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A B S T R A C T   

Here we report a method of finding multiple crystal structures similar to the known crystal structures of materials 
on database through machine learning. The radial distribution function is used to represent the general char
acteristics of the known crystal structures, and then the variational autoencoder is employed to generate a set of 
representative crystal replicas defined in a two-dimensional optimal continuous space. For given chemical 
compositions and crystal volume, we generate random crystal structures using constraints for crystal symmetry 
and atomic positions and directly compare their radial distribution functions with those of the known and/or 
replicated crystals. For selected crystal structures, energy minimization is subsequently performed through first- 
principles electronic structure calculations. This approach enables us to predict a set of new low-energy crystal 
structures using only the information on the radial distribution functions of the known structures.   

1. Introduction 

In recent years, the design and discovery of new materials have 
attracted a lot of attention, but they remain a challenge in materials 
science [1]. Finding stable crystal structures with good functionality is a 
major concern in material design. First of all, since a large number of 
crystal structures are possible, the space to explore is immensely large. 
In addition, there is no guarantee that the proposed crystals can be 
synthesized experimentally. Nevertheless, material design has made 
significant progress in recent years compared to the fact that in the past 
it has been largely relied on the intuition of human experts. One of the 
recently proposed material design methods is the simultaneous use of 
first-principles electronic structure calculations and global optimization, 
in which the material properties can be described from first-principles 
[2–10]. Ab initio random structure searching and high-throughput cal
culations have also shown productivity [11–13]. The active use of global 
optimization methods allows us to more directly optimize the desired 
material properties. The target objectives have been demonstrated for Si 
and C allotropes with direct band gaps [14–18], semiconductor alloys 
[19], P allotropes with high mobility [20], topological materials 
[21–24], and high-pressure superconducting phases [25–28]. 

Another approach is based on a database of crystal structures that are 
known experimentally and/or theoretically [29–33]. Hereinafter, the 
term database refers to experimental or computational data on crystal 
structures. Machine learning is a kind of artificial intelligence based on 

the idea that machines can learn and make predictions through big data, 
from which key information can be uniquely extracted. The develop
ment and application of machine learning has soared over the last 
decade and has been markedly successful in many areas [34–36]. In 
particular, neural networks are efficient to solve challenging problems, 
such as natural language processing, image recognition, and translation. 
With the help of a unique data space, machine learning has succeeded in 
searching for similar but new molecules. Sampling from the latent space 
has been used to predict new molecules with the desired properties 
[29,32]. The predicted molecule or crystal structure and its character
istics can be examined in more detail through first-principles calcula
tions. Recently, some molecules predicted by a special type of 
variational autoencoders (VAEs) [37,38] have been experimentally 
validated [39]. 

There is a growing interest in the use of deep neural networks in 
materials research to answer questions such as designing new molecules 
and crystals and understanding their electronic properties [40,41]. In 
condensed matters, the parameter space, determined by composition, 
atomic position, and cell volume, can increase enormously, similar to 
big data sets in image or industrial data analysis. Exploring such com
plex systems is a difficult task in traditional methods based on human 
intuition. Given this, deep neural networks are a new application and 
very powerful in predicting new functional materials [29,31–33]. 

In this work, we propose a method of exploring unknown crystal 
structures using the generative VAE method [37,38]. We represent 
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crystal structures in terms of radial distribution function (RDF), which is 
usually determined by calculating the distances for all pairs of constit
uent atoms and binning them into the histogram. The VAE method is 
used for the first time to learn the RDF characteristics of known crystal 
structures. In order to find new crystal structures other than the known 
crystals in discrete forms, we generate various RDF replicas through the 
VAE prediction process. Thus, unknown crystal structures can be 
explored in a more continuous space provided by VAE. After RDF rep
licas are prepared, we independently generate random crystal structures 
satisfying the symmetry of space groups and then select low-energy 
crystal structures with the RDFs similar to the known database. 

This paper is organized as follows: the details of RDF and Pearson’s 
distance for characterizing an arbitrary crystal structure, the VAE 
method utilized to create RDF replicas, and generation of random crystal 
structures using crystal symmetry and Wyckoff positions are given in 
Section 2. In Section 3, VAE is utilized to represent the RDF character
istics of Si and SnSe crystal structures in the machine learning domain, 
and the results of searching for new crystal structures are given. The 
performance of the protocol is monitored and an appropriate selection of 
machine-learning parameters is made during the process of crystal 
structure search. Finally, conclusions are given in Section 4 by demon
strating that the present scheme of machine learning can serve as a good 
starting point to search for unknown crystal structures. 

2. Methods 

2.1. RDF and Pearson’s distance between two crystals 

The RDF n(r) represents the mean number of atoms in a shell of width 
dr at distance r, defined as 

n(r) = g(r)(ρ4πr2dr), (1)  

where g(r) is the pair correlation function and ρ is the atom density. The 
RDF describes the bonding characteristics of a crystal regardless of its 
chemical composition and the choice of unit cells, but lacks information 
on the distribution of bond angles. For numerical calculations, we used a 
cut-off radial distance of 8 Å and softened the RDF using a Gaussian 
broadening scheme with a standard deviation of 0.060 Å, which is an 
artificial device chosen to ensure the continuity of data. 

Using the RDF representation, one can obtain the Pearson’s corre
lation coefficient (rP) between two crystal structures. This coefficient is 
just the covariance of two variables divided by the product of their 
standard deviations, expressed as 

rP =

∑m
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑m
i=1(yi − y)2

√ , (2)  

where {xi} and {yi} are the RDF values of two crystal structures at m grid 
points in the radial direction and x and y are their average values. While 
the rP values range from − 1 to 1, the Pearson’s distance, defined as 
1 − rP for two crystal structures, lies in between 0 and 2. The Pearson’s 
distance has been used in cluster analysis and data detection for 
communication and storage with unknown gains and offsets. 

2.2. RDF replicas 

A set of crystal structures that we know of is usually represented in 
discrete forms [42–44]. In addition, the number of crystal structures in a 
given data set is limited. In order to find more efficiently various crystal 
structures with similar RDFs, we need to expand the data space by 
creating additional RDFs, called RDF replicas, which are similar, but not 
identical, to those of the database. In doing this, the VAE method is 
advantageous for representing crystal structures in a more continuous 
space. To create RDF replicas using the database, we examined the 
capability of VAE to deal with the complex and discrete nature of the 

crystal structure space. The key challenge is to extract essential infor
mation on the bonding characteristics of known crystal structures. 

In the machine learning process, it is important to introduce an 
appropriate representation of crystal structures. For molecule design, a 
discrete molecular representation, such as a SMILES string, can be used 
to capture the key features of molecules [29]. Recently, a different 
approach has been reported for crystal representation, based on crystal 
graphs composed of nodes and edges that represent atoms in the unit cell 
and atom connections, respectively [40]. However, it is still a difficult 
problem to find a way of representing the structural characteristics of 
discrete crystal structures for the application of VAE. The Pearson’s 
distance based on the RDF is not an absolute value for finding similarity 
in structure. However, RDF can be a good physical measure for classi
fying new crystal structures because it provides information on distances 
for all pairs of constituent atoms and can also be determined experi
mentally. Our approach using RDF is useful for creating RDF replicas 
using a machine learning technique and exploring new crystal structures 
with specific RDFs. 

2.3. Autoencoder and VAE 

In artificial neural network, an autoencoder (AE) aims to learn key 
features for a set of data, usually in the form of dimensionality reduction 
by training the network [45,35]. Along with the reduction side, the 
reconstruction side is learned, where AE attempts to produce a repre
sentation as close as possible to its original input from the reduced 
encoding. This AE consists of two parts: an encoder and a decoder that 

are actively executed with data conversion, such as x→→ h
→

→ x→
′

, where 

x→ and x→
′

represent the input and output RDFs, respectively (Fig. 1). The 
encoder stage of AE takes the input RDFs for training. The data at the 

encoder neurons h
→

are usually referred to as code, latent variables, or 
latent representation in a continuous space. Meanwhile, at the decoder 

stage of AE, data conversion occurs such as h
→

→ x→
′

. The perfect recon

struction, x→ = x→
′

, is targeted, but the RDF data may not be fully 
recovered because of the inherent structural nature of neural networks 
that restrict information in bottle-neck hidden layers at the intermediate 
stage. 

A generative VAE model is a kind of autoencoder with regular 
training designed to avoid overfitting, like generative adversarial net
works [46]. Thus, the VAE’s latent space promises to create new data, 
for example, RDF replicas. The term ‘variational’ comes from the close 

Fig. 1. The autoencoder is composed of the encoder and decoder associated 

with data conversion, such as [200,RDF]→50→25→12→
[
2, { h

→
}
]
→12→ 

25→50→[200,RDF′

]. Here RDF and RDF′ correspond to the input and output 

radial distribution functions, respectively, and { h
→
} denotes the bottle-neck 

hidden layer. For a given set of encoder and decoder, the neural network is 
optimized for about 14,000 trainable parameters, with maintaining maximum 
information when encoding and minimizing reconstruction error when decod
ing. Some information is lost during the encoding procedure and cannot be 
reconstructed when decoding. This is because AE is trained by the VAE learning 
process that uses a continuous representation in the latent space. The input RDF 
is encoded as a normal distribution in the latent space. 
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relationship between regularization and variational inference in statis
tics. In the VAE model, the distribution of latent variables is assumed in 
low dimensions, and a variational approach is used to find a normal 
distribution. With the encoder setting to Gaussian, VAE is built on top of 
neural networks. The encoder can be represented as a standard neural 
network by an activation function that maps the original data to the 
latent space [38]. The decoder then maps the latent space at the bottle- 
neck to the same output as the input. So VAE is also called self- 
supervised learning. Instead of learning a function, VAE learns param
eters in the probability distribution representing the data. New data can 
be generated by sampling from the latent z-space provided by VAE. The 
probability distribution of the latent vector better matches that of the 
training data compared to the standard AE. 

During the training process, we adopted two assumptions [37,38]: 
for a training set x→, data are generated using a directed graphic model 

pθ( x→| h
→
), and the encoder learns an approximation qϕ( h

→
| x→) to the 

posterior distribution pθ( h
→
| x→), where ϕ and θ denote the parameters of 

the encoder and decoder, respectively. We minimized the loss function 
of VAE, expressed as 

L(ϕ, θ, x→) = DKL

[
qϕ( h

→
| x→)||pθ( h

→
)
]
− E

qϕ( h→| x→)

[
logpθ( x→| h

→
)
]
. (3)  

The first term, Kullback–Leibler divergence [47], quantifies how much 
one probability distribution differs from another distribution. The prior 
distribution of latent variables is usually set to a centered Gaussian 

pθ( h
→
), which is isotropic in the latent space. In general, this regulari

zation is referred to as the problem of calculating the statistical distance 
between two statistical objects, such as probability distribution. The 
second term is given by an expectation value over the probability 

pθ( x→| h
→
). This reconstruction term relies on the fact that x→, which is 

extracted from the encrypted h
→

, should be well represented through a 
probability distribution. For a given input x→, the probability should be 

maximized such as x→
′

= x→ by minimizing the loss function, when 

sampling h
→

from the distribution qϕ( h
→
| x→) and then sampling x→

′

from 

the distribution pθ( x→| h
→
). The reconstruction term makes both encoding 

and decoding efficient, while the regularization term leads to a regularly 
organized latent space. 

Numerical calculations were performed using a deep learning li
brary, Keras [48], which is an advanced neural networks application 
programming interface, written in Python. This library can run on top of 
TensorFlow [49], CNTK [50], or Theano [51] and was developed to 
allow fast experimentation. We used ‘Binary-crossentropy’ and ‘Adam’ 
optimizer in Keras [48]. The step size, batch size, and other parameters 
in the optimizer did not significantly alter the self-supervised learning 
performance in the present experiment. A rectified linear unit was used 
for the activation function. The initialization of weights was based on 
the normal distribution function. We also ran a series of tests on 
changing the number of layers and the dropout probability of dropout 
layers, and found that the self-supervised learning process was very 
stable. 

The encoder consisting of artificial neural networks reduces the 
dimension of RDF information from 200 to 50, 25, 12, and finally 2, as 
illustrated in Fig. 1. Similarly, the decoder was designed with artificial 
neural networks that control the data flow, increasing the dimension 
from 2 to 12, 25, 50, and finally 200. Here the input dimension of 200 
was chosen as a parameter to discretize the radial distance and varies 
with the cut-off distance. We used a set of fully connected neural net
works. Neurons in each layer are connected to all activations in the 
previous layers. Thus their activations can be calculated with the 
matrix–vector multiplication followed by a bias offset. The total number 
of parameters in the neural networks is around 14,000. It was an easy 
optimization problem, so there was no difficulty in the training process. 

RDF replicas were created after the training was over. The generation 

of RDF replicas using VAE-trained networks is analogous to evolutionary 
algorithms, in which new configurations are generated via crossover and 
mutation. A neural network was used to learn a representation that maps 
samples from the input space to the latent z-space, where the distribu
tion of latent vectors is approximated by Gaussian. In fact, generative 
RDF replicas can be obtained from the trained model by feeding the 
reduced latent variables, z1 and z2, to the learned generative model. A 
variety of RDFs are needed to create multiple crystal structures as close 
as to the database. Thus, we chose various z-space distributions, based 
on the VAE, by introducing a controllable confidence interval in the 
Gaussian form. Using a 90% confidence interval in the Gaussian distri
bution, defined in the latent space, we were able to obtain various 
crystal structures with RDFs similar to those of the database. This pro
cedure is based on the capabilities of the VAE method in the latent space 
[29], such as interpolation between two points and RDF generation from 
one RDF to another RDF. Typically, new RDFs are made using random 
points in the latent space. Going one step further, points in the latent 
space are selected and then used as inputs or queries to generate specific 
RDFs. We can create a series of points on a linear path between two 
points. These points can be used to generate a series of RDFs repre
senting the transition between the two RDFs already known. In addition, 
these points can be kept in the latent space and used in simple vector 
arithmetic to create new points and then generate new RDFs. This 
strategy enables intuitive and targeted RDF generation. 

2.4. Generation of random crystal structures 

Fig. 2 shows the flowchart of the present calculations. After the RDF 
replicas were prepared, random crystal structures were independently 
generated and then their RDFs were compared with those of the data
base and replicas to examine the structural similarity. Random crystal 
structures with specific crystal symmetry and chemical compositions 
can be generated using the existing packages such as AMADEUS [10], 
AIRSS [11], RanSpg [52], and PyXtal [53]. 

In three-dimensional space, the symmetry of crystals can be 
described with the space groups. For a given crystal with a specific space 
group, atomic positions can be classified by Wyckoff positions [54]. For 
230 space groups, numerous crystal structures can be created by 
changing relative atomic positions. We used our own algorithm imple
mented in AMADEUS [10] to select possible combinations of Wyckoff 
positions. For given chemical compositions, a specific space group is first 
assigned and Wyckoff positions are randomly generated. Then, atoms 
are added to the unit cell according to the site symmetry. This procedure 
is repeated until all atomic positions satisfy the desired symmetry and 
chemical compositions. If an atom added to the unit cell is too close to 
the other existing atom, it is discarded, and a new combination of 
Wyckoff positions is generated using the minimum distance between 
atoms permitted by atomic radii for a given material. This condition is 
used to extract crystal structure and is already well embedded in the RDF 
function. Crystal structure generation was done using a stochastic 
approach that allows parallel computations for practical applications. 
Using a large number of directories, we explored simultaneously random 
crystal structures with the same input in each directory. We found that 
parallel efficiency was very high because communication between di
rectories was not used. Whenever a random crystal structure was 
generated, its RDF was immediately compared with those of the known 
database and replicas. 

Since the input RDF vector can be defined regardless of its chemical 
composition, our scheme can be applied to binary and ternary systems, 
etc. In material design using evolutionary algorithms, crossover and 
mutation operators are widely used and have been efficient in exploring 
vast crystalline structures. Because these operators often produce similar 
crystal structures with very close interatomic distances, similar trial 
solutions are adjusted by performing proper relaxation operations to 
ensure proper distances between adjacent atoms [6–10]. However, this 
adjustment is not required in the current approach that uses space 

I.-H. Lee and K.J. Chang                                                                                                                                                                                                                      



Computational Materials Science 194 (2021) 110436

4

groups and Wyckoff positions. 

2.5. First-principles calculations 

Our goal is to find new crystal structures that not only resemble 
known crystal structures, but also have relatively low energies. In this 
regard, our combined approach using the VAE method and RDF would 
be very useful because it filters out similar crystal structures prior to 
first-principles calculations. To select low-energy crystal structures and 
investigate their electronic properties, we performed additional first- 
principles calculations, in which the projector augmented-wave pseu
dopotentials were used [55], as implemented in the VASP code [56]. We 
employed the local density approximation (LDA) for the exchan
ge–correlation potential [57] within the density functional theory [58]. 
The energy minimization for given ionic positions was carried out by 
calculating the stress tensor [59–61] and Hellmann–Feynman forces 

[62–64]. Using a k
→

-point mesh with a grid spacing of 2π × 0.02 Å− 1, the 
iterative procedure was continued until all the forces were less than 
0.01 eV/Å. It should be noted that a high kinetic energy cut-off of 500 eV 
is required for accurate stress tensor calculations. Here the numerical 
accuracy of a few kbar was taken for stress calculations. 

3. Results and discussion 

3.1. Si allotropes 

For Si, 36 crystal structures are currently provided on the Materials 
Project database [44]. Based on the data space, we first created RDF 
replicas using a confidence interval of 90% in the Gaussian distribution 
in the latent space. With this variable parameter, we can generate 
various RDF replicas. The objective of the present VAE is to find a proper 
projection method that maps RDFs from a high feature space to a low 
feature space. Representing RDF in a low-dimensional space has an 
advantage in improving the encoding and decoding performance for 
crystal classification. In addition, in-depth AEs can exponentially reduce 
the amount of training data required for RDF learning. We used linearly 
spaced 15 coordinates for the latent variables, which are transformed 
through the inverse cumulative distribution function of the Gaussian. 
Despite multi-dimensions are possible, we chose the latent variables in 
two-dimensions, z1 and z2, each of which ranges up to 15, yielding 225 
RDF replicas. 

We checked the structural similarity between the database and RDF 
replicas by calculating Pearson’s distances. In the replica samples, the 
mean Pearson’s distance and standard deviation are estimated to be 
0.200 and 0.152, respectively, while the corresponding values of the 
database are 0.344 and 0.161. For the whole samples consisting of the 
database and replicas, the mean Pearson’s distance and standard devi
ation are 0.283 and 0.156, respectively. This result indicates that the 
replica RDFs are properly produced with a high degree of similarity. 

In Fig. 3, the loss function is plotted as a function of epoch for the 

training and validation sets, which are about 80% and 20% of the 
database, respectively. The validation set shows almost the same shape 
and features as the training set, verifying that the VAE model used well 
describes the RDFs of the untrained data. In Fig. 4, the energies of the 
known structures on the Materials Project database [44] are plotted in 
the two-dimensional latent space reduced by VAE. The energies of 
various Si allotropes relative to the cubic diamond structure in the 
database are color-coded. This plot is a good example of multi- 
dimensional scaling and exhibits an approximately linear relationship 
between the reduced latent variables, z1 and z2. Moreover, it shows the 
best pair of encoder and decoder that keeps maximum information when 
encoding and has minimum reconstruction error when decoding. 

Next we generated random crystal structures using crystal symmetry 
and Wyckoff positions for two unit cells containing 8 and 16 Si atoms, as 
introduced in Section 2.4. We chose the interatomic distances above 2.1 
Å and a tolerance of 10% for the crystal volume, e.g., 184 Å3 for the 8- 
atom unit cell. The RDFs of random crystal structure were compared 
with those of the database and replicas. The structural similarity was 
determined using a criterion of 0.13 for the Pearson’s distance, which 
ensures about 90% similarity. Compared with the RDFs of the known 

Fig. 2. The flowchart of the crystal structure search 
based on VAE is shown. VAE is used to generate the 
RDFs of arbitrary crystal structures similar to those of 
known crystal structures in a continuously defined 
space. VAE learns to map RDFs in the latent space and 
randomly generates new RDFs. Based on the RDFs 
from the database and VAE replicas, random sym
metrical crystal structures are explored through par
allel computations, each satisfying one of the 230 
space groups in three dimensions. Orange arrows in 
the flowchart indicate that computations can be par
allelized. Two cyanic diamonds represent judgment 
conditions in the calculation process. Two pink boxes 

labeled RDFs and replica RDFs make up the RDF set for the known crystal structures of the database and the VAE replicas, respectively. Two light green boxes 
represent the generation of random crystal structures and their RDFs, respectively.   

Fig. 3. The loss functions for the training and validation sets are plotted as a 
function of epoch. We choose 28 and 8 samples from the database of Si allo
tropes for the training and validation sets, respectively. In the loss function, the 
reconstruction term makes the encoding–decoding scheme efficient, while the 
regularization term makes the latent space regular. 
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database, replicas, and both, the relative proportions of selected crystal 
structures with similar RDFs but not yet fully relaxed were found to be 
22%, 33% and 45%, respectively, after 8 independent runs. This ratio 
depends on the training set selected in the VAE procedure, but in this 
way we can see whether any random structure is similar to that in the 

database or replica samples. In some cases, we found several crystal 
structures identical to the existing database, for example, cubic diamond 
Fd3m (No. 227), hexagonal diamond P63/mmc (No. 194), and mono
clinic C2/m (No. 12) phases. For a particular random structure with the 
space group P6/mmm (No. 191), its RDF is compared in Fig. 5 with that 
of the known crystal structure with the space group Im3m (No. 229), 
named mp-1072544 in the Materials Project database. The Pearson’s 
distance between the two RDFs is 0.100. 

To demonstrate the usefulness of RDF in exploring new crystal 
structures, we compare the distribution of total energies for three groups 
of random crystal structures in Fig. 6. In groups I and II, random crystal 
structures were selected using the RDFs in the database and replicas, 
respectively, while any RDF was not used in group III. Using the 8-atom 
cell, we chose 350 crystal structures in each group that meet the Pear
son’s distance criterion, and then fully optimized them through first- 
principles calculations. After full relaxations, the average variation in 
Pearson’s distances is 0.2 and the energies are lowered by an average of 
0.5 eV/atom. Among 36 known structures in the database, there are 16 
allotropes with the energies below 0.2 eV/atom relative to the cubic 
diamond phase, as shown in Fig. 6. We focus on the energy interval of 
0.05–0.20 eV/atom in the low energy region. In this energy segment, we 
found 14 crystal structures in groups I and II each, whereas 5 in group 
III. Many low-energy structures are missing in the random sampling 
approach, but the two methods that utilize the database and replica 
RDFs complement each other to find low-energy structures. We inves
tigated the novelty of the crystal structure by making a one-to-one 
correspondence between the crystal structures discovered in groups I 
and II. In the low energy region, three crystal structures found in group I 
were also found in group II. For other crystal structures, the mean and 
standard deviation of the Pearson’s distances are estimated to be about 
0.2 and 0.1, respectively, indicating that novel crystal structures can be 

Fig. 4. A two-dimensional representation is used to plot the distribution of 36 
known Si allotropes which are usually defined in a multi-dimensional crystal 
structure space. The relative energies (in unit of eV/atom) of allotropes with 
respect to cubic diamond Si [44] are color-coded. 

Fig. 5. The atomic structures of (a) one known crystal structure with the space group Im3m (No. 229) in the Materials Project database, (b) an arbitrary random 
crystal with the space group P6/mmm (No. 191), and (c) a fully optimized structure with the space group Cmmm (No. 65). The RDF of Im3m-Si (red solid line) is 
compared with those of (d) P6/mmm-Si and (e) Cmmm-Si (blue dotted line). The Pearson’s distances are calculated to be 0.100 and 0.525 for the unrelaxed and fully 
optimized geometries of the random crystal structure, respectively. 
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generated using replica RDFs. We point out that RDF is vulnerable to 
distinguishing space groups in a crystal structure because the space 
group can change when the crystal structure is optimized. However, out 
results show that RDF is useful to produce many random crystal struc
tures on a more continuous scale in the low energy region. 

We examined the electronic properties of the selected random crystal 
structures with energies below about 0.4 eV/atom relative to cubic 
diamond Si, and found both metallic and semiconducting crystals with 
various band gaps up to about 1 eV. Among new Si crystal structures, we 
focus on two specific crystals with the Cmmm (No. 65) and C2/m (No. 
12) space groups, called Cmmm-Si and C2/m*-Si, respectively. Through 
first-principles calculations, we obtained the Cmmm-Si allotrope by fully 
relaxing the atomic positions and cell shape of the random crystal 
structure with the space group P6/mmm (Fig. 5), which was first 
generated using only crystal symmetry and Wyckoff positions and then 
selected with the criterion of 0.13 for the Pearson’s distance. In a fully 
optimized geometry, the lattice parameters and Wyckoff positions of 
Cmmm-Si are given in Table 1. 

In Fig. 5, the RDF of Cmmm-Si is compared with that of the known 
mp-1072544 crystal in the Materials Project database, and the Pearson’s 
distance increases to 0.525, as compared to the value of 0.100 for the 
unrelaxed structure with the space group P6/mmm. It is interesting to 
note that Cmmm-Si is metallic due to the mixing of five- and sixfold 
coordinated Si atoms. Although Cmmm-Si is higher in energy by about 
0.35 eV/atom than cubic diamond Si, we found that Cmmm-Si satisfies 
six criteria for the mechanical stability of an orthorhombic structure, 

[65–67] maintaining its crystal structure even at ambient pressure. 
The atomic structure of C2/m*-Si is very similar to that of a C2/m-Si 

allotrope, named mp-1079297 in the Materials Project database, as 
shown in Table 1 and Fig. 7. The Pearson’s distance between C2/m*-Si 
and C2/m-Si is 0.102 for their fully optimized structures, and all Si 
atoms in both structures form tetrahedral bonds with the same space 
group C2/m. We found that the monoclinic crystal of C2/m*-Si satisfies 
twelve criteria for mechanical stability [65–67]. The energy of C2/m*-Si 
is slightly higher by 40 meV/atom than that of C2/m-Si, while its crystal 
volume is smaller with a density of 2.39 g/cm3, as compared to the 
density of 2.28 g/cm3 in C2/m-Si. Both the C2/m*-Si and C2/m-Si al
lotropes have the indirect LDA band gaps of 0.28 and 0.13 eV, respec
tively, and exhibit very similar RDF characteristics and X-ray diffraction 
patterns, especially at neighboring distances and small angles, as shown 
in Fig. 7. Recently, based on microexplosion experiments, two tetrag
onal (t32 and t32*) and two monoclinic (m32 and m32*) phases, similar 
to the BC8 structure, have been proposed on Si surface exposed to ul
trashort laser pulses [68]. We found that the C2/m*-Si allotrope is more 
stable by 3–10 meV/atom than these four phases. 

3.2. SnSe allotropes 

SnSe is an anisotropic thermoelectric material recently discovered 
[69,70]. For 8 known structures of SnSe on the Materials Project data
base [44], we created RDF replicas using the same VAE method and then 
generated random crystal structures for a supercell containing 12 for
mula units. We chose the minimal interatomic distances of 2.0, 2.1, and 
2.2 Å for the Sn-Sn, Sn-Se, and Se-Se bonds, respectively, and the unit 
cell volume of 686 Å3. Despite the small size of the database, many 
crystal structures were obtained on a somewhat continuous energy 
scale. Nevertheless, the database is too small for machine learning. To 
expand the database, we generated crystal structures with relatively low 
energies (< 0.1 eV per formula unit) through theoretical calculations for 

Fig. 6. The energies of 36 known Si crystal structures (red dots) on the Ma
terials Project database [44] are compared with those of crystal structures 
generated for a supercell containing 8 atoms. In the database, there are 16 low- 
energy allotropes with a variety of unit cells, such as 0.011 eV (4), 0.058 eV 
(68), 0.063 eV (46), 0.071 eV (16), 0.081 eV (40), 0.081 eV (46), 0.090 eV (24), 
0.097 eV (94), 0.101 eV (8), 0.111 eV (82), 0.121 eV (232), 0.125 eV (164), 
0.145 eV (58), 0.159 eV (16), 0.161 eV (24), and 0.179 eV (106), where 
numbers in parentheses represent the number of atoms per unit cell. The overall 
energy continuity of the target structures, generated using VAE and subse
quently fully optimized through first-principles calculations, matches well that 
of the database. In group I (blue diamonds), random crystal structures are 
selected using the RDFs of the known crystal structures in the database, whereas 
the replica RDFs are used in group II (green crosses). In group III (cyan tri
angles), crystal structures are randomly generated without using any RDF. In 
each group, 350 crystal structures are chosen and fully optimized through first- 
principles calculations. 

Table 1 
Lattice parameters and Wyckoff positions for three Si allotropes, Cmmm-Si, 
C2/m-Si, and C2/m*-Si.  

Allotrope a (Å) b (Å) c 
(Å) 

α (◦)  β (◦)  γ (◦)  Wyckoff 
positions 

Cmmm-Si 8.21 6.59 5.20 90.0 90.0 90.0 4 l mm2 (0, 
0.50000, 
0.75536)        
8 m ..2 
(0.25000, 
0.25000, 
0.72747)        
4 g 2 mm 
(0.86311, 
0.00024, 
0.99999)  

C2/m-Si  13.73 3.82 6.29 90.0 83.3 90.0 4 i m (0.94460, 
0, 0.87347)        
4 i m (0.44097, 
1.00000, 
0.65322)        
4 i m (0.78744, 
0, 0.05727)        
4 i m (0.27303, 
1.00000, 
0.58547)  

C2/m*-Si  3.77 16.56 6.93 90.0 133.7 90.0 4 i m (0.08137, 
0, 0.86120)        
8 J 1 (0.07598, 
0.87869, 
0.36283)        
4 g 2 (0.00029, 
0.29131, 
0.00058)  
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a unit cell containing 4 formula units using the design code AMADEUS

[10]. We selected 50 reference crystal structures and searched for 
random crystal structures for a supercell containing 8 formula units, as 
shown in Fig. 8. Similar to the results of Si, we found a variety of crystal 
structures with nearly continuous energies in a low-energy window 
below 0.01 eV per formula unit. 

4. Conclusion 

We have developed a way of finding random crystal structures 
similar to the known crystal structures on the database using the ma
chine learning technique. The strategy for crystal structure search is as 
follows: First, the radial distribution function is used as a one- 
dimensional representation of crystal structures. Second, the Pearson’s 
distance between two radial distribution functions is defined as a mea
sure of similarity between two corresponding crystal structures. Third, 
the variational autoencoder is used to determine the overall character
istics of the known crystal structures and to generate various replicas 
with similar RDFs. Finally, for given chemical compositions and cell 
volume, random crystal structures are independently generated using 
the crystal symmetry and Wyckoff positions, and then a set of new 
crystal structures are selected by directly comparing with the RDFs of 
the database and replicas. Since the RDF is used, this is an indirect 
approach of searching for arbitrary crystal structures, in which a direct 
representation of crystal structures is avoided in the continuous space. 
Our approach can be extended to a conditional material design that 
generates a new crystal with the structural characteristics predesignated 
from the known crystals. If the database provides a limited set of allo
tropes, our VAE method has difficulty in finding new crystal structures 
that are completely different from the data set. Nevertheless, our 
approach has been shown to be very efficient for exploring unknown 
low-energy crystal structures using only information on the interatomic 
distance and Pearson’s distance based on radial distribution function. 

Data availability 

The data that support the findings of this study are available from the 
corresponding author upon reasonable request. 
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Fig. 7. Atomic structures of (a) C2/m-Si and (b) C2/m*-Si. Black solid lines represent the primitive unit cell. The (c) RDFs and (d) X-ray diffraction patterns of 
C2/m-Si and (b) C2/m*-Si are compared. 

Fig. 8. The energies of 8 known SnSe crystal structures (red dots) on the Ma
terials Project database [44] and 50 low-energy allotropes (dark brown dots) 
generated using the AMADEUS code [10] are compared with those of randomly 
generated crystal structures for two different cells containing 8 (green dots) and 
12 (blue dots) formula units. The overall energy continuity of the target 
structures, generated using VAE and subsequently fully optimized through first- 
principles calculations, matches well that of the database. 
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