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Abstract: Diffuse gliomas are the most common primary brain tumors and they vary considerably in
their morphology, location, genetic alterations, and response to therapy. In 2016, the World Health
Organization (WHO) provided new guidelines for making an integrated diagnosis that incorporates
both morphologic and molecular features to diffuse gliomas. In this study, we demonstrate how
deep learning approaches can be used for an automatic classification of glioma subtypes and grading
using whole-slide images that were obtained from routine clinical practice. A deep transfer learning
method using the ResNet50V2 model was trained to classify subtypes and grades of diffuse gliomas
according to the WHO’s new 2016 classification. The balanced accuracy of the diffuse glioma subtype
classification model with majority voting was 0.8727. These results highlight an emerging role of
deep learning in the future practice of pathologic diagnosis.

Keywords: digital pathology; deep transfer learning; convolutional neural network; oligodendroglial
tumor; glioma

1. Introduction

Gliomas are the most common brain tumours that are believed to derive from neu-
roglial stem cells. On the basis of their histological features, they have been classified as
astrocytic, oligodendroglial, or ependymal tumours, and have been assigned World Health
Organization (WHO) grades I to IV, which represent the malignant degrees [1]. Huge
progress in genetic profiling in brain tumor has recently led to changes in classification and
treatment [2]. Therefore, the new (2016) WHO classification of tumors of the central ner-
vous system ends the era of traditional diagnostic approaches that are based on histologic
criteria only and incorporates molecular biomarkers [3]. Over 75% of the diffuse gliomas
in adults are astrocytic. Oligodendroglial tumors account for less than 10% of the diffuse
gliomas [4].

The classification of glioma subtype is a key diagnostic process, because the available
treatment options, including conventional chemotherapy and targeted therapies, differ
between Astrocytoma, Glioblastoma, and oligodendroglioma (ODG) patients. As for
gliomas, prominent examples include the Isocitrate Dehydrogenase 1 (IDH1) mutation
in diffuse gliomas [5,6], O6-methylguanine–DNA methyltransferase (MGMT) promoter
methylation status in Glioblastomas [7] and 1p/19q codeletion in ODGs [8,9]. Especially,
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the 1p 19q codeletion is the genetic hallmark of ODGs with IDH1/IDH2 mutation [10,11].
The codeletion of chromosomal arms 1p 19q is a characteristic and early genetic event in
ODGs, and patients with 1p 19q codeleted tumors showed a better prognosis, increased
survival, and enhanced response to chemotherapy. Information on the 1p 19q status is
a useful diagnostic assessment in morphologically challenging cases to substantiate the
diagnosis of an ODG [12].

Histologic typing and the grading of diffuse gliomas is challenging task for patholo-
gists, because tumor cell diversity of gliomas make it difficult to discriminate in precise
microscopic criteria. This tendency resulted in a high rate of interobserver variation in the
diagnosis of diffuse glioma, including oligodendroglioma (ODG) [13]. AI-based automated
solution is a must-have system for the accurate diagnosis of diffuse glioma for pathologists.
Pathology has a long history of artificial intelligence (AI) as much as any other field of
medicine. For example, digital pathology is a system that digitizes glass slides into binary
files, and then analyzes pathology information with AI algorithms. For the analysis of
pathology images, an AI algorithm, such as deep convolutional neural network, has been
used for the detection of tumor cells, classification of tumor subtype, and diagnosis of
disease [14,15].

The deep learning based convolutional neural network (CNN) model has recently
shown high performance in the field of image classification and object detection. To achieve
high performance, a large amount of training dataset is required for training CNN-based
deep learning model. However, it is difficult to collect a large amount of datasets in
the clinical domain, and they usually have an imbalanced data problem between the
disease-positive and disease-negative groups. To solve this problem, we used the transfer
learning method for classifying gliomas subtypes and the grading of diffuse gliomas.
As far as we know, this is the first study for deep learning aided classification of diffuse
gliomas using real world digital pathology images that are generated from routine clinical
practice, specifically in the cases according to the updated 2016 WHO classification for
diffuse glioma.

2. Materials and Methods
2.1. Dataset and Image Curation

Whole slide images were obtained using hematoxylin and eosin-stained slides that
were scanned from the 468 gliomas collected at the Catholic University of Korea Yeouido
St.Mary’s Hospital from 2017 to 2019 during routine clinical 1p/19q fluorescence in situ
hybridization (FISH) test. Figure 1 illustrates the study design and dataset selection.
All of the cases had pathology data, including the diagnosis and grades (grade II, III,
and IV) according to 2016 WHO classification. Among them, full molecular profiles
could be assessed in 369 cases, which included IDH1 mutation status that was tested by
immunohistochemistry, and 1p/19q co-deletion status that was examined by FISH. Based
on the above molecular result, WSIs from IDH mutant, 1p/19q co-deleted ODGs (N = 38),
and 1p/19q codeletion (–) diffuse glioma subtypes (non-ODG glioma) (N = 331) were
used for developing the ODG and non-ODG glioma binary classification model (Table 1).
Additionally, WSIs from the 468 diffuse glioma dataset were used in binary classification
of diffuse gliomas into grade II–III and grade IV. Each model was performed separately.
The clinical information was obtained from an electric medical record. The Institutional
Review Board of St. Mary’s Hospital approved and reviewed this work (SC18RNSI0005).

The whole slide digital pathology images were generated during the performance
of the 1p/19q FISH test using the automated BioView Duet scanning system (BioView,
Rehovot, Israel). The images from diffuse glioma cohorts were reviewed to remove im-
ages having tissue process artifacts, including a section fold, pen mark, poor staining,
and bubbles. Representative region of interest (ROI) images containing brain tumor were
manually selected for each WSI that passed a quality control review [16] during routine
clinical practice. 37,548 ROI images and 152,535 ROI images are prepared for deep transfer
learning of the classification of ODG and diffuse glioma grading, respectively.
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Figure 1. Schematic illustration of the study design and dataset selection. ROI; region of interest.

Table 1. The dataset of diffuse glioma.

Label No. of Patients No. of ROI Images

Non-ODG glioma 331 24,418
ODG 38 13,130

Grade II–III 148 46,349
Grade IV 320 106,187

ODG, oligodendroglioma; ROI, region of interest.

2.2. The Preprocessing of Dataset

37,548 ROI images (40× objective magnification with 1024 horizontal and 1024 vertical
RGB pixels) for the ODG classification dataset (N = 369) were allotted into three groups:
training (27,041 ROIs, N = 132), validation (3006 ROIs, N = 18), and testing (7501 ROIs,
N = 219) sets for model training and testing using the knapsack algorithm [17,18]. With a
total of 38 ODG positive patients, 9461 ROI images from 19 patients were used for training
and 2617 from 16 patients were used for testing model. The total ROI images were separated
into three groups as a 7:1:2 ratio, training (70%), validation (10%), and test set (20%) as
shown Table 2.

The model was trained, validated, and tested with 224 × 224 pixel sized patches,
which were obtained from non-overlapping ‘patches’ from ROI images. This resulted
in tens of patches per ROIs, depending on the original size, and we filtered out the tiles
containing more than 50% background in random sampling.
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Table 2. Dataset for classifying non-ODG and ODGs gliomas.

Label Training (N = 132) Validation (N = 19) Testing (N = 219)
No. of ROIs No. of ROIs No. of ROIs

Non-ODG glioma 17,580 (N = 113) 1954 (N = 16) 4884 (N = 203)
ODG 9461 (N = 19) 1052 (N = 3) 2617 (N = 16)

ODG, oligodendroglioma; ROI, region of interest.

Another dataset was prepared for conducting transfer learning to classify gliomas
into grade II, III, and grade IV. The 152,535 ROI images from 468 WSIs of diffuse gliomas
with grading according to the WHO’s 2016 classification were prepared for this analysis.
In Table 3, we allotted them into three groups as training (N = 293), validation (N = 81),
and testing (N = 94) sets using the knapsack algorithm [17,18]. In the grade IV gliomas,
201 patients were used for training and 67 grade IV gliomas were used for testing the
model. The rest of settings were used in the same way as described above.

Table 3. The dataset for grading diffuse gliomas.

Label Training (N = 293) Validation (N = 81) Testing (N = 94)
No. of ROIs No. of ROIs No. of ROIs

Glioma, grade II, III 29,663 (N = 92) 7416 (N = 29) 9270 (N = 27)
Glioma, grade IV 67,959 (N = 201) 16,990 (N = 52) 21,238 (N = 67)

ROI, region of interest.

2.3. The Process of Random Sampling Patches from ROI Images

The cropped ROI images patches (224 × 224 pixels) were selected to adjust the input
image size for the pre-trained ResNet50V2 model. Randomly selected patches were used
for training, validation, and testing ResNet50V2 model. During random patch selection,
if the patch was filled with more than 50% of white background, then the patch was
discarded and a new patch was selected again (Figure 2). We repeated the above process n
times to obtain n patches for training.

Figure 2. Random patch selection from region of interest images. The patch that wsa filled with more
than 50% of white background was discarded (red cross).

2.4. Random Image Augmentation

Rather than using an input image as it is, the image augmentation technique produces
several different images from the given input image by applying various tasks, such as
randomly zooming, stretching, distorting, adjusting brightness, adding noise, and changing
colors. When augmenting the patches, several image operations were probabilistically
applied, as specified in the following Table 4. The probability of each operation applied
was determined independently.
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Table 4. The proportion of random image augmentation.

Probability Augmentation Technique

50% Horizontal flip
50% Vertical flip
30% Crop
30% Scale, translation, rotation and shear
30% Gaussian blur
30% Image contrast
30% Gaussian noise
30% Image brightness
30% Elastic transformation

2.5. The Process of Transfer Learning Using ResNet50V2

For model selection, we compared ResNet50V2 [19], Inception V4 [20], Xception [21],
and DenseNet201 [22] by performing three epochs of training and then evaluated with
validation dataset. First, we selected ResNet50V2 as base model for transfer learning,
because it showed the highest performance among the four pre-trained models. Second,
we freeze the weights of the selected model to prevent an optimizer from optimizing
the weights of the model during training process. Third, remove the original last fully
connected (FC) layer, which classifies an arbitrary input image into 1000 classes and then
add a new fully-connected layer to classify glioma subtype. Finally, train the modified
model carefully with our own glioma image data. The new layer is only trained, because the
rest of the layers are frozen, except for the newly added layer.

For one given input image, eight patches were randomly selected in each epoch
and trained, validated, and tested. We used TensorFlow 2 [23] and two NVIDIA Tesla
V100 GPUs for training and the batch size was 2048. The Stochastic Gradient Descent [24,25]
with momentum [26] algorithms were used as an optimizer, the learning rate was 0.001,
and exponential decay e−0.1∗epoch was applied [27]. Because the dataset was unbalanced, we
oversampled the ODG images, so that the ratio of ODG and non-ODG glioma images used
for training was 1:1. Nineteen epochs of training were performed with the above settings.

2.6. Grading Diffuse Gliomas

In this supplementary experiment, we chose MnasNet, EfficientNet-B4, EfficientNet-
B5, and DenseNet201 [22] as the base models for transfer learning. We perform transfer
learning for each model using the dataset that we prepared for this supplementary experi-
ment. Furthermore, we used the early stopping technique based on the validation dataset
to prevent the overfitting of each model. As a result, the following validation loss values
were identified for each model, as in Table 5.

Table 5. The early-stopped validation loss for each model.

Model Epoch Loss

EfficientNet-B4 3 0.6432
EfficientNet-B5 3 0.6586
DenseNet201 6 0.6646

MnasNet 18 0.6663

3. Results

A total 38 ODG and 331 non-ODG glioma patient images were used for training,
validating, and testing the ResNet50V2 model for the classification of the glioma subtype.
We achieved a balanced accuracy of 0.8727 using the majority voting technique. The
strategy of deep transfer learning and the major voting technique is illustrated in Figure 3.
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Figure 3. The dataset and strategy for the classification of glioma subtype using deep transfer
learning and majority voting technique (a). The ratio of low-grade vs. high grade gliomas. (b) The
distribution of patch numbers from one Whole Slide Image. (c) Transfer learning with ResNet50V2
model and majority voting technique for labeling glioma patient images.

For the supplementary experiment, a total of 148 patients for low-graded Oligoden-
droglial tumor and 320 patients for high-graded Oligodendroglial tumor were used for
training, validating, and testing. Among the four models we used in this experiment,
DenseNet201 achieved an accuracy of 0.6810 and balanced accuracy of 0.5678.

3.1. Application of Random Image Augmentation for the Prevention of Overfitting

Deep convolutional neural networks require large amounts of images in the training
stage, but, due to the nature of the medical data, the number of ODG tumor images is
relatively small when compared to non-ODG glioma. If training is performed with this
small number of ODG images without further mitigation, then it is highly likely that the
convolutional neural network will be overfitted or not converge, even if it finished the
training. Therefore, to solve this problem, this study uses the random image augmentation
technique [28], as shown in Figure 4.

Figure 4. Application of random image augmentation to an image patch. The augmentations applied
to the patch are listed on the right.
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3.2. Deep Transfer Learning Framework for the Analysis of Pathology Images

We used the CNN-based model that is pre-trained on ImageNet [29], and their opti-
mized parameters were transferred to our glioma pathology image dataset by the freezing
method. ResNet50V2 was selected by comparing the training loss among the pre-trained
models, such as ResNet50V2 [19], Inception V4 [20], Xception [21], and DenseNet201 [22]
(Table 6). We used ResNet50V2 as a base model for transfer learning and utilized pathology
images from glioma patients for the classification of the glioma subtype. In this experiment,
we also used transfer learning in the same manner as described above to various models
such as MnasNet [30], EfficientNet [31] and DenseNet201 [22].

Table 6. The training loss from four transfer learning models.

Model Loss

ResNet50V2 0.4086
InceptionV4 0.5109

Xception 0.4213
DenseNet201 0.5193

3.3. The Performance of Classification Model Using Majority Voting

Based on the computational strategy that is outlined in Figures 3 and 4, we present
the two main results in Table 7.

Table 7. The ODG image classification model performance without and with majority voting.

Metric Performance Performance with Majority Voting

Precision 0.7346 0.2778
Recall 0.7119 0.9375

F1 0.7231 0.4286
Accuracy 0.8098 0.8174

Balanced Accuracy 0.7870 0.8727

First, we performed classification with the ResNet50V2 model for distinguishing
ODG and non-ODG gliomas. The balanced accuracy was 0.7870 and F1 score was 0.7231
(Table 7). Second, we develop classification models that classify whole slide images into
ODG positive and negative using the majority voting method. Majority voting was per-
formed with the predicted labels for each patient’s pathological image to determine the
final negative/positive label of the patient. Subsequently, the performance was evaluated
by comparing the actual image labeling with the predicted labels in each patient. The bal-
anced accuracy of our model was 0.8727, which is higher than previous results [14] and
comparable with the results from pathologists.

3.4. The Performance of Diffuse Glioma Grading Model

In this experiment, we performed the binary classification of grade II, III, and grade
IV diffuse glioma images using transfer learning of four CNN based classification models.
Subsequently, we compared the classification performance of each model, as in Table 8.
The metrics showed accuracy, precision, recall, and balanced accuracy. Because the dataset
that we used in this experiment is also imbalanced, we used the balanced accuracy as a
key performance metric. As a result, we achieved the highest balanced accuracy of 0.5801
on MnasNet.
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Table 8. The performance of the diffuse glioma grading model.

Model Accuracy Precision Recall Balanced Accuracy

EfficientNet-B4 0.6219 0.3752 0.3672 0.5501
EfficientNet-B5 0.5957 0.3823 0.5366 0.5791
DenseNet201 0.6810 0.4591 0.2790 0.5678

MnasNet 0.6389 0.4102 0.4300 0.5801

4. Discussion

Recent advances in genetics in brain tumors have provided profound insights into
the biology of gliomas, associating specific genetic aberrations with histopathological
classification. Such changes provide critical information regarding the outcomes of the
ODG patient treated with radiotherapy and adjuvant chemotheapy when compared to
non-1p/19q codeleted glioma [32]. However, in the view point of testing and diagnosis, it
is challenging to change the classification to include diagnostic categories that depend on
genetype [33]. These challenges include the surrogate genotyping that may need to be taken
by institutions without genotyping capabilities and the integrated diagnosis formats [33].
Thus, we aimed to show the possibility of automated classification in diffuse glioma, which
may affect this complex format of diagnosis and molecular test platform, as well as facilitate
routine initial diagnosis. Furthermore, the main hypothesis that is addressed in this work
is that clinical-grade performance can be reached using ROI images without annotating
WSIs. Furthermore, turnaround times for confirmatory molecular study are required up to
a few weeks and they may result in a delay in diagnosis. The processing time of a slide
using our model only takes a few seconds to calculate per classification probability on two
NVIDIA Tesla V100 GPUs. When considering the possibility of using multiple GPUs to
process patches in parallel, classification using our model can be executed in a few minutes.

The implications of these results are wide ranging. The possibility of the dataset with-
out annotation allows our algorithm to learn from the full files of slides that are presented
to clinicians from real-world clinical practice, representing the full wealth of biological and
technical variablitiy [34]. To the best of our knowledge, only robust studies were conducted
with the deep learning approach using the publicly available digital WSI dataset in The
Cancer Genome Atlas (TCGA) or The Cancer Imaging Archive (TCIA) to automate the
classification of grade II, III glioma versus grade IV glioblastoma, which demonstrated up
to 96% accuracy [35–37] However, the datasets used in the above studies are composed of
many cases diagnosed before the application of the WHO’s new 2016 classification; there-
fore, the algorithm that was developed using the public database might not be suitable for
the current WHO classification system. A recent study tried deep learning approaches for
subtype classification according to the 2016 WHO classification and survival prediction
using multimodal magnetic resonance images of a brain tumor [38]. Their experimental
data were obtained from the Multimodal Brain Tumor Segmentation Challenge 2019. How-
ever, they did not address the dataset’s information regarding molecular work to fulfill the
requirement of the 2016 WHO classification and they did not include pathology images in
their analysis. In order to generate predictive model using deep learning technique, sample
size is important for classification performance and sample size. We included the dataset of
diffuse glioma diagnosed after 2017 and all of the included cases were diagnosed according
to the integrative molecular guideline of 2016 WHO classification. Interestingly, recent
advanced biochemical spectroscopy enabled machine learning to discriminate between
glioma and normal tissue by observing spectra shift within fresh tissue biopsies [39]. Such
algorithms lay a potential scenario in performing biomolecular diagnosis at frozen diagno-
sis during surgery. The task of classifying the type and grade of glioma uses pre-defined
image features, characterizing the image and predicting the classification level, which is
not unlike other types of machine learning problem where the substantial disadvantage of
pre-defined features is the need to know those that are most informative in the classification
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task. Often, the best features are hard to know, and a method of unsupervised feature
learning can be advantageous if datasets were abundant [35].

The results of our evaluation of accuracy for ODG classification on real world data
(87%) is promising, but it leaves room for improvement. There are several potential
reasons for this performance. First, the orgin dataset of data set are HE slides and they
vary in terms of coming from multiple institutions. tissue processing protocol, staining,
and image acquisition were not uniform, which can bias the performance estimates of
predictive models [40]. Second, the dataset of this cohort is imbalanced and each training
set is small. Transfer learning is novel deep learning method that transfers pre-trained
models from large datasets to new domains of interest with small datasets achieving good
performance [41,42].

The accuracy for grading of diffuse glioma dataset (0.68%) is a reasonably preliminary
result. The reason might be related to the difficulties in the interpretation of histologic
criteria used to classify and grade the diffuse gliomas [43]. The main change in the 2016
WHO classification for diffuse glioma is providing powerful prognostic information from
molecular parameters. The histologic grading system for diffuse glioma in current WHO
scheme is three-tiered. Grade II is defined as tumors with cytological atypia alone. Grade
III is considered to be tumors showing anaplasia and mitotic activity. Grade IV tumors
show microvascular proliferation and/or necrosis. A variation in nuclear shape and size
with accompanying hyperchromasia is defined as atypia. Unequivocal mitoses but not
significant in their number or morphology are required. The finding of solitary mitosis is
not sufficient for grade III, in such case, additional MIB1 proliferation index can be useful
for the grading. Microvascular proliferation is defined as the multilayering of endothelium
or glomeruloid vasculature. Any type of necrosis may enough for grade IV; palisading,
simple apposition of cellular zone with intervening palor [44]. Thus, the crucial diagnostic
component of WHO grading scheme is not always diffuse, but rather focal microscopic
finding, and important information for tumor grading cannot be evenly included in patches
made from the original pathology image. We expect that larger sample will improve the
accuracy of our module.

For the application of deep learning algorithms in pathology image analysis, CNN
based models are widely used for classification [45,46] and analysis, including the detection
of tumor [47] and metastasis [48]. CNN can have a series of convolutional and pooling
hidden layers [49]. This structure enables the extraction of representative features for
prediction. Because the number of parameters is determined by the size of reception
field, CNN layers have fewer parameters than the image size, which greatly improves
its computational performance [50]. In the case of the CNN-based models pre-trained on
ImageNet, which consists of about 10 million images that are usually used for a base model
of transfer learning, the final feature vector produced by a neural network through serial
convolutions often encodes redundant information, given the flexibility of the algorithm
to choose any feature necessary to produce accurate classification. CNN have also been
implemented for image segmentation [15]. Image segmentation is important in performing
for large data sets, such as WSI. The image is divided into many small patches. CNN
are trained to classify these patches. All of the patches are combined into a segmented
area. A fine spatial resolution of segmentation is achieved by small size patches. However,
in the patholohy image processing, the patch size should be reasonably large enough to be
classified accurately. Thus, a review of the representative patches by a pathologist and the
determination of proper patch size is recommended [51]. In our study, the proper patch
size was determined after a review of representative patch by pathologist. However, this
demands a huge computational time and memory, which imits the computational speed.
There is always an issue of the tradeoff between resolution of segmentation and patch size.
We divide the 224 × 224 pixels sized patches from the original size image of 1024 × 1024
pixels to adjust the image size for ResNet50V2 model and show the best performance in
our model.
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The flexible adjustment of the deep learning process should be performed according
to data size and trait, including data preparation, image processing, model selection and
construction, post-processing, and feature extraction, as well as the association with the dis-
ease [15]. Class imbalance is a common problem that has been comprehensively studied in
classical machine learning. The clinical dataset is inevitably unbalanced because the natural
incidence of tumor types dependent on the prevalence of the tumor. Oversampling images
to adjust the ratio of each images should especially be performed in the small dataset [52].
Because pathology images may look very different due to different hematoxylin and eosin
staining condition and the thickness of original slide, it is important to make a deep learn-
ing algorithm that is adapted to different digital images. Image standardization is needed
and color augmentation is the easiest solution among the reported methods [53]. Model
selection is important and the corresponding loss function should be done. We performed
training loss from four transfer learning models and four early-stopped validation losses
for each model. Our study was performed as an annotation-free WSI training approach
for pathological classification of the brain tumor subtype. Deep learning for digital pathol-
ogy uses the extremely high spatial resolution of WSIs. The image patch usually used
in learning needs detailed annotation. However, it is difficult for pathologists to cover
all possible samples during annotation due to the highly variable tissue histology. Weak
supervision methods have been applied in recent studies to avoid the work burden of
annotation and selection bias. Training the tumor classifier without annotations in detail
reduces the burden on the expert pathologist and allows for the deep learning model to
benefit from abundant readily available WSIs [54].

Our algorithm lets us meet the minimum requirement of the accuracy level that is
determined by the context of complex molecular and histologic determination within
a multi-class classification scheme. Moreover, as far as we know, our work is the first
to get closer to actual practice by exploring how deep transfer learning methods can be
used to classify brain tumor according to the new integrated diagnosis of the 2016 WHO
classification. There are many factors of deep transfer learning optimization that we have
not yet explored. We will also work on improving our accuracy by extra-steps during the
pre-processing stage.

The era of big data has produced vast amounts of information that can be used to
build deep learning models. However, in many cases, adding more data only marginally
increases the model performance. This is especially important for limited labeled data,
as the process annotation can be expensive and time consuming. The evaluation of learning
curve approximation for large imbalanced biomedical datasets in the context of sample size
planning can provide guidance for future machine learning problems that require expensive
human labeling of instances. [55]. On the basis of a systematic study on the sample size
prediction for classification [56], learning curves can be represented using inverse power
law functions. By utilizing this, a classifier’s accuracy Yacc(n) can be expressed as a function
of the number of training examples:

Yacc(n) = (1− a)− r · nd

where a is the minimum achievable error, r is the learning rate, and d is the decay rate.
Becaue we aimed for an accuracy of 90% and used the learning rate of 0.001 and the

decay rate of −0.1, we could identify the trend of the accuracy, as shown in Figure 5. From
the above accuracy trend, we estimate 10,000 to be the minimum required sample size,
because the increase of accuracy is very small after 10,000. Sample number determination
is important for model performance, especially in the context of limited labeled data [55].
However, our ROI image selection and quality control of WSI during routine clinical
practice generate a high quality dataset that showed fair performance. Clinically performed
quality control could be an alternative to vigorous annotation.
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Figure 5. The trend of the accuracy as the number of training examples increases.

5. Conclusions

In summary, our preliminary study provided a proof of concept for incorporating
automated glioma subtype screen using routine WSI into the pathology workflow to
reduce the cost of expensive genetic test and, furthermore, to augment the productivity of
the pathologist. Future studies will need to include a far more balanced dataset of WSI,
and more cases for training, validation, and testing. Our preliminary results highlight the
usability of quality controlled clinical grade data and the possible role of deep learning
in precision medicine, and suggest an expanding utility for computational analysis of
pathology in future clinical practice.
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