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Abstract

Dynamics of complex social systems has often been described in the framework of temporal

networks, where links are considered to exist only at the moment of interaction between

nodes. Such interaction patterns are not only driven by internal interaction mechanisms, but

also affected by environmental changes. To investigate the impact of the environmental

changes on the dynamics of temporal networks, we analyze several face-to-face interaction

datasets using the multiscale entropy (MSE) method to find that the observed temporal cor-

relations can be categorized according to the environmental similarity of datasets such as

classes and break times in schools. By devising and studying a temporal network model

considering a periodically changing environment as well as a preferential activation mecha-

nism, we numerically show that our model could successfully reproduce various empirical

results by the MSE method in terms of multiscale temporal correlations. Our results demon-

strate that the environmental changes can play an important role in shaping the dynamics of

temporal networks when the interactions between nodes are influenced by the environment

of the systems.

Introduction

Dynamical behaviors of various complex systems can be described by temporal patterns of

interactions among constituents of the systems, which have recently been studied in the frame-

work of temporal networks [1–3]. This is partly due to the increasing availability of datasets

with high temporal resolution [4–8]. A number of temporal interaction patterns in natural and

social phenomena are found to be non-Poissonian or bursty [7] and they have been known to

strongly influence the dynamical processes taking place in the system, such as spreading and

diffusion [9–18]. In addition, the dynamical properties of temporal networks were studied in

terms of the effects of temporal resolution and time ordering of interactions [19–22]. To

understand the underlying mechanisms behind empirical findings for temporal networks, sev-

eral modeling approaches have been taken: These models could successfully generate charac-

teristics of real-world temporal networks such as heavy-tailed degree distributions,
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community structure, and/or bursty behaviors [23–32], enabling us to better understand the

interaction mechanisms in temporal networks.

In general, the dynamics of complex social systems is driven by both internal and external

factors. The internal factors may correspond to the individual attributes or the nature of rela-

tionships between individuals. The internal factors may not be the only driving force for the

bursty interaction patterns between individuals, which can also be affected by various external

factors. The obvious external factors in human social behaviors are circadian, weekly, and even

longer cycles, as evidenced by a number of empirical analyses [33–48]. Despite the importance

of such external factors in understanding the temporal correlations observed in temporal net-

works, we find only few studies on the effects of external factors on bursty temporal interaction

patterns. These effects have been studied, e.g., by modeling circadian and weekly patterns with

a periodic event rate or activity level [33, 34] or by de-seasoning the cyclic behaviors from the

bursty time series [35]. Our understanding of such effects is far from complete, which clearly

calls for more rigorous and systematic studies.

In this paper, we investigate the impact of the time-varying external factors or environmen-

tal changes on temporal correlations in temporal networks. We first analyze the several tempo-

ral network datasets, some of which are known to be affected by the time-varying external

factors, by means of the multiscale entropy (MSE) method [49, 50] for detecting temporal cor-

relations in multiple timescales. This is because the time-varying external factors are expected

to introduce non-trivial long-range temporal correlations in the dynamics of temporal net-

works. By the MSE method, we find that the datasets analyzed can be categorized according to

the environmental similarity. Then we devise a temporal network model that considers both

internal and external factors. Here the external factor is assumed to be periodic in time, while

the internal one is constant of time. Incorporating the preferential interaction mechanism into

the model, we successfully generate various patterns of temporal correlations in the temporal

networks. Our modeling approach helps us better understand how the environmental changes

may affect the non-trivial temporal interaction patterns observed in the empirical temporal

networks.

Related work

The effects of environmental changes on human interaction patterns have been investigated in

a number of empirical analyses and by means of numerous model studies [33–48]. As each

human action can be described by an event, the inter-event time distribution has been a rele-

vant approach to the analysis. Thus, the effects of periodic external factors on bursty human

dynamics have been studied in terms of heavy-tailed inter-event time distributions, in which

each event can denote an individual action that is not necessarily an interaction with other

individuals [34, 40] or an interaction between individuals [33–35, 37]. Such findings have been

modeled, e.g., by inhomogeneous Poisson processes with time-varying event rates or activity

levels [33, 34], time-dependent Hawkes processes with circadian cycles [51], and inhomoge-

neous Hawkes process with exogenous factors [52], as well as by using stochastic differential

equations [43]. Note that most of the above studies focused on the analysis of a single time

series of events even when those events indicate interactions between individuals. Thus, for

more comprehensive approach to the bursty interaction dynamics, one can adopt the frame-

work of temporal networks [1, 2] where the temporal network is typically defined as a set of

interaction events between nodes in the network. To overcome the limitations of previous

studies focused on the activity level of individuals, in our work, we study the influence of peri-

odic external factors on the human dynamics at the system level by modeling temporal

networks.
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An activity-driven temporal network model might be one of the simplest models to present

the highly dynamical interactions between nodes by using nodal activity [24]. The variants of

this model have been used to generate the temporal and topological properties observed in sev-

eral empirical datasets, such as heavy-tailed inter-event time distributions [28] and community

structures [25, 30]. Most of the temporal network models have focused on the internal factors

related to the individual attributes or the nature of relationships between individuals, such as

nodal activity or memory effects between nodes. Therefore, it calls for modeling temporal net-

works with external factors and studying the external effects on the dynamics of temporal net-

works. We find only few studies on the effects of periodic external factors on the dynamics of

temporal networks, e.g., see Ref. [48]. In our work, we introduce external factors into the activ-

ity-driven temporal network model to better understand the external effect in the dynamics of

temporal networks.

We also find a variety of analysis methods to investigate the occurrence of changes in the

dynamics of systems. Several methods have been developed to detect the changing point in

topological changes, e.g., stochastic block model mechanisms [53, 54], and an information the-

oretical approach [55], and to measure temporal correlations considering high-order terms for

finding the most relevant timescale on the dynamics of community structures or complex sys-

tems [56–58]. Other methods have considered the multiple timescales to detect short- and

long-term temporal correlations [44, 49, 50]. In particular, the MSE method [49, 50], proposed

to analyze temporal correlations across various timescales, is found to be a useful tool to iden-

tify differences in dynamical systems with multiple temporal correlations. Such a method can

provide insight into the effect of environmental changes in complex systems because the time-

scales of the dynamics of environmental changes and human interactions can be different

from each other. This method has been applied to datasets in a variety of fields, from biology

to atmospheric science [49, 50, 59, 60], but as far as we know, it has not yet been applied to

temporal network datasets. Here we apply this method to several face-to-face interaction data-

sets to analyze the temporal correlations of each dataset.

In this paper, we explore the effects of environmental changes in the dynamics of temporal

networks through data analysis and network modeling. We consider the MSE method [49, 50]

to analyze multiscale temporal correlations in several empirical temporal network datasets.

Based on the empirical results, we propose a temporal network model to study the role of envi-

ronmental changes in the dynamics of complex social systems. Our work provides quantified

results of the impact of environmental changes on real-world complex systems in terms of

multiple temporal correlations. It also contributes to a better understanding of the external

effect in the dynamics of the temporal network by studying our model, which has been

extended by introducing external factors, under various conditions.

Methods

Network-level time series of a temporal network

To characterize temporal correlations in temporal networks, we apply the multiscale entropy

(MSE) method [49, 50] to the network-level time series of empirical face-to-face interaction

datasets. As for the network-level time series, we first consider a time series for the number of

interactions between individuals or activated links, as it is the simplest quantity measuring the

overall interaction patterns of the temporal network. We also study the time series of the num-

ber of newly activated links or links that are activated for the first time. This quantity may cap-

ture the evolutionary dynamics of the network topology because the first activation of a link

can be interpreted as the creation of the link.
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We introduce notations for the temporal network with N nodes, K links, and the total

number of activations over all links W during the observation period of T. Each link i (i =

1, . . ., K) at a time step t (t = 1, . . ., T) can be either in an active state (interaction) or in an

inactive state (no interaction), which are denoted by Ai(t) = 1 and 0, respectively. The num-

ber of activated links at the time step t, denoted by W(t), is given as WðtÞ ¼
PK

i¼1
AiðtÞ. Note

that a weight of the link i can be obtained by wi �
PT

t¼1
AiðtÞ. We also denote the number of

newly activated links at the time step t by K(t). By definition K(t)�W(t). The time series of

K(t) and W(t) are written as {K(t)} and {W(t)}, respectively, where
PT

t¼1
KðtÞ ¼ K and

PT
t¼1

WðtÞ ¼W. Fig 1 shows an example of {K(t)} and {W(t)} for the temporal network with

N = 5, K = 8, W = 12, and T = 9. The time-resolved and time-aggregated representations of

the temporal network are shown in the top panels, while {K(t)} and {W(t)} are presented in

the bottom panel.

Activity patterns in many temporal network datasets are known to be non-Poissonian or

bursty [7], implying the existence of temporal correlations or memory effects, which are often

found in multiple timescales. For characterizing the activity patterns with multiscale temporal

correlations, we adopt the MSE method [49, 50]. It is because the face-to-face interaction data-

sets to be studied in our work have relatively short observation periods and the MSE method

has been known to be less dependent on the time series length such as in physiological systems

[49].

Multiscale entropy

We present a brief review of the multiscale entropy (MSE) method [49, 50] for characterizing

the time series with multiscale temporal correlations. Here, we describe the MSE method

using the notations and symbols used in Refs. [49, 50].

We first define the sample entropy [61]. Let us consider a univariate discrete time series

{xt} for t = 1, . . ., T, from which we get T −m vectors of length m, i.e., Xm
t ¼ ðxt; . . . ; xtþm� 1Þ

for t = 1, . . ., T −m. For a given vector Xm
t , one can calculate the probability Cm

t ðrÞ that a

random vector Xm
t0 for t0 6¼ t lies within a distance r from Xm

t , namely, satisfying

max{|xt+s − xt0+s|}s = 0, . . ., m − 1� r. Then the average of Cm
t ðrÞ over t is denoted by

UmðrÞ � ðT � mÞ� 1PT� m
t¼1

Cm
t ðrÞ. Similarly, one can get T −m vectors of length m + 1, denoted

by Xmþ1
t , from which Cmþ1

t ðrÞ and Um+1(r) are respectively calculated. Using Um(r) and Um+1(r)

Fig 1. An example of a temporal network in discrete time. The time-resolved and time-aggregated representations of

the network (top) and the network-level time series of {K(t)} and {W(t)} (bottom). Here W(t) and K(t) denote the

number of activated links and the number of newly activated links at the time step t, respectively.

https://doi.org/10.1371/journal.pone.0250612.g001
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one defines the sample entropy, denoted by SE(m, r), as follows:

SEðm; rÞ � � ln
Umþ1ðrÞ
UmðrÞ

¼ ln
PT� m

t¼1
Cm
t ðrÞ

PT� m
t¼1

Cmþ1
t ðrÞ

: ð1Þ

It is straightforward to see that the more random or complex time series tends to have the

higher value of SE. However, the sample entropy cannot distinguish uncorrelated random time

series from strongly correlated complex time series. To overcome this limit, Costa et al. [49]

proposed the multiscale entropy method, which is to be discussed below.

To analyze the time series with multiscale temporal correlations by means of the sample

entropy SE, Costa et al. proposed the MSE method [49] by incorporating a coarse-graining

procedure. For a given time series {xt} for t = 1, . . ., T and the scale factor τ, the coarse-grained

time series fyðtÞt g for t = 1, . . ., T/τ is constructed by averaging the elements in {xt} within non-

overlapping time windows of size τ such that

yðtÞt ¼
1

t

Xtt

t0¼ðt� 1Þtþ1

xt0 for t ¼ 1; � � � ;
T
t
; ð2Þ

see also Fig 2(A). If τ = 1, the time series fyð1Þt g is the same as {xt}. The sample entropy SE of

fyðtÞt g is calculated for various values of τ, i.e., in various timescales, hence it is called the MSE

method. This method has been applied to various datasets, e.g., for heartbeat, neural, and

atmospheric time series [49, 50, 59, 60]. For the rest of the paper, we will calculate SE in Eq (1)

using m = 2 and r = 0.15σ with σ denoting the standard deviation of {xt} in all cases.

For the demonstration of the MSE method, we apply this method to three kinds of time

series, i.e., white noise and 1/f noise as in Refs. [49, 50], and 1/f2 noise as in Ref. [62]. Here we

generate a time series for white noise using random numbers that are drawn from a normal

distribution with zero mean and variance of one. To generate a time series for 1/f noise we use

the Voss-McCartney algorithm [63, 64]. Finally we generate a time series for 1/f2 noise using a

Brown noise generator [65], which is essentially the temporal integration of white noise. The

white noise is uncorrelated time series, while 1/f and 1/f2 noises are non-stationary as well as

have strong temporal correlations with infinite memory and long-term memory in terms of

decaying behaviors of autocorrelation functions, respectively [66, 67]. The results of the MSE

method for these time series are presented in Fig 2(B). In the case of the white noise, SE mono-

tonically decreases as τ increases, whereas SE remains almost constant for the 1/f noise, and SE

Fig 2. Multiscale entropy (MSE) method. (A) A schematic illustration of coarse-graining procedure of the time series

{xt} for t = 1, . . ., T with the scale factor τ = 2 (top) and 3 (bottom). (B) Numerical results of the MSE method applied

to the white noise, the 1/f noise, and the 1/f2 noise. Each value of SE is averaged over 10 time series with T = 3 × 104,

and the error bar denotes its standard deviation.

https://doi.org/10.1371/journal.pone.0250612.g002
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monotonically increases for the 1/f2 noise. The monotonically decreasing SE for the white

noise implies that the noisy, random behavior tends to be averaged out for the larger scale fac-

tor. In contrast, the overall constant SE for the 1/f noise must be due to the temporal self-simi-

larity of 1/f noise. Finally, the monotonically increasing SE for the 1/f2 noise indicates that

coarse-graining by the larger scale factor enhances the fluctuation of time series, hence makes

the time series look more random.

Empirical results for temporal networks

Datasets

We consider six empirical face-to-face interaction datasets provided by the SocioPatterns proj-

ect [68]: a primary school dataset for 2 days, a hospital dataset for 5 days from 6 a.m. to 8 p.m.

for each day, a workplace dataset for 10 days, a high school dataset for 4 days in 2011, a high

school dataset for 7 days in 2012, and a conference dataset for 3 days. The high school datasets

in 2011 and 2012 are denoted as “school (2011)” and “school (2012)”, respectively. Table 1 pro-

vides information about the datasets, including the observation period in terms of the number

of days and the number of distinct nodes in each dataset. In all datasets, contacts or interac-

tions between individuals were recorded every 20 seconds, defining the unit of the time step in

our work.

Topological properties of time-aggregated networks

We first investigate the basic topological properties of time-aggregated networks. We obtain

the time-aggregated network for each day of each dataset to get degree and weight distribu-

tions, where the degree k means the number of neighbors. These daily distributions are aver-

aged for each dataset to get the averaged P(k) and P(w), as shown in Fig 3. We observe that P
(k)s show increasing and then decreasing behaviors, while being mostly right-skewed, except

for the case with the primary school. P(k) for the primary school shows both large average and

large variance of degrees. The weight distributions P(w) are found to show the similar heavy-

tailed behaviors across all datasets. We conclude that the topological structures of time-aggre-

gated networks of six datasets are qualitatively similar to each other.

Multiscale entropy analysis on empirical datasets

Next, we apply the MSE method to the time series {K(t)} and {W(t)} derived from the above

mentioned datasets. For each day of each dataset, we calculate the sample entropy SE for the

coarse-grained time series using the scale factor of τ = 1, . . ., 100. Then the curves of SE as a

function of τ are averaged over all days for each dataset, denoted by SE . The results of SE are

presented with the corresponding standard deviations in Fig 4, where the top (bottom) panels

show the results for {K(t)} ({W(t)}). From now on we denote SE for {K(t)} and {W(t)} as SKE and

SWE , respectively.

Table 1. Information about the datasets. or each dataset, we present the observation period in terms of the number of days, the minimum and maximum numbers of

nodes in the daily partition of the dataset (Nmin and Nmax), and the number of distinct nodes in the entire dataset (Ntot), respectively.

Dataset Primary school Hospital Workplace School (2011) School (2012) Conference

days 2 5 10 4 7 3

Nmin 236 40 59 112 145 97

Nmax 238 50 72 121 158 102

Ntot 242 75 92 126 180 113

https://doi.org/10.1371/journal.pone.0250612.t001
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According to the behavioral patterns of SKE , the six datasets can be divided into three catego-

ries: (i) The primary school dataset shows the overall increasing and then decreasing behavior

of SKE , apart from the peak at τ = 1 [top panel in Fig 4(A)]. Note that the decreasing behavior of

SKE was observed for the white noise in Fig 2(B). (ii) SKE for hospital and workplace datasets

increases quickly and then decreases very slowly or even fluctuates around some constant [top

panels in Fig 4(B) and 4(C)]. The behavior that remains almost constant is similar to the result

for the 1/f noise in Fig 2(B), implying the long-range temporal correlations. (iii) The other

three datasets, i.e., school (2011), school (2012), and conference, show the overall increasing

SKE [top panels in Fig 4(D)–4(F)], indicating that the time series appears to be more complex

when looked at in longer timescales. Note that the increasing behavior of SKE was observed for

the 1/f2 noise in Fig 2(B), and also the similar increasing behaviors have been reported for neu-

ral time series [69–71].

Fig 3. Degree distributions P(k) and weight distributions P(w) for empirical datasets. (A) P(k) and (B) P(w) of time-aggregated networks for six face-to-face

interaction datasets, i.e., for the primary school (✰), hospital (4), workplace (5), school (2011) (�), school (2012) (□), and conference (^). P(k)s are linearly binned,

while P(w)s are logarithmically binned.

https://doi.org/10.1371/journal.pone.0250612.g003

Fig 4. Results of the MSE method for empirical datasets. Results of the MSE method applied to time series {K(t)} (top panels) and {W(t)} (bottom panels), respectively

denoted as SKE and SWE , of six face-to-face interaction datasets: (A) primary school, (B) hospital, (C) workplace, (D) school (2011), (E) school (2012), and (F) conference.

See the main text for details.

https://doi.org/10.1371/journal.pone.0250612.g004
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It is remarkable to mention that in all cases we find a peak around at a small value of τ
whether the peak is a global maximum (primary school, hospital, and workplace) or a local

maximum (school (2011), school (2012), and conference). These peaks may indicate that all

time series we analyzed contain random noise of short timescales to some extent, which is

however effectively averaged out in the procedure of coarse-graining with larger values of τ.
Results for {W(t)} in the bottom panels of Fig 4 can be better understood by comparing

them with those for {K(t)} as W(t) is the sum of K(t) and the number of activated links that

have been activated before the time t. The latter kind of activations, corresponding to W(t) − K
(t), indeed leads to different behaviors of SWE than SKE : In the case with the primary school, SWE
overall monotonically decreases, implying that the values of {W(t)} are more uncorrelated with

each other than those of {K(t)}. SWE for the hospital and workplace datasets overall decreases for

the almost entire range of τ, implying the long-range correlations in {K(t)} must have been

largely destroyed in {W(t)}. Finally, the other three datasets for school (2011), school (2012),

and conference show the almost flat behaviors of SWE , similarly to the case with 1/f noise. In

sum, we find that the activations observed by W(t) − K(t) tend to weaken the temporal correla-

tions present in {K(t)}.

Heterogeneity level and memory coefficient

For more detailed understanding of the empirical results by the MSE method, we introduce

two quantities for characterizing {K(t)} and {W(t)}: the heterogeneity level H and the memory

coefficient M. These quantities are based on the burstiness parameter and memory coefficient

that were originally proposed in Ref. [72] for measuring the temporal correlations in the point

processes in terms of interevent times. In our work, instead of interevent times, we analyze the

values of time series of {xt} for t = 1, . . ., T. To measure how broad the distribution of values of

xt is compared to their mean, we calculate the mean and standard deviation of the values of xt,
respectively denoted by mx and σx, to define the heterogeneity level H as follows:

H �
sx � mx

sx þmx
: ð3Þ

If all values of x(t) are the same, one gets H = −1, while H = 0 in the case when xt is exponen-

tially distributed. If the distribution of xt is heavy tailed, H> 0 is expected. The memory coeffi-

cient M for the time series of {xt} is defined as

M �
1

T � 1

XT� 1

t¼1

ðxt � m1Þðxtþ1 � m2Þ

s1s2

; ð4Þ

where m1 and σ1 (m2 and σ2) are the mean and standard deviation of {x1, . . ., xT−1} ({x2, . . .,

xT}), respectively. The value of M ranges from −1 to 1. If a large (small) xt tends to be followed

by the large (small) xt+1, M is positive, while M is negative in the opposite case.

We calculate the values of H and M for {K(t)} and {W(t)} for each day of each dataset. These

values are plotted in the (M, H)-spaces as shown in Fig 5. In the case with {K(t)}, we clearly

find three clusters of points: (i) The primary school dataset is characterized by the smallest val-

ues of H (�0.1) and the largest values of M (�0.8), implying that the values of the time series

are relatively homogeneous, while they are strongly correlated with each other. (ii) The hospi-

tal and workplace datasets show the large values of H (0.4 ≲H≲ 0.7) and the small values of

M (0 ≲M≲ 0.2). It means that the values of the time series are highly heterogeneous, but

showing with relatively weak correlations between them. (iii) The other three datasets, i.e.,

school (2011), school (2012), and conference, show large values of both H and M such that the
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values of the time series are highly heterogeneous as well as strongly correlated with each

other. From the results for {W(t)}, we can observe three clusters similarly to those for {K(t)},
apart from the observation that the values of H (M) are overall much smaller (larger) than

those of {K(t)}.
We remark that three clusters identified in the (M, H)-spaces one-to-one correspond to

three different behavioral patterns of SE as a function of τ as discussed above. From such a cor-

respondence one can guess that heterogeneous values of the time series, i.e., large H, are neces-

sary to show the non-decreasing behaviors of SE. Further, the increasing SE could additionally

require strong positive correlations between consecutive values of the time series.

Interestingly, the datasets in each cluster turn out to share similar social conditions either

enhancing or suppressing interactions between individuals. In particular, we focus on the tem-

poral behaviors of such conditions or environmental changes. The participants in the primary

school dataset could have break times but only three times including lunch per day [5], while

in the high school and conference cases, the interaction between participants were affected by

scheduled programs with several breaks [73, 74]. During the breaks participants have chances

to introduce each other or strengthen their existing relations, while such interactions can be

relatively suppressed for the rest of the observation periods. Unlike schools and conference,

there were no constrained schedules for the participants in the hospital and workplace datasets

[75, 76]. Generally speaking, the environmental changes can obviously influence the evolution

of temporal networks, yet the effects of environmental changes on the evolution of temporal

networks are far from being fully understood. To explore such effects, in the following Section

Fig 5. Scatter plot of values of H and M for empirical datasets. H in Eq (3) and M in Eq (4) in the (M, H)-space for time series (A) {K(t)} and (B) {W
(t)} are presented using the same datasets analyzed in Fig 4.

https://doi.org/10.1371/journal.pone.0250612.g005

PLOS ONE Impact of environmental changes on the dynamics of temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0250612 April 28, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0250612.g005
https://doi.org/10.1371/journal.pone.0250612


we will devise and study a temporal network model that qualitatively reproduces the observed

patterns by incorporating the environmental changes.

Temporal network model

To explore the impact of environmental changes on the dynamics of temporal networks, we

will first investigate a model for generating a periodic time series by considering both external

and internal factors. This time series could represent either {K(t)} or {L(t)}, where L(t)�W(t) −
K(t) denotes the number of links that have previously been activated and are activated at the

time step t as well. Then, based on the periodic time series model, we will devise and study a

temporal network model showing various temporal interaction patterns observed in the

empirical datasets.

Modeling a periodic time series

We devise a model for generating a periodic time series {z(t)} for t = 1, . . ., T, whose values are

determined by both the external and internal factors. Considering the fact that the value of the

time series of our interest is not always positive in the empirical analysis, we introduce the

probability of having a positive z(t), which is denoted by ρ (0 < ρ< 1). Then one can write

zðtÞ ¼

(
0 with 1 � r;

l with r;
ð5Þ

where the positive integer l is drawn from an exponential distribution P(l;λ(t)) with a time-

varying parameter λ(t), that is,

Pðl; lðtÞÞ ¼ lðtÞ� 1e� l=lðtÞ: ð6Þ

The time-varying parameter λ(t) can be written as λint(t) + λext(t), where λint(t) and λext(t) are

the rates of spontaneous and externally-driven activations, respectively. We assume that λint(t)
is constant of time, i.e., λint(t) = λint, while λext(t) is a periodic function whose time average

vanishes. The positive (negative) λext(t) enhances (suppresses) activations compared to the

constant activity level of λint.

For simplicity, we assume that λ(t) has only two levels of activity, i.e., λh and λl (λh� λl). To

be precise, the total period T is divided into n intervals. Each interval of length T/n starts with

a high activity period of length th, for which λ(t) = λh. This is followed by a low activity period

of length T/n − th, for which λ(t) = λl. Note that th� T/n. In Fig 6 we present an example of λ
(t) for the case with n = 3. The sum of z(t) over the entire period of T is assumed to be given as

a control parameter Z, namely,

Z ¼
XT

t¼1

zðtÞ ¼ r
XT

t¼1

lðtÞ ¼ r lhth þ ll
T
n
� th

� �� �

n; ð7Þ

leaving us with two independent parameters out of λh, λl, and th, provided that Z, T, ρ, and n
are fixed. The external effect can be controlled mainly by the ratio λh/λl and th, where the larger

ratio tends to be associated with the shorter period of th. The case with λh/λl = 1 implies no

external effect (λext(t) = 0), leading to λ(t) = λint = Z/(ρT), which is also obtained when th = T/n.

For each combination of λh/λl and th, we generate 103 time series {z(t)} with fixed values of

Z = 1000, T = 2000, ρ = 0.2, and n = 5. The multiscale entropy (MSE) method is applied to

each time series to get the averaged curve of SE as a function of the scale factor τ, as shown in

Fig 7. In the case without external effect, i.e., λh/λl = 1, we observe the overall decreasing
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Fig 6. An illustration of the model for generating a periodic time series. The periodic time series {z(t)} for t = 1, . . .,

T (red vertical lines) is generated using Eqs (5) and (6), where the time-varying parameter λ(t) in Eq (6) (thick dashed

curve) is shaped by three parameters, i.e., λh, λl, and th, in the case with n = 3. The horizontal dotted line for λint is

plotted for comparison. See the main text for details.

https://doi.org/10.1371/journal.pone.0250612.g006

Fig 7. Results of the MSE method for the periodic time series model. Results of the MSE method applied to the time series {z(t)} using the periodic time series model

with Z = 1000, T = 2000, ρ = 0.2, and n = 5 for values of λh/λl = 1, 3, and 9 (left to right) and th, 200, and 300 (top to bottom). For each panel, we have generated 103

time series to get the averaged curve SE as a function of the scale factor τ.

https://doi.org/10.1371/journal.pone.0250612.g007
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behavior of SE , which was observed in the white noise [Fig 2(B)]. As expected, th has no effects

on the results. As the periodic external effect gets stronger with the larger values of λh/λl, we

find overall flat or even increasing behaviors of SE , as depicted in Fig 7(B) and 7(C). Note that

the overall flat behavior of SE for λh/λl = 3 and th = 100 was observed in the analysis of 1/f noise

[Fig 2(B)]. Furthermore, it turns out that as th increases from 100, the range of τ for the flat or

increasing SE shrinks and it is followed by the decreasing SE for the large τ regime.

For understanding the effects of th on the MSE results in the general case with λh/λl > 1, we

calculate the fluctuation of λ(t) as follows:

s2
l
�

1

T

XT

t¼1

½lðtÞ � lint�
2
¼
l

2

intðlh=ll � 1Þ
2sð1 � sÞ

½1þ ðlh=ll � 1Þs�2
; ð8Þ

where s� th/(T/n). The fluctuation s2
l

is found to be a decreasing function of th in the range of

th� T/[n(λh/λl + 1)]. For our case with λh/λl = 3 and T/n = 400, the fluctuation s2
l

decreases

for th�100, implying that λ(t) approaches the constant function, i.e., λ(t) = λint. Hence the

overall decreasing behavior of SE is expected for large values of th.

Our results for the periodic time series model enable us to get insight into the empirical

findings, i.e., decreasing, flat, and/or increasing SE , from the temporal network datasets in the

previous Section to a large extent.

Modeling temporal networks

Using the periodic time series model in the previous Subsection, we now devise a temporal

network model that generates various temporal interaction patterns by considering both exter-

nal and internal factors. We assume that the periodically changing environment affects not

only the topological structure of the network, i.e., newly activated links, but also the activity

patterns of links that have previously been activated. The topological structure of the network

evolves according to the activity-driven network model [24–30], where each node is activated

at its given activity rate to make connections to other nodes. For the activity patterns of previ-

ously activated links, we incorporate a preferential activation mechanism for the heavy-tailed

weight distributions in Fig 3(B), which is inspired by a preferential attachment mechanism

accounting for the power-law degree distributions in scale-free networks [77].

We introduce our temporal network model as follows: At the time step t = 0, we consider a

network of N isolated nodes in which each node i is assigned an activity ai that is drawn from

an activity distribution F(a). At each time step t (t = 1, . . ., T), the number of newly activated

links K(t) and the number of activations for previously activated links L(t) are given by assum-

ing that both K(t) and L(t) are affected by the periodically changing environment in a similar

way. Therefore, the same periodic time series model in the previous Subsection can be used for

both K(t) and L(t) but with different parameter values. Precisely, we use the symbols ρK, λK,h,

and λK,l (ρL, λL,h, and λL,l) for modeling K(t) (L(t)), while T, n, and th have the same values for

K(t) and L(t). These parameters should satisfy the following relations:

K ¼
XT

t¼1

KðtÞ ¼ rK lK;hth þ lK;l
T
n
� th

� �� �

n; ð9Þ

L ¼
XT

t¼1

LðtÞ ¼ rL lL;hth þ lL;l
T
n
� th

� �� �

n: ð10Þ
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Then K(t) nodes are randomly chosen with probabilities proportional to their activities (ai).
For each chosen node i, we randomly choose another node j that has never been connected to

the node i up to the time step t − 1. The link between nodes i and j is created and activated.

For the activation of previously activated links, we first denote by Et the set of links that

have previously been activated up to the time step t − 1. Note that jEtj ¼
Pt� 1

t0¼1
Kðt0Þ. Then L(t)

links are randomly chosen from Et according to the preferential activation mechanism to be

activated. By the preferential activation mechanism the more active links in the past are more

likely to be activated in the future, which is expected to result in the heavy-tailed weight distri-

butions in the time-aggregated networks. The L(t) links are chosen with probabilities propor-

tional to their accumulated weights up to the time step t − 1, i.e.,

PiðtÞ ¼
wiðt � 1Þ

P
j2Et
wjðt � 1Þ

; ð11Þ

where wiðtÞ �
Pt

t0¼1
Aiðt0Þ. In the early stage of the simulation, L(t) may exceed |Et|, in which

case a new random number is drawn from the distribution in a form of Eq (6) until L(t)� |Et|
is satisfied. Finally, W(t) is given as K(t) + L(t) at each time step t.

Every activation at the time step t lasts only for one time step before the next time step t + 1

begins. The sum of K(t) and L(t) over the entire period of T is denoted by K and L, respectively,

defining the total number of activations across all links W� K + L.

Role of external effect in temporal networks

We generate temporal networks using our temporal network model. Based on the empirical

degree distributions in Fig 3(A), all nodes are considered to have the same activity, i.e., ai = a
for i 2 {1, . . ., N}. We perform the simulations with the fixed values of N = 100, K = 1000,

W = 10000, T = 2000, ρK = 0.2, ρL = 0.8, and n = 5, but for various combinations of th, λK,h/λK,l,

and λL,h/λL,l. Here the fixed values of parameters are based on the statistics of related quantities

derived from datasets except for n. As the choice of n is not obvious from some datasets, we

have referred to either the number of breaks (in some datasets) or the number of peaks in the

time series for the number of interactions (in other datasets). We consider three cases with

parameter values of (th, λK,h/λK,l, λL,h/λL,l) = (200, 3, 1) (“Case 1”), (100, 3, 1) (“Case 2”), and

(100, 9, 1.5) (“Case 3”). These cases correspond to three categories identified by the empirical

analysis of six face-to-face datasets in the previous Section: Case 1 is for the primary school

dataset, Case 2 is for the hospital and workplace datasets, and Case 3 is for the school (2011),

school (2012), and conference datasets. For each case, 103 temporal networks are generated for

analysis.

From the generated temporal networks, we first measure the degree and weight distribu-

tions of the time-aggregated networks, as shown in Fig 8(A). For all cases, P(k)s are binomial

distributions as expected from the assumption that ai = a for all nodes i, and P(w)s show heavy

tails due to the preferential activation mechanism. Then, by applying the MSE method to the

time series of {K(t)} and {W(t)}, we calculate SKE and SWE with their standard deviations, as

shown in Fig 8(B)–8(D). It turns out that our temporal network model successfully generates

various temporal interaction patterns observed in the empirical datasets using the above

parameter values of (th, λK,h/λK,l, λL,h/λL,l). For example, in Fig 8(D), SKE (SWE ) shows overall

increasing (flat) behaviors, which have been observed in the analysis of datasets for school

(2011), school (2012), and conference [see Fig 4(D)–4(F)].

Although we do not observe broad degree distributions in the empirical datasets analyzed,

we test the effect of heterogeneous activities on the network structure. In many real-world
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networks, the activities of nodes are known to be heterogeneous [1, 2, 4, 6–9]. We generate

temporal networks using F(a) * a−γ with γ = 2.5 for networks of size N = 104, whereas other

parameters have the same values as in Fig 8. In Fig 9(A), we find that P(k)s of the time-aggre-

gated networks in all cases are essentially the same, also showing heavier tails than F(a). For

comparison, we calculate the P(k) in the case when every node has the chance to get activated

at each time step as in the original model [24]: As expected, we find the same power-law expo-

nent in P(k) as γ in F(a) [see the “Null” case in Fig 9(A)]. Thus, heavier tails of P(k)s in our

model might be due to the limited activations of nodes by K(t), effectively enhancing the acti-

vations of more active nodes than less active ones.

Fig 8. Simulation results of the temporal network model. (A) Degree and weight distributions of time-aggregated networks and (B–D) the results by the MSE

method applied to {K(t)} (top panels) and {W(t)} (bottom panels), denoted as SKE and SWE , respectively. For each combination of parameter values (th, λK,h/λK,l, λL,h/λL,l)

= (200, 3, 1) (“Case 1”), (100, 3, 1) (“Case 2”), and (100, 9, 1.5) (“Case 3”), we generate 103 temporal networks using the fixed values of N = 100, K = 1000, W = 10000,

T = 2000, ρK = 0.2, ρL = 0.8, and n = 5. In panel (A), degree distributions P(k) are linearly binned, while weight distributions P(w) are logarithmically binned.

https://doi.org/10.1371/journal.pone.0250612.g008

Fig 9. Simulation results of the temporal network model considering heterogeneous activities of nodes or the community property. (A) The

networks are generated with F(a) * a−2.5 and N = 104, and the other parameters are the same as in Fig 8. (B) and (C) The networks are generated with

Nc = 5 in the same parameter settings as in Fig 8. In the panels (A) and (B), degree distributions P(k)s are logarithmically and linearly binned,

respectively. In the panel (C), the modularity Q is shown for various p. Each empty marker presents the empirical result for the primary school (✰),

hospital (4), workplace (5), school (2011) (�), and school (2012) (□).

https://doi.org/10.1371/journal.pone.0250612.g009
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In addition, we also study the effect of community structure, such as classes in school, by

considering Nc non-overlapping communities with N/Nc nodes in each community. Each of K
(t) activated nodes at the time step t may create a link to another random node that belongs to

the same community or another community. We define a parameter p as the ratio of the prob-

ability that the activated node chooses a neighbor node from one of other communities to the

probability that the activated node chooses a neighbor node belonging to the same commu-

nity. If p = 0, no links between nodes in different communities are created, while when p = 1,

the activated node randomly chooses its neighbor node from the entire network, leading to the

network without community structure.

We generate temporal networks for Nc = 5 with the same parameter values as in Fig 8, also

assuming that ai = a for all nodes i. Fig 9(B) and 9(C) respectively show the degree distribution

P(k) and modularity Q [78] of the time-aggregated networks for various p. When p = 1, we

obtain Q� 0, which corresponds to the results in Fig 8. As p decreases, the activated nodes

tend to form links with nodes belonging to the same community. As a result, Q increases,

while the variance of P(k) decreases. The results show that even if the external factors have the

same effect on the number of activated links, the topological structure of the network can be

different depending on the connectivity patterns of nodes.

The empirical datasets we analyze provide information on the communities to which the

nodes belong, except for the conference one: 11 communities in the primary school, 4 commu-

nities in the hospital, 5 communities in the workplace, 4 communities in the school (2011),

and 5 communities in the school (2012). We estimate the value of p by counting the number of

links within the same communities. In Fig 9(C), we plot Q of the empirical datasets as a func-

tion of p, which is presented by empty markers with the corresponding standard deviations.

Each marker denotes an averaged value for the daily datasets. We can confirm that the hospital

and workplace datasets have network structures with a significant difference in terms of Q,

although they show similar MSE results, as shown in Fig 4(B) and 9(C). This emphasizes the

observation that even if the environmental impacts on networks are similar, the topological

properties can vary depending on the connectivity patterns.

By the numerical simulation of our temporal network model, we have shown how the peri-

odic external factor, when combined with the internal factor and the preferential activation

mechanism, can induce complex temporal correlations in the network-level interaction pat-

terns over a wide range of timescales.

Finally, we remark that in our model the links are created (or activated for the first time) in

different times, which may introduce some aging effects to the dynamics of temporal net-

works, e.g., as discussed in Ref. [28]. The different creation times of links can also affect the

dynamical processes taking place in temporal networks such as spreading [79, 80]. In this

sense our results highlight the need to study the impact of the environmental changes on the

dynamics of temporal networks.

Conclusion

The impact of environmental changes on the dynamics of temporal networks has been widely

recognized, yet its understanding is far from complete. In our work we have analyzed six face-

to-face interaction datasets in the framework of temporal networks by applying the multiscale

entropy (MSE) method to the network-level time series. Based on the MSE results, we find that

the temporal interaction patterns in those datasets can be categorized according to the envi-

ronmental similarity, such as similar patterns of classes or break times in schools. To investi-

gate the effects of periodic external factors on the various temporal interaction patterns, we

first devise a model for generating a periodic time series to show that our model can reproduce
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various behaviors of the MSE results. Then we devise a temporal network model, based on the

periodic time series model, that successfully generates various temporal interaction patterns in

temporal networks. We also incorporate the preferential activation mechanism to account for

the heavy-tailed distributions of link weights.

Our results demonstrate the importance of the environmental factors in understanding the

dynamics of temporal networks. In particular, one can further investigate the possibilities of

classifying the datasets according to the environmental similarity by applying our analysis

method to other temporal network datasets. In addition, we have studied a temporal network

model mainly focusing on the periodic external factors with only two levels of activity and on

the relatively simple networks, while our model can be extended to take into account more

realistic features such as complex social relations between individuals and more realistic cyclic

behaviors of environmental changes.
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