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Abstract
How does social distancing affect the reach of an epidemic in social networks? We
present Monte Carlo simulation results of a susceptible–infected–removed with social
distancing model. The key feature of the model is that individuals are limited in
the number of acquaintances that they can interact with, thereby constraining dis-
ease transmission to an infectious subnetwork of the original social network. While
increased social distancing typically reduces the spread of an infectious disease, the
magnitude varies greatly depending on the topology of the network, indicating the
need for policies that are network dependent. Our results also reveal the importance
of coordinating policies at the ‘global’ level. In particular, the public health benefits
from social distancing to a group (e.g. a country) may be completely undone if that
group maintains connections with outside groups that are not following suit.
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1 Introduction

How does social distancing affect the reach of an epidemic such as COVID-19 (Coro-
navirus Disease 2019) in social networks? To address this question, we consider the
idealised problem of the susceptible–infected–removed (SIR) epidemic model (Ker-
mack andMcKendrick 1927) in the presence of temporary social distancing constraints
placed on the members of a society.

Our susceptible–infected–removed with social distancing model (SIRwSD model)
is easily understood.As is standard, the vehicle that an infectious disease uses to spread
is a contact network: a graph, G, where vertices represent people and an edge between
two vertices i and j captures the idea that person i and person j came into contact in
such a way that the disease might pass between them.1 A social distancing policy is
described by a function κ , defined on the set of vertices ofG, that constrains the number
of neighbours that each person may come into contact with.2 At any moment in time,
the contact network G and social distancing policy κ together generate an infectious
subnetwork. Since the social distancing policy κ temporarily deletes a subset of edges
from G, there are simply less avenues along which the disease may be transmitted.

We run Monte Carlo simulations comparing the reach of the disease when there is
no social distancing with that when social distancing measures are imposed.3 These
comparisons are performed on three types of well-studied networks: the ‘random
graphs’ model of Erdős and Rényi (1959) and Gilbert (1959) (hereafter, ERG), the
‘small world’ networks of Watts and Strogatz (1998) (hereafter, WS), and the ‘scale-
free’ model of Barabási and Albert (1999) (hereafter, BA).4

We begin by focusing on two main questions for the constrained and unconstrained
case: (i) What is the likelihood that an infectious disease will become endemic? (ii)
What is the distribution of the peak infection rate over the lifecycle of the epidemic?
The reason for focusing on (i) is that the level of herd immunity attained is an important
policy tool in knowing how, when, and by how much social distancing measures can
be relaxed. The reason for focusing on (ii) is that the peak infection rate corresponds
to the most overloaded instance that a healthcare service encounters over the lifecycle
of an epidemic. Success in both the above dimensions is not simultaneously possible
because as one goes up the other goes down. Our results help to guide what the relative
trade-offs are.

While the spread of an epidemic is curtailedwhen all individuals in a society face the
same constraints, the reduction varies greatly depending on the topology of the social

1 Themodelling epidemics on networks iswell-established. See for examplePastor-Satorras andVespignani
(2001) and Moreno et al. (2002). Kiss et al. (2017) is a recent textbook treatment.
2 Note that by ‘social distancing’ we mean limiting the number of social interactions in which an individual
partakes. We do not mean individuals maintaining a predetermined physical distance throughout a social
interaction as is sometimes intended. Our measure is adapted from the game-theoretic model of Netflix
Games (Gerke et al. 2019; Gutin et al. 2020). There, the purchaser of a product may only share with a
limited number of friends. Here, the carrier of an infectious pathogen is limited in the number of friends
that they may interact with.
3 All replication files are available at https://github.com/alexisakira/COVID19_network.
4 To ensure we are comparing like-for-like, we fix it such that all networks are connected and possess the
same average degree. This means that it is the way in which the societies are organised, and not the overall
level of interaction, that is being varied.
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Table 1 Effectiveness of non-pharmaceutical interventions in networks

Network Variable Nmax

∞ 1 2 3 4 5 10

ERG Peak 26.5 3.4 7.7 13.9 18.7 19.5 20.7

Std.(Peak) 2.8 7.4 10.7 11.4 8.9 6.1 2.5

Med.(Peak) 26.6 1.0 1.2 20.9 22.0 20.8 20.7

Removed 87.1 10.2 25.8 50.1 70.1 78.8 83.5

Peak | Immunity 26.6 25.1 24.7 23.6 22.8 21.1 20.7

Herd immunity 99.7 10.3 28.2 56.9 80.9 92.4 99.7

WS Peak 14.5 1.9 3.5 5.1 7.3 8.8 13.3

Std.(Peak) 2.8 3.2 4.8 5.4 5.3 4.6 2.6

Med.(Peak) 14.5 1.0 1.1 1.5 8.9 10.1 13.3

Removed 82.9 7.5 18.0 29.7 46.3 59.8 81.5

Peak | Immunity 14.6 12.6 12.6 12.2 11.7 11.3 13.4

Herd immunity 99.4 7.2 19.9 33.5 54.8 72.1 98.7

BA Peak 28.7 4.0 8.1 13.8 18.2 18.9 13.0

Std.(Peak) 2.5 8.4 11.4 12.0 9.3 6.2 2.6

Med.(Peak) 28.7 1.0 1.2 20.3 21.6 19.9 12.7

Removed 80.7 10.4 23.6 43.3 60.9 69.8 66.1

Peak | Immunity 28.7 27.1 26.2 24.6 22.8 20.4 14.1

Herd immunity 99.9 11.5 28.2 54.1 78.6 89.7 49.2

Peak” is the mean peak infection rate (%). ‘Std.’ and ‘Med.’ are the standard deviation and median of peak
infection rates across 1000 simulations. ‘Removed’ is the fraction (%) of population removed (recovered)
by the end of the epidemic. ‘Peak | Immunity’ is the mean peak infection rate conditional on acquiring
herd immunity. ‘Herd immunity’ is the fraction of simulations (%) in which herd immunity was acquired

network. For all three social network structures, ERG, WS, and BA, that we consider,
strong measures of social distancing (limiting everyone’s daily interactions to 3 or
fewer) stops an epidemic with high probability (see Fig. 3). However, for societies
structured according to WS, the fraction of individuals who are in state R (‘removed’)
after the epidemic has passed is much less over this range (see rows labelled ‘Herd
Immunity’ in Table 1). Moderate social distancing (defined as 4–5 interactions per
period) delays the peak of an epidemic but has little effect on the size of the peak and
on the number that the disease ultimately reaches. The effect of mild social distancing
(limiting individuals to 10 social interactions) differs greatly across network structures.
With ERG networks, the effect is negligible. With WS networks, the outcome is the
same as no intervention. With BA networks, the peak is significantly reduced.

While we begin with comparing the outcomes of no social distancing with those
to social distancing, our framework is flexible enough to address a host of other
policy experiments. For example, we consider a network comprised of two densely
connected components, interpreted as ‘countries’, that have a small number of con-
nections between them that we interpret as international friendships. We show that
the public health benefits to a country that imposes strong social distancing measures
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are dramatically reduced, and perhaps eradicated entirely, if that country continues
to allow international connections, interpreted as maintaining open borders, with a
country that is not implementing similar measures. In a hyper-connected world, this
points to the need for ‘global’ cooperation to eradicate an epidemic. In particular, if
the global approach is uncoordinated with each country unilaterally applying social
distancing measures without taking into account the policy choices of its neighbours,
then an infectious disease may cycle around for far longer than otherwise desired.

We also consider what happens when a subset of individuals are deemed ‘essential
workers’ who can go about their lives facing weaker social distancing constraints
than the rest of the population. Our results show that even if only a small fraction
of the population is deemed essential, the reach of the epidemic is similar to that
wherein there are no essential workers. Finally, we consider another policy tool: time.
Specifically, we consider a policy that begins with severe social distancing measures
that are incrementally relaxed over time, and compare the outcome with that from a
policy of mild but constant social distancing over a shorter window. We find that the
public health outcome is better under gradual relaxation for ERG networks and WS
networks, but worse for BA networks.

We conclude the paper by discussing how it fits in the literature and by suggesting
some extensions to our framework that can be implemented in future work. How-
ever, we emphasise that the framework of this paper considers the benefits to social
distancing when it is the only policy tool available. Clearly, this is not realistic. In
tackling real-world epidemics, policy makers have an array of tools available. For
practical purposes, governments need to understand how the many different epidemic
management policies complement each other. This paper is about one such policy tool
in isolation, but given its tractability, we hope that it can be incorporated into richer
models.

2 Themodel

Modelling how an infectious disease might spread through a population is done using
a contact network: an undirected graph, G = (V , E), where V is the set of vertices,
and E is the set of edges. Vertices represent individuals and an edge between two
distinct vertices i and j captures the idea that these two people are acquaintances and
meet in such a way that the disease may be transmitted from one to the other.

We assume throughout that G is connected. The neighbourhood of vertex i in G is
denoted N (i) and its degree is denoted d(i) = |N (i)|. The capacity of G is a function
κ : V → Z≥0. This capacity function κ is our measure of social distance. A contact
network G and social distancing policy κ together generate an infectious subnetwork,
Gκ . Intuitively, the policy κ restricts the number of neighbours that each vertex can
interact with, which will in turn cap the number of neighbours to whom any infected
person can transmit the disease in a given period.5

5 Themathematicalmachinery underpinning ourmodel is adapted from the game-theoreticmodel ofNetflix
Games introduced in (Gerke et al. 2019; Gutin et al. 2020). In a Netflix Game, each individual can be a
Driver, D, who purchases Netflix, or a Passenger, P , who free-rides on the purchase of neighbours, and
the capacity function determines how many neighbours a Driver may share with. The Nash equilibria of a
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Our SIRwSDmodel then operates as follows. Everyone in the population is currently
in one of three states: susceptible (S)—has not had the disease and is therefore at
risk; infectious (I )—currently has the disease and may therefore pass the disease to
others; removed (R)—has had the disease and is no longer infectious (may be immune,
isolated, dead, etc.). Time is discrete, starts at t = 0, and goes forever. Let Sit , Ii t ,
Rit ∈ {0, 1} be the status of individual i at time t , where 1 means being that status and
0 means not being that status. (Clearly, Sit + Ii t + Rit = 1 for all i ∈ V and all times
t .) In every period, each infected vertex i randomly selects κ(i) of its neighbours,
and, if any of the selected neighbours are in state S, then they become infected with
probability β ∈ (0, 1).6 The probability of removal (moving from state I to state R)
is denoted by γ ∈ (0, 1). We assume that γ is constant over time and is the same for
everyone. Once an individual enters state R, he stays there forever more. We say that
the system has stopped when there is no individual in state I .7,8

To illustrate how social distancing works in practice, we refer to Fig. 1. This figure
can be thought of ‘zooming in’ on the local neighbourhood of individual � who has 4
neighbours in the contact network. The leftmost image shows precisely this. The next
three images illustrate what transpires when a social distancing policy with κ(�) = 2
is imposed for three periods, with period t = 1 being the first period in which the
policy takes effect. In each period t = 1, 2, 3, individual � randomly selects two of
their four neighbours to interact with. The interactions that occur are depicted by solid
lines while those that don’t occur are depicted by dashed lines. For the realisation
depicted, � interacts with neighbours h and k in period 1, with neighbours i and k
in period 2, and with neighbours h and i in period 3. Note that � never encounters
neighbour j under this realisation. Thus the disease being transmitted (directly) from
� to j is impossible while social distancing is in effect but would be possible without.

It is now straightforward to visualise how the SIRwSD model operates by extrap-
olating from what transpired in the neighbourhood of � in Fig. 1 to the entire contact
network G. Assume the social distancing policy is given by κ , that it starts in
period 1 and is in effect for T periods. Denote the infectious subnetwork in period
t ∈ {1, . . . , T } by Gκ

t . For the duration of the policy, the capacity constrained SIR

Footnote 5 continued
Netflix Game are characterised by a novel kind of spanning subgraph referred to as D P-Nash subgraph.
In the current environment, the capacity function dictates how many neighbours each individual may visit
on a daily basis when a social distancing measures is in place.
6 A few things to note. First, technically we should write that vertex i selects min {κ(i), d(i)} neighbours
since a vertex cannot select more neighbours than it has. Second, note that the model reduces to the standard
networked SIR model when κ(i) = d(i) for all i ∈ V . Third, when 0 ≤ κ(i) < d(i) for some i ∈ V , there
are

(d(i)
κ(i)

)
ways for i to select a subset of neighbours of size κ(i). We assume a uniform distribution over the

likelihood of choosing each subset of neighbours which implies no individual has a ‘favoured neighbours’.
This can of course be relaxed.
7 There are continuous-time versions of the SIR model. In such environments, the parameters β and γ are
interpreted as rates or flows and are not probabilities constrained to lie in (0, 1). Of course, when running
simulations, one must discretise these continuous-time models.
8 The majority of theoretical papers on disease spread on networks focus on scenarios in which the disease
will become endemic with probability 1 or will die out with probability 1. Lančić et al. (2011) categorise
where in (β, γ ) space both these events occur with positive probability.
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Fig. 1 The social distancing policy Nmax = 2 in effect for three periods

model is simply an SIR model operating on the sequence of infectious subnetworks{
Gκ

1 , Gκ
2 , . . . , Gκ

T

}
.9

This concludes the discussion of our SIR with Social Distancing model. Since the
state of the system at any time t is given by {(Sit , Ii t , Rit )}i∈V , all that is required
to run simulations are to specify the environment, social distancing policy, and initial
condition. This requires disease parameters β and γ , a graph G, a sequence of capacity
functions {κ1, κ2, . . . , κT }, and initial condition {(Si0, Ii0, Ri0)}i∈V . With all this, the
capacity constrained SIR model is a well-defined stochastic process that is easily
simulated.

3 Simulation parameters

We run simulations on the capacity constrained SIR model described above for three
different types of graphs: ERG,WS, and BA.Wemodel one period as a day to calibrate
network and epidemic parameters.

3.1 Network parameters

We briefly review how each kind of graph is generated and the graph-parameters
required to render them like-for-like. (See Footnote 4.)

Erdős and Rényi (1959) and Gilbert (1959) These networks are often referred to
simply as ‘random graphs’. Begin with the n vertices and an empty edge set. Now,
for every pair of distinct vertices i and j , form edge i j with fixed probability p. The
expected number of edges in the resulting graph is 1

2n(n − 1)p, because there are(n
2

) = 1
2n(n − 1) potential edges and each edge is realised with probability p.

Watts and Strogatz (1998) The resulting network is often referred to as a ‘small
world’. Begin with the n vertices connected in a ring lattice where each vertex has k
neighbours to the left and k neighbours to the right, where k � n. Proceed clockwise
around the ring one time, and for each vertex, rewire every edge that it has with the
k vertices immediately to its right with rewiring probability q. Note that since the net
change in the number of edges is zero, the number of edges in the resulting graph
remains exactly nk, because each vertex has 2k neighbours and each edge is counted
twice.

9 Here, we have assumed that the policy is constant over the window {1, . . . , T }. If the policy is allowed
to vary with time, as in Sect. 5.3, we simply get a sequence of policies indexed by time, {κ1, κ2, . . . , κT }.
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Barabási and Albert (1999) The resulting network is often referred to as ‘scale
free’. Begin with a complete graph on m0 � n vertices and allow time to increment
forward from t = 1 to t = n − m0. At each point in time, a new vertex is born and
the newly born vertex forms one edge with m ≤ m0 of the existing vertices, where
the probability that the newly born vertex connects to existing vertex i is given by
d(i)/

∑
j d( j). In total n − m0, new vertices are added so the number of edges in the

resulting graph is always exactly 1
2m0(m0 − 1) + m(n − m0).

We choose to equalise average degree, d̄ , across all network types. This ensures
we are comparing like-for-like since it is the way in which the societies are organised,
and not the overall level of interaction, that is being varied. Given that the number of
edges in each graph will be nd̄/2, some straightforward algebra yields the following

parameter requirements: p = d̄
n−1 for ERG, k = d̄

2 for WS, and m = nd̄−m0(m0−1)
2(n−m0)

for BA.
In each network, we fix the number of vertices to be n = 1000 and set d̄ = 10.10

Such a choice requires setting the ERG parameter p = 0.01. For WS, we choose
rewiring probability q = 0.1, which is relatively standard, and k = d̄/2 = 5. For the
BA network, for simplicity we set m0 = 1, and round up m so that m = d̄/2 = 5.

3.2 Epidemic parameters

In the absence of a cure, the removal probability γ is a biological parameter determined
by the infectious disease. Through contact tracing in Wuhan, China, Li et al. (2020)
estimate the mean serial interval for COVID-19, which corresponds to 1/γ , to be
7.5 days. We round γ to the first significant digit and set γ = 0.1. To calibrate β,
we proceed as follows. Since average degree is d̄ , an infected individual will infect
βd̄ others in one period and on average βd̄/γ over the infectious period when social
distancing is unconstrained. The expression βd̄/γ must equal the basic reproduction
numberR0 of the infectious disease, which is estimated to be around 3 in Toda (2020)
for COVID-19.11 Given our choice of d̄ = 10 and γ = 0.1, we have that β = 0.03.
Finally, we initialise the system by setting each vertex to state I with probability
y0 = 0.01 (so that, on average, each trial starts with 1% of the population infected).

Toverify that our calibrationof the transmissionprobabilityβ is correct,we simulate
the effective reproduction number Rt in our social network model. In the classical
SIRmodel ofKermack andMcKendrick (1927) (in continuous-time and homogeneous
interaction), the evolution of the fraction of infected agents yt satisfies the differential
equation

ẏt = βxt yt − γ yt = γ (βxt/γ − 1)yt = γ (Rt − 1)yt , (1)

where β > 0 is the transmission rate, γ > 0 is the recovery rate, xt ∈ [0, 1] is the
fraction of susceptible agents, and Rt = βxt/γ is called the effective reproduction

10 Zhaoyang et al. (2018) find that the average number of daily interactions for adults is 12 although it
varies with age. Our choice of d̄ = 10 is made so as to be in line with this.
11 These epidemic parameters may change with the accumulation of new scientific knowledge. Some of
the parameters are updated at the Center of Disease Control and Prevention (CDC) website at https://www.
cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. As of September 2020, the best estimate of
R0 is 2.5, with a possible range of 2.0–4.0.
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Fig. 2 Median effective
reproduction number

number. Dividing both sides of (1) by yt > 0, after some algebra we obtain

Rt = 1 + 1

γ

d

dt
log yt . (2)

Using the analogy from (2), in our discrete-time model, we may define the effective
reproduction number by

Rt = 1 + 1

γ
(log yt − log yt−1) = 1 + 1

γ
log

yt

yt−1
. (3)

Figure 2plots themedian effective reproduction number (3) across 1000 simulations
described below for each network type. Consistentwith our construction, the simulated
effective reproduction number is close to the theoretical valueR0 = 3 at the beginning
of the simulation. Therefore, we confirm that we are comparing networks like-for-
like.12

4 Simulation results

While a social distancing measure κ may assign individual-specific constraints, in this
section we will assume that it does not.13 This allows us to abuse notation somewhat
by simply writing Nmax for the maximum number of neighbours that each individual
will interact with.14

We allow the social distancing measure Nmax to take values in the set
{1, 2, 3, 4, 5, 10,∞}, where the value ∞ denotes the standard SIR model (i.e. our
model without any constraints). Lastly, unless otherwise stated, we suppose that the
social distancing measure starts in period 1 and is lifted from period 51 onwards.

12 We thank an anonymous referee for bringing this important point to our attention.
13 Many interesting policy experiments stipulate that different individuals face different social distancing
constraints. We study one such scenario in Sect. 5.2 and propose others in Sect. 6.
14 Caveat: as per Footnote 6, when we say that ‘all vertices face constraint Nmax’, in actuality every vertex
i is assigned capacity κ(i) = min {Nmax, d(i)}.
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Figure 3 contains six panels organised in a 3 × 2 format. The first row refers to ERG
networks, the second to WS networks, and the last row to BA networks.

The left panel in each row presents results of four single trials where the trials are
distinguished by the value of Nmax = 2, 5, 10, and ∞ (we choose not to present all
values of Nmax as the resulting image is too cluttered). The horizontal axis is time
and the vertical axis is infection rate in the population. The vertical line at t = 50
represents the lifting of the social distancing restriction.

The right panel in each row presents a histogram of peak infection rates computed
from 1000 simulations of the type shown in the left panel. To see the connection
between the two panels, we note that each left panel provides one data point for the
right panel. To further cement understanding, note that in the left panel of theWS row,
the peak infection rate for Nmax = 2 trial is greater than that for the Nmax = 5 trial.

We begin with the left panels referring to individual trials. For the ERG and BA
networks, the social distancing measure of Nmax = 2 eradicates the epidemic within
the 50-period window. Note however that the Nmax = 2 trial does not eradicate the
epidemic for the WS network. For each of the three network structures, the trial with
moderate social distancing, Nmax = 5, delays the peak of the epidemic but has lit-
tle impact on the size of the peak. The effect of mild social distancing, Nmax = 10,
differs across network structures. With a random network (ERG), the effect is mild.
With a small-world network (WS), the outcome appears equivalent to no intervention
(Nmax = ∞). This is because in the WS network, each agent has d̄ = 10 neigh-
bours, so the restriction Nmax = 10 does not bind. (The histograms differ only due
to sampling error.) With a power law network (BA), the peak is significantly reduced.
This is because in the BA network there are a small number of individuals with very
high degree. So, since many of the edges of the contact network have a high degree
individual at one end, the same holds true for the infectious subnetwork regardless of
what it may be. This means that these ‘hubs’ are very likely to become infected even
under social distancing. However, due to social distancing, an infected hub infects
nowhere near as many as when there are no constraints. These hubs no longer act as
‘super-spreaders’.

While the findings in the left panel of Fig. 3 are illustrative, they represent only
a single trial and may not be representative. As such, to evaluate the robustness,
we now turn our attention to the panels in the right-hand column. Here, each panel
presents histograms of the peak infection rate attained in 1000 trials for a given network
type (four histograms on each graph—one for each of the same measures of social
distancing as in the left panels).15 For all three network structures, setting Nmax = 2
eradicates the disease in ∼ 70% of the trials. We note that the empirical frequency
distribution of peak infection is bimodal for the value Nmax = 2 with the lower mode
corresponding to the epidemic being eradicated. Setting Nmax = 5 eradicates the
disease in slightly more than ∼10% of the trials of the WS networks and even less for
ERG and BA. Setting Nmax = 10 almost never eradicates the disease for any kind of
network. Setting Nmax = ∞ never eradicates the disease for any kind of network.

15 We consider peak infection rate as it captures theworst-case scenario. This has been cited as a particularly
important measure in the COVID-19 epidemic where it is often the excess numbers of sick individuals that
strain a healthcare system (limited numbers of intensive care beds, ventilators, and personal protective
equipment for medical professionals) that can be as important an issue to public health as any other factor.
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Fig. 3 Results for one trial (left) and 1000 trials (right)

Conditional on the disease not being eradicated, the distribution of peak infection
rate is the same as no intervention for ERG and WS. This is because the epidemic
restarts after the lifting of social distancing measures. However, for the BA network,
conditional on the disease not being eradicated the distribution of peak infection rate
for Nmax = 5 is sandwiched between that of Nmax = 10 and Nmax = ∞. At first
glance, this may appear mysterious but in fact it is not. The explanation is that the
distribution of peak infection rate presented says nothing about the precise moment,
during a particular trial, that the peak infection rate was attained. For Nmax = 5, the
peak infection rate will typically occur after the social distancing restrictions have
been lifted (as can be seen for the trial in the left panel of ERG), but this is not the
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case for Nmax = 10. For BA networks, it would appear that setting Nmax = 10 is a
superior policy to the policy to setting Nmax = 5.

Table 1 presents further results. The variable ‘Peak’ denotes the peak infection rate.
‘Std.’ and ‘Med.’ denote its standard deviation and median, respectively. ‘Removed’
denotes the fraction of population that was removed (has recovered) by the end of the
epidemic, which also equals the cumulative number of infections. Letting T denote
the last period before the system stops, we say that the society has acquired herd
immunity if βd̄xT ≤ γ , where xT is the fraction of susceptible individuals at time
T . This condition roughly says that a new infection no longer causes an exponential
growth in cases. (See Toda 2020 for a discussion.) The variable ‘Herd immunity’
denotes the fraction of simulations in which herd immunity thus defined has been
acquired.

As can be seen from Table 1, there is a trade-off to be made between acquiring herd
immunity and keeping the peak low. Inmost specifications, the probability of acquiring
herd immunity and the average peak are both increasing in Nmax. This suggests that
drastic social distancing policies are fragile in the sense that while they tend to contain
the disease, it is less likely to achieve herd immunity and the society is susceptible to a
recurrent epidemic. Furthermore, note that the variable ‘Peak | Immunity’ (meaning
‘average peak conditional on herd immunity being attained’) is decreasing in Nmax.
This shows that when the disease control has failed, the peak is actually worse (higher)
under more strict social distancing policies.

Perhaps the most surprising result in Table 1 is the value of the variable ‘Herd
immunity’ for BA networks when Nmax = 10. The value it takes is 49.2, which is
considerably less than the value it takes when Nmax = 5. The reason for this is that
when Nmax = 10, the potential ‘super-spreaders’ (those with very high degree) are
more likely to become infected during the social distancingwindow thanwhen Nmax =
5. But given the vertices with high degree become infected during the measures, they
are likely to be recovered when the social distancing restriction is lifted. As such, these
vertices do not maximise their reach.

In summary, choosing a small Nmax such as Nmax = 1, 2 reduces the peak but
prevents building herd immunity, which makes the society susceptible to further epi-
demics. Choosing an intermediate Nmax such as Nmax = 3, 4, 5 does not necessarily
reduce the peak, while mildly preventing herd immunity. Choosing Nmax = 10 gen-
erally reduces the peak infection rate and achieves herd immunity.

5 Policy issues

Our set-up is sufficiently flexible that we can address a wide range of policy issues. In
this section, we discuss some extensions and present the results.

5.1 Tackling epidemics requires ‘global’ cooperation

Suppose there are two countries, Country A and Country B. Each country has a
population of n individuals, and when viewed in isolation each country forms its
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own connected network. Suppose further that every pair of individuals from different
countries are randomly connected with fixed probability 1/(10n), and we interpret
connections of this form as international relationships. (We choose a low value so that
in expectation only a very small minority of each individual’s interactions are with
foreigners.)

For the simulations, we set n = 1000 and d̄ = 10 for each country, and we assume
that both countries have the same social structure (both ERG, both WS, or both BA).
We use the same values for β, γ , and initial infection probability y0, as before.16

However, instead of assuming that temporary social distancing measures are imposed
on everyone as in the simulations of Sect. 4, we now suppose that Country A levies
social distancingmeasureswhileCountry B imposes nomeasures of any kind. Figure 4
depicts the simulation results for one trial of the infection rate in both countries as a
function of time for the range of different social distancing measures in Country A
given by Nmax = 2, 5, 10, and ∞.

Figure 4 contains six panels organised in a 3× 2 format. As with Fig. 3, the panels
in a given row correspond to different network structures: the first refers to ERG
networks, the second to WS networks, and the last row to BA networks. Within a
given row, the left panel presents time-varying infection rates for Country A of four
separate simulations differing across social distancing measures (Nmax = 2, 5, 10,
and ∞). The vertical line at t = 50 represents the lifting of the social distancing
restriction. The right panel in each row is the corresponding time-varying infection
rate for Country B during the same simulation.

The interesting comparison to make is the results for Country A above with that of
the single country results in the left panels of Fig. 3. Compared to the case with one
country, it is clear that social distancing is less effective because newcases are imported
from foreign countries. And this holds even for the strict nearly-full-lockdown social
distancingmeasure of Nmax = 2.Note that this occurs despite the fact that the expected
degree for vertices in Country A has increased by the seemingly negligible amount of
0.1.

These simulation results highlight the need for policies designed to tackle the
COVID-19 epidemic to be coordinated at the global level. To give an extreme exam-
ple, imagine a large body of interconnected individuals who live in different regions
with no barriers to moving between regions (this is precisely with countries within the
Schengen area of the European Union and states within the USA). If one region has
weaker social distancing measures than all the others while maintaining connections
to them, this one region can impose large negative externalities on the others, perhaps
even completely wiping out the benefits one region’s strict measures.

16 We assume that in both countries 1% of individuals are infected. Of course, it is possible to address a
host of other related questions. An example would be, ‘Suppose x%of individuals in Country A are infected
while nobody in Country B is infected. What then is the lowest value of x such that if x% of individuals in
Country A are infected then the reach of the epidemic will be both Country A and Country B?’.
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Fig. 4 Epidemic dynamics with two countries

5.2 Essential workers

Suppose that some fraction of individuals are deemed ‘essential workers’ who face
different social distancingmeasures to everyone else.As a numerical example, suppose
a random 10% of the individuals in the population are essential workers, and the social
distancing policy is far more lax for these individuals, specifying Nmax = 10 over the
entire duration.

Figure 5 contains two panels. In both panels, 10% of individuals are randomly
designated as essential workers and assigned Nmax = 10. The left panel shows the
outcomes of one trial for each network type, wherein 1% of all individuals are initially
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Fig. 5 Epidemic dynamics with essential workers

infected and the 90% of individuals who are non-essential have Nmax = 2. The right
panel is similar except the 90% of individuals who are non-essential have Nmax = 5.

In comparing the graph from each panel with the corresponding appropriate panel
from Fig. 3, it is clear that there is only a minor difference from the benchmark case
where there are no essential workers. As such, if only social distancing measures were
employed, they would not be very effective in curtailing the spread of the disease
unless extremely strict measures are imposed on those who are deemed not essential.
This seems highly relevant to the COVID-19 pandemic given that in a recent paper,
McCormack et al. (2020) used the Public UseMicrodata Sample of the 2018American
Community Survey (ACS) to estimate that one in every three jobs in theUSA is deemed
essential.

5.3 Gradual relaxation of social distancing

In tacklingCOVID-19,many countries introduced a ‘tier structure’ ofmeasures, where
higher tiers correspond to stricter social distancing. This raises two natural policy
issues: (i) How many tiers should there be? (ii) When should a region be permit-
ted/forced to move down/up a tier? While the second policy allows governments to
respond in real time in the event of getting a bad draw, the first policy of where to
place the various tiers needs to be decided in advance. Implicitly, both these policies
are exploiting time-varying mitigation strategies.

As an example, we consider the outcomes of two different ‘tiered’ policies. They
are,

Policy A: Start with severe social distancing, Nmax = 2, for 10 days, then increment
Nmax by 1 every 10 days stopping when Nmax = 10. After this 90-day
window, all social distancing restrictions are lifted.

Policy B: Start with mild social distancing, Nmax = 10, and keep in place for 50 days.
After this 50-day window, all social distancing restrictions are lifted.

Policy B above is identical to that which has already been considered (the results
can be seen in Fig. 3 and Table 1). Figure 6 presents simulation results from one trial
of Policy A for each network type.
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Fig. 6 Epidemic dynamics with
gradual relaxation of social
distancing

At least for this trial, setting Nmax = 10 for 50 days is considerably better for
BA networks, while gradual relaxation over 90 days is better for ERG and WS. The
reasons for this are similar to the results of Sect. 4. That is, for BA networks Policy A
has the important effect of infecting the well-connected individuals but constraining
their reach during their infectious period and this trumps the outcome where they are
not infected until after restrictions are lifted.

6 Extensions and related work

Our goal with this paper is to provide a flexible framework that allows policy makers
to simulate precisely how social distancing can mitigate the spread of an infectious
pathogen. The model we have proposed is the standard SIR model on a network
with social distancing constraints imposed upon individuals, that we call the SIRwSD
model.While we have considered some such social distancing policies in Sect. 5, there
are of course many more. We briefly sketch some of these now.

Other social distancing models. Perhaps the paper closest to ours is Maharaj and
Kleczkowski (2012). These authors consider a networked SIR model on a square lat-
tice. They introduce two radii: the first radius defines an individual’s neighbourhood
and the second radius defines the individual’s neighbourhood with social distancing
measures in effect. The main differences with our model and this is that we allow
individual-specific social distancing restrictions, and we do not limit analysis to net-
works where all individuals are in some sense ‘the same’.

Random interactions. Even during a full lockdown, setting κ(i) = 0 for every indi-
vidual i , people are still permitted to make outings for essential items. As such, there
is always the possibility that an individual will contract a disease from someone with
whom they are not social acquaintances. This feature could easily be included in the
model by allowing the possibility of interactions that are not specified by the contact
network.

Asymmetries in transmission probabilities. We have assumed that the transmission
probabilityβ is the same for all individuals. But there ismedical literature that suggests
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that this is not so for COVID-19 (Iype and Gulati 2020; Zhou et al. 2020). We have
further assumed that the recovery probability γ is constant for everyone. But, at least
as regards deaths attributed to the COVID-19 pathogen, this is not accurate, with the
likelihood of recovery decreasing with age.17 Both of these richer features can easily
be incorporated into our set-up.

Directed connections. Most models of how epidemics spread in social networks
assume the underlying graph is undirected. This implies that the individuals most
likely to spread the disease are also the most likely to become infected. Allard et al.
(2020) relax this assumption allowing the underlying graph to be directed (and not
just a complete biorientation of an undirected graph, so that the in-degree of a vertex
need not equal its out-degree). Allard et al. (2020) show that this can have policy
implications for both contact tracing and the prevention of super-spreading events.
Our social distancing measure can easily be appended to a ‘directed’ framework by
constraining each vertex v according to the arcs with tail at v (the out-edges of vertex
v).

Reinfection is possible.The R state in the SIRmodel refers to ‘Removed’, but is more
accurately described as ‘Removed and no longer Susceptible’. As regards COVID-19,
there is new data emerging from South Korea that indicates that some who have been
infected may be prone to reinfection. If so, the spread of the coronavirus may be better
described by an SIS model (where the second ‘S’ also stands for susceptible). This
important change is easily incorporated to our set-up.

Asymmetries in global travel and ‘Travel Corridors’. Connections between coun-
ties need not always be equally distributed as we assumed in Sect. 5.1. For example,
the number of UK citizens who holiday in Spain dwarfs the number of Spanish citizens
who holiday in the UK. Such a set-up could be incorporated into our framework by
assuming that a large number of UK citizens (the holiday makers) each have a few
connection to a small number of Spanish citizens (those who work in hospitality).
How such asymmetries in connections play out may be important in deciding which
‘travel corridors’ are safer than others.18 Such policies are easily explored using our
framework.

Individual-specific policies: key to target the right individuals. As mentioned
before, a contact network G and social distancing policy κ together generate an infec-
tious subnetwork. Since the social distancing policy κ temporarily deletes a subset of
edges from G, there are simply less avenues along which the disease may be trans-
mitted. However, perhaps counterintuitively this will not always reduce the reach of

17 It is further possible that an individual’s likelihood of recovery may be decreasing in the number of
those currently infected. The reason being that most countries have a fixed stock of medical resources, so
additional hospitalisations reduce the per patient allocation of resources, which once a threshold is met will
have ramifications for quality of treatment.
18 In the European Union, it is not uncommon to see the following occur: if the state of the pandemic in
Country A is deemed sufficiently safe by Country B, then Country B will allow a ‘travel corridor’ from
Country A. In practice, a travel corridor fromA to Bmeans that Country Bwill allow visitors who have been
to country A in the last 14 days; in our framework, it would mean allowing (possibly directed) connections
from A to B.
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an epidemic. While our results in Sect. 4 show that the reach is reduced when all indi-
viduals in society face the same constraints, Muscillo et al. (2020) show that if those
individuals who have many neighbours reduce their contacts proportionately less than
those who have few, then the disease can take longer to die out. The specification
considered by Muscillo et al. (2020) is a special case of our framework where κ is
chosen such that the fraction κ(i)/d(i) is increasing in degree.

Interplay between time-varying and individual-specific constraints. In Sects. 5.1
and5.2 ,we allowed social distancing constraints to begroup-specific (i.e. varying from
individual to individual). InSect. 5.3,we considered time-varyingpolicies.Howgroup-
specific constraints and time-varying constraints interact together is not something we
have explored in this paper but can easily be handled within our framework.

Full compliance and rational individuals. In our model, a social distancing policy is
set and all individuals adhere to it. Clearly, this a strong assumption as full compliance
cannot be guaranteedwithout strongmonitoring.We can easily incorporate this feature
in our model is by defining a parameter ξ ∈ (0, 1) where ξ is the probability that an
individual violates the restrictions in a given period. A related point is made by the
game-theoretic literature on epidemic control. In a game-theoretic model, individuals
are assumed to be rational and rational individuals may themselves take mitigating
measures. In such a set-up, increased social distancing reduces likelihood of infection
but also comes with a cost in the form of reduced freedom, convenience, earning
potential, and so on. Reluga (2010) considers a differential game capturing precisely
these trade-offs. Valdez et al. (2012) allow for the possibility that individuals can
identify infected neighbours and temporarily interrupt contact with them.

Incorporating social distancing policies into an economic model. Lastly, while we
have focused on the benefits to public health of social distancing, this is far from the full
story. Any amount of social distancing brings with it economic cost and, as evidenced
by recent economic data, the policy responses to the COVID-19 outbreak have had
an enormous effect on the global economy.19 Given that, as of time of writing, the
mass roll-out of a successful vaccine to COVID-19 is potentially far on the horizon,
some form of relaxed social distancing measures need to be considered.20 A richer
model would also include the effect that social distancing has on economic output, and
subsequently incorporate the interdependent relationship between output and public
health (Bloom et al. 2004; Weil 2007). Such a model would allow policy makers to
consider the full trade-off between absolute lockdown (everyone safe from exposure,
economic activity greatly reduced) versus no lockdown of any kind (nobody safe from
exposure, economic activity is maximal).

Lastly, we wish to reiterate that the framework in this paper considers the benefits
to social distancing when it is the only policy available tool available. Clearly, this is
not realistic. In real-world epidemics, policy makers have an array of tools available.
While understanding how one policy works in isolation is a useful theoretical exercise,

19 Baker et al. (2020) document that the USA’s week-ending jobless claims numbers from late-March
2020 have been an order of magnitude higher than any seen previously. Moreover, these numbers were as
a result of the lockdown policy and not the virus itself.
20 Dingel and Neiman (2020) estimate that only one-third of jobs in the USA can be done from home.
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it is important to understand how the full set of policy tools complement each other in
order to successfully operationalise a pandemic response plan.
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