite the mismatch in the absolute
values, the DNN network is able to distinguish relative magnitudes
to some extent, as shown in Fig. 3c–d. However, the training
results for toughness show that it is infeasible to make predictions
on unseen output value range (Supplementary Figure 4). We
suspect that the poor predictive performance on toughness
originates from the complexity in determining toughness from the
entire stress-strain curve encompassing the full failure process
involving complex crack propagation and branching process. We
expect that this challenge might be overcome with the sequential
learning methods that can learn the complex and nonlinear
material behavior beyond the onset of yield or failure56,57.
However, because it is beyond the scope of this study, we leave
the optimization of toughness as future work. In the stiffness and
strength training results in an unseen domain, the DNN
predictions gradually deviate more as the data is positioned
further away from the training dataset.

Material design process
A flowchart of the proposed material design framework is
depicted in Fig. 4. DNN tested with randomly selected validation
sets are adopted to allow reliable prediction in a broader domain
of output values. For the genetic algorithm, 30 microstructures

Fig. 1 Schematic of deep learning framework for material design
space exploration. Schematic of gradual expansion of reliable
prediction domain of DNN based on the addition of data generated
from the hyper-heuristic genetic algorithm and active transfer
learning.
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having the highest properties are selected for the mating pool as a
greedy sampling method to enable sufficient genomic variations
at each generation. We note that selecting the proper amount of
data for the mating pool is important when considering the trade-
off between the risk of being stuck in local minima and
computational time. Additionally, we utilize the intuition from
solid mechanics that the symmetrical microstructure is beneficial
for the load-bearing capacity and that soft material at the crack tip
is able to relieve the stress concentration at the crack tip1,4. A
hyper-heuristic genetic algorithm combining this domain knowl-
edge is implemented by constraining the explored microstructure
design to satisfy the prescribed conditions. The constraints
accelerated the optimization process compared to conventional
particle swarm optimization and genetic algorithm (See the details

of the comparison for each optimization method in Supplemen-
tary Figure 6). In a genetic algorithm, the crossovers are
implemented by selecting two microstructures from the mating
pool as parents and randomly assigning stiff material to the area
occupied by stiff materials in parent configurations. The mutations
are applied by randomly switching the position of stiff material
block and soft material block by keeping the ratio between the
stiff and soft blocks. Approximately 4 × 104 unique candidate
microstructures are generated from the mating pool at each
generation.
The output values of the candidate microstructures are

predicted with the DNN. Because the microstructures proposed
by the genetic algorithm are located close to the microstructures
from the previous generation in terms of feature space and output

Fig. 2 Schematic of 11 × 11 grid composite data generation. a Schematic of 11 × 11 grid composite composed of stiff and soft materials, and
(b) the process for obtaining mechanical properties of composite based on the stress-strain curves. The tensile deformations are applied until
the complete failure of composite, i.e., no load-bearing capacity.

Fig. 3 DNN training results. a–b DNN training results in terms of stiffness and strength with the validation sets randomly selected 10% of
data in the data distribution. c–d DNN training results to check generalization on an unseen domain by setting the training sets and the
validation sets as 90% of data with lowest output value and 10% of data having highest output value, respectively. The coefficient of
determination (R2) are calculated by the following equation: R2 ¼ 1�P

yi � yð Þ2=P yi � fið Þ2. yi ; fi and y represent the actual value, fitted
value, and mean of actual values. The root mean squared error (RMSE) is calculated by the following equation: RMSE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðyi � fiÞ=N

p
.
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values, the DNN could make reliable predictions on the
microstructures suggested by the genetic algorithm for certain
generations. Based on those predictions, we select candidate
microstructures, which are expected to have output values closer
to the target design than the existing microstructures, for the
mating pool, and continue this process until DNN-predicted
output values do not show improvement, i.e., convergence to the
predictable limit of DNN. After the convergence, we calculate the
true output values of the candidate microstructures in the mating
pool with FEA simulations and integrate them to the training data
with data augmentation techniques. The data augmentation is
implemented by oversampling the new data, i.e., replicating the
new data by 50 times which is split into training and validation
sets with a 9:1 ratio. By employing the data augmentation
methods, emphasis is placed on the generalization on the unseen
domain, as suggested by the previous study53,58,59. Without the
data augmentation, the added data are diluted in the training data
because it is relatively sparser and smaller compared to the
existing training dataset. We note that other data augmentation
techniques, such as synthetic minority oversampling technique,
are difficult to be adapted due to the characteristic of the input
features, i.e., binary matrix, for the composite optimization
problem considered in the study, and that different data
augmentation schemes can be adapted depending on the
characteristics of the design problem. The update of DNN is
conducted by re-training the DNN based on the integrated
training data with reduced learning rate (10−6) and reduced
training epoch (10) in the transfer learning scheme. Because DNN
requires relatively moderate updates on learnable parameters to
expand the reliable prediction domain, it takes a dramatically
reduced time for DNN updates compared to the initial training.
The details of the DNN training history are included in
Supplementary Figures 8–9.

Composite microstructures with maximum mechanical
properties
The design process for maximizing stiffness and strength is
represented in Fig. 5. The data points at the 0th update represent
the initial training dataset. In the design process for maximizing
stiffness shown in Fig. 5 (a), approximately 1.6 × 105 unique
microstructures are investigated within 4 h through DNN. This
corresponds to the several orders of magnitude speedup
compared to FEA simulation tools which would take more than
8 weeks for the generation of 105 data. In the design process for
maximum stiffness, a significant improvement is observed with
the initial training of DNN, because the stiffness prediction upon
unseen output value range indicates that the DNN is able to
distinguish the relative magnitudes of stiffness despite some
mismatch in absolute values. We hypothesize that the moderate
level of extrapolation beyond the seen domain is made possible
due to the piecewise linear unbound function from leaky ReLU
used in the DNN. Indeed, our test on various activation functions
shows that unbounded ReLU-based DNN has reasonable pre-
dictive power on the unseen domain, while bounded activation
functions are inefficient for the task (Supplementary Figure 1). The
iterative update of DNN is also beneficial in making robust
improvements on local minima explorable with the DNN and in
escaping from local minima, as demonstrated by the gradual
improvement of converged values shown in Fig. 5a. Given that
almost identical microstructure designs come out from the 3rd
and 4th updates of DNN, we believe that the design process is
converged at the optimization process after the 4th update. An
identical process is also applied for finding the microstructure with
the maximum strength, which is shown in Fig. 5b. The maximum
strength value increases until we update the DNN iteratively five
times.
The material designs having the six highest stiffness and

strength at the last DNN update are depicted in Fig. 6. The best
microstructures for stiffness and strength are positioned at the

Fig. 4 Flowchart of design framework. Flowchart of the hyper-heuristic genetic optimization algorithm based on active transfer learning.
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upper left corners of Fig. 6a and Fig. 6b, respectively. Micro-
structures ranked at 2nd to 6th are visualized at the bottom. The
theoretical upper bound of elastic modulus (Emax) of composite
having a volume fraction of stiff materials (f ) can be achieved with
the following equation: Emax ¼ Estiff f þ Esoft 1� fð Þ. For our design
problem with f ¼ 71=121, Emax is 1223.7 MPa if it were not for the
pre-existing crack. The stiffness of optimized microstructures
(1144.7 MPa) is close to the theoretical upper bound even though
a pre-crack exists that inherently reduces the stiffness of the
structure. Therefore, we can infer that the maximum stiffness
design found from our framework is close to the global optimum.
For the composite with maximum strength, the strength is
significantly improved compared to the best design in the training
set. In those designs, a majority of stiff blocks are located in the
region far from the pre-crack (right side), because such
unbalanced material distribution leads to the increased stiffness
while reducing the negative effect from the pre-crack. At the same
time, since the crack initiation may occur at any point with a high-
stress concentration other than the pre-existing crack tip, it is
important to reduce the stress concentration at the vertices made
by different material blocks. Figure 6b shows that the stress
concentration at the crack tip is relived owing to the optimized
structure compared to some randomly chosen composite
structures in the initial training data (Supplementary Figure 10).
As a result, we could obtain a design that is more than twice as
strong as the best design in the original dataset, (i.e., the
maximum strength increases from 0.076165–0.16276 MPa
throughout the optimization process). The proposed designs also
outperform the composite structures which are manually
designed based on the physical intuitions (See the details in
Supplementary Figure 11). The results for maximum stiffness and
strength are obtained only by augmenting 366 and 424
microstructures, respectively. The augmented dataset size is about
0.4% of the initial training dataset size. The histograms for the
additional data are depicted in Fig. 7.

DISCUSSION
In this study, we propose a systematic forward material design
framework to obtain superior design far beyond the domain of the
initial training dataset. The framework is applied to a composite
microstructure design problem for obtaining the maximum mechan-
ical properties of 11 ´ 11 grid composite, which has an astronomically
high number of possible configurations. Because this type of design
process inherently requires efficient search in the unseen domains, a
forward design approach is adopted by gradually expanding the
reliable prediction domain of DNN with active transfer learning and
data augmentation. The better design candidates are firstly proposed
by the genetic algorithm based on DNN predictions. The properties
of the candidate are obtained with FEA calculations before they are
augmented to the training dataset, in order to secure the predictive
performance of the DNN for a newly added dataset. The limitations
in a forward design approach, such as being stuck in local minima,
are mitigated by updating DNN and controlling the mutation
methods in a hyper-heuristic genetic algorithm.
We emphasize that the iterative and gradual expansion of the

reliable prediction domain assisted by the genetic algorithm is key
to the superior efficiency of our framework. In contrast to
candidates obtained directly from advanced generative models
in previous studies, candidates suggested from the genetic
algorithm are located relatively closer to the dataset from the
previous generation in terms of feature space and output values.
Hence, the prediction accuracy of DNN is maintained in some
degree during the gradual expansion of the reliable prediction
domain. Also, expansion proceeds along relatively narrow but
correct routes towards the target design as depicted in Fig. 1. The
superior efficiency of our design framework can be more clearly
demonstrated by comparing the size of the additional datasets
required to get the final design. In our study, only ~4 × 102

additional data are validated to update the DNN originally trained

Fig. 5 Designing progress plot. Designing progress plot for maximum (a) stiffness and (b) strength. The values are predicted from DNN
trained at the last update. The data obtained from each iteration are represented with a different color.

Fig. 6 Optimized composite structures. Top 6 composite structures optimized for maximum (a) stiffness and (b) strength. The enlarged
structures on the top are structures having the highest stiffness and strength value, and the corresponding axial stress ðσyyÞ distribution is
colored at εyy ¼ 2:2727 ´ 10�5. The maximum stiffness and strength of composite having optimized microstructures are 1144.7 and
0.16276MPa, respectively. The five structures having the following highest value of stiffness and strength are represented below.
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with the 105 initial training data in the design space having ~1.8 ×
1034 possible configurations.
We expect that our framework is applicable to a wide range of

optimization problems in other science and engineering disciplines
with astronomically large design space, because it provides an
efficient way of gradually expanding the reliable prediction domain
toward the target design while avoiding the risk of being stuck in
local minima. Especially, being a less-data-hungry method, design
problems in which data generation is time-consuming and
expensive will benefit most from our framework.

METHODS
Data generation based on finite element analysis (FEA)
As a training dataset, the mechanical properties, i.e., stiffness, strength, and
toughness, of two-dimensional 11´ 11 grid composites are obtained from
finite element analysis (FEA) under plane stress conditions. The composites
consist of perfectly bonded 70 stiff material blocks and 51 soft material
blocks containing a pre-existing crack. The input features are formatted as
one-hot binary encoding representing the position of stiff and soft
materials, and the outputs are defined as corresponding mechanical
properties. The 100,000 unique microstructures are constructed, and the
corresponding stress-strain curves are obtained by applying uniaxial tension
with quasi-static infinitesimal strain increment of 0.0000227 until the
complete fracture occurs. 100,000 data correspond to the fraction of ~10−29

out of the total number of available combinations, C 120; 70ð Þ � 1034. The
stiffness, strength, and toughness are measured by the initial gradient of a
stress-strain curve, the maximum stress point, and the total area under the
stress-strain curve, respectively. The materials are assumed as linear elastic
materials with the following elastic modulus ðEÞ, Poisson’s ratio (v) and
critical strain energy release rate (Gc), respectively, for stiff and soft materials:
Estiff ¼ 2100MPa; vstiff ¼ 0:3; Gstiff

c ¼ 50 J=m2; Esoft ¼ 21MPa; vsoft ¼ 0:3; Gsoft
c ¼ 50J=m2:

For the simulation of the crack growth, the hybrid crack phase-field (CPF)
model are adopted in commercial FEA software ABAQUS with user-element
subroutine60. The hybrid CPF model enables the modeling of complex crack
nucleation and propagation by describing the failure of material with a
continuous scalar field called crack phase field dðxÞ. The material completely
loses its load-bearing capacity when dðxÞ reach to 1, whereas d xð Þ ¼ 0
indicates the absence of any damage. A detailed explanation and
implementation of the model can be found in our previous study60.
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