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ABSTRACT

We consider distributed detection with a large number of identical sensors
deployed over a region where the phenomenon of interest (POI) has un-
known spatially varying strength. Each sensor makes a decision based on
its own measurement of the signal at its location and the local decision
of each sensor is sent to a fusion center through a multiple access chan-
nel. The fusion center decides whether the POI has occurred in the region,
under a global size constraint in the Neyman-Pearson formulation. Assum-
ing that the initial distribution of sensors is a homogeneous spatial Poisson
process, we show that the Poisson process of ‘alarmed’ sensors satisfies
the locally asymptotic normality (LAN) condition as the number of sen-
sor goes to infinity. We derive a new asymptotically locally most powerful
(ALMP) detector jointly over the fusion scheme and the sensor threshold.
We also derive the conditions on the spatial signal shape to guarantee the
existence of the ALMP detector. We show that the optimal test statistic is
a weighted sum of local decisions, the optimal weight function being the
shape of the spatial signal, but the exact value of the spatial signal is not
required. The optimal threshold for a single sensor is also derived. For the
case of independent, identically-distributed (i.i.d.) sensor observation, we
show that the counting-based detector is also asymptotic locally optimal.

1. INTRODUCTION
Detection in a large scale microsensor network faces several chal-
lenges not encountered in the classical distributed detection prob-
lem. First, inexpensive sensors are not reliable; they have low duty
cycles and severe energy constraints. The communication link be-
tween a sensor and the central unit is specially weak due to a vari-
ety of implementation diffi culties such as synchronization, fading,
and interference from other sensors. The probability that the lo-
cal decision at a particular sensor can be successfully delivered
to the central unit can be very low. Second, POI in a wide geo-
graphic area generates spatially varying signals, which makes the
observation at each sensor location dependent and not identically
distributed. Furthermore, the strength of POI is unknown for many
applications such as the detection of biological or chemical agents.
Third, the scale of the network makes it more practical to deploy
sensors randomly without careful network layout. It is thus not
possible to predict whether data from a particular sensor can be re-
trieved by the the central processing unit, especially when random
access protocols are used.
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In this paper, we consider the optimal detection of an unknown
spatially varying signal in such large-scale microsensor networks
under the Neyman-Pearson context. In particular, we consider the
case of identical binary sensors and the asymptotics where the
number of sensors goes to infi nity within a fi xed geographical area.
For the asymptotic criterion of distributed detection, the error ex-
ponent has been used[11][12]. However, the problem of detecting
a signal with unknown strength does not lend itself to the error
exponent approach easily due to the uncountable nature of the al-
ternative hypotheses. We consider the asymptotically locally op-
timal criterion for our problem. Assuming that the initial distri-
bution of sensors forms a homogeneous spatial Poisson process,
we convert the problem of global distributed detection to that of
spatial Poisson process with different intensity. Using the locally
asymptotic normal (LAN) theory from Le Cam, we derive: (1)
the suffi cient conditions for the spatial signal shape that guarantee
the existence of asymptotically locally most power (ALMP) de-
tector, (2) an asymptotic (achievable) upper bound on the power of
any detector, and (3) an asymptotically locally optimal rule jointly
over the fusion scheme and the single sensor threshold. For the
special case that the power function of a single sensor is linear, the
proposed detector is also asymptotically uniformly most powerful
(AUMP).

Related Work
The detection of an unknown signal or a signal with unknown am-
plitude has been considered by several authors under the composite
hypothesis formulation. The locally optimal detector for a central-
ized scheme is known. Poor and Thomas considered the locally
optimal detector for stochastic signals and compared the relative
performance of detectors using asymptotic relative effi ciency in
the centralized detection scheme[8]. For the distributed or decen-
tralized case, Aalo and Viswanathan considered the detection of
an unknown signal via multilevel quantization and simple fusion
rules[7]. However, no optimality for the fusion rule was consid-
ered. Fedele, Izzo, and Paura[9] and Srinivasan[10] considered
locally optimal detection of unknown signals. The authors consid-
ered a distributed scheme where multiple local detections are com-
bined at the fusion center and the number of observations per each
local detector goes to infi nity. These assumptions are reasonable
for the classical radar problem. However, for large-scale microsen-
sor networks, it is more realistic to assume that each sensor has
only a few chances for observations and transmissions due to the
limited power and/or duty-cycling, and to consider the asymptotic
case where the number of sensors goes to infi nity with a limited
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number of observations per sensor.

2. SYSTEM MODEL
We consider a large-scale sensor network with identical binary
sensors deployed over a wide area; we want to decide whether
a POI has occurred in the area. Each sensor makes a binary de-
cision, � � , based on its own observation and the local decisions
are collected through a multiple access channel (MAC) at a central
unit or fusion center where a global decision is made under a size
(PFA) constraint.

We assume that the spatial signal underling the POI is deter-
ministic and denote the strength of the signal by

� � � 	 
 � � � � 	 � (1)

where � denotes the location, � � � �
 � � � � 	 is an unknown am-
plitude, and � � � 	 is a known1 function which incorporates the in-
formation about the spatial variation of the underlying phenomenon.

2.1. Single Sensor

We assume that sensors make their local decisions independently
without collaborating with other sensors. Since the exact value of
the signal strength is unknown, we design each sensor to solve the
following hypothesis testing problem:

 " $ � � � 	 
 � � ' $ � � � 	 * � � (2)

with local size constraint of + "
. The hypotheses (2) are equiva-

lently expressed by

 " $ � 
 � � ' $ � * � 0 (3)

The local decision of sensor 1 � , located at � � , is denoted by

� � 
 2 � if
 "

selected �3
otherwise 0 (4)

4 � 5 7 � � � : " 	
; � 1 �; � = > @ "� � � � 	 � � 
 3

or �

Fig. 1. Sensor located at � �
One possible sensor observation model is the additive Gaus-

sian noise model shown in Fig. 1, where the sensor input
; � is

given by

; � 
 � � � � 	 C 4 � � 4 � 5 7 � � � : " 	 � (5)

where
4 � is the independent sensor noise. In this case, the local

decision rule for (3) at each sensor is the UMP detector given by

; � * F HI F J @ " � (6)

1We do not assume that K M O Q is known beforehand. It can be estimated
from the sensor decisions after data collection.

where @ " 
 : " R S ' � + " 	 . We defi ne the following probability

T � � � 	 �
 Pr U � � 
 3 W 0 (7)

Then, T � � 	 is a function of the signal strength at � and is given by

T � � 	 
 X Y J � � � � 	 	 0 (8)

For the additive Gaussian noise model, T � � 	 
 R \ Y J S ^ _ ` ab J d .

2.2. Parametric Poisson Model

We assume that the initial distribution of sensors over the space
is a homogeneous Poisson process with intensity e f . Since each
sensor decision is independent and based on the signal strength
at its location, the local decision making of each sensor can be
viewed as a location-dependent thinning procedure of the original
sensor distribution with probability T � � 	 and the distribution of the
alarmed sensors, i.e., sensors with � � 
 3

, forms a nonhomoge-
neous spatial Poisson process. Alarmed sensors encode their deci-
sions and send their packets over an erasure channel with probabil-
ity of successful transmission T g ; this could include packet losses
due to fading as well as collisions. A cross-over channel can also
be incorporated since this amounts to changing the local power
function, the sensor’s X Y J � i 	 . Thus, we model this data collection
through the MAC as another thinning process.

A

Sensors

Sensors with � � 
 3
Sensors with � � 
 �

� � � 	(a)

(b)

(c)

Fig. 2. (a) Initial sensor deployment over area (b) Signal strength
of underlying phenomenon (c)Local decisions of sensors

Hence, the distribution of alarmed sensors at the fi nal data
collector or fusion center, is a nonhomogeneous Poisson process
whose local intensity is given by

e � � 	 
 e f T g T � � 	 
 e f T g X Y J � � � � � 	 	 0 (9)

When the function X Y J � i 	 is linear or � is in a small neighborhood
of � 
 � , the Poisson distribution of alarmed sensors is described
by a nonhomogeneous intensity model parameterized by ampli-
tude � and is given by

e � � � � 	 
 � l � � 	 C e " � (10)

where l � � 	 
 e f T g X nY J � � 	 � � � 	 , e " 
 e f T g X Y J � � 	 , andX nY J � � � � 	 	 
 pp ^ _ ` a X Y J � � � � 	 	 . The Poisson assumption on the
initial sensor distribution effectively changes the global detection
problem to that of deciding from which intensity model the spatial
distribution of alarmed sensors has occurred. Notice that the in-
tensity variation l � � 	 of alarmed sensors is a scaled version of the
spatial signal shape � � � 	 .
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3. DETECTION OF SPATIALLY-VARYING SIGNAL

In this section, using the LAN theory[1][2], we derive an asymp-
totically locally most powerful (ALMP) detector for the problem
(3) as the number of sensors goes to infi nity in a fi xed space and
under the Poisson setup and the conditions on � � � � that guarantee
the existence of the ALMP detector.

We construct a sequence of statistical models of Poisson pro-
cesses of alarmed sensors under the Poisson assumption on the
initial sensor locations. An asymptotic scenario of infi nite number
of sensors is easily described by increasing the initial intensity � �
of sensor deployment.

Model 1 (Fixed area and infinite sensor model) The intensity of
the Poisson process of the initial sensor distribution over the space�

with finite area is given by

� � 	 � � � 
 � (11)

Then, for each � � �
, the local intensity of the Poisson process of

the alarmed sensors is given, using (10), by

� 
 � � � � � � � 	 � � � � � � � � � 
 � (12)

where � � � � 	 � � 
 � � � ��  � ! � � � � � and � 
 	 � � 
 � � � �  � ! � . Let	 
 � �� denote the realization of the Poisson processes of alarmed
sensors on area

�
. Then, the sequence of probability distributions# 
 
 � �� � � % & ! � ( � )

is given by [4]� 
 
 � �� � 	 
 � �� � 	 � � � �� �
* � � � �  ! � 
 � � � � � � + � # $ � � 
 � � � � � � � � � &' �

(13)

where � + ’s are the random points of
	 
 � �� .

Theorem 1 For Model 1, let the conditions (C.1)-(C.3) be satis-
fied.

� ) � � � � � � � � ! � � ) � + � - . �* � � � � � � . ( � � ) � 1 � $ � � � � � � � 2 ! �
Then, an asymptotic upper bound on the power for any sequence
detector 2 � with size 4 , i.e., 3 � 4 
 2 � 6 4 , is given by7 8 9 : < >� ? A : < >
 5 D F 
 
 � G 6 � I K M N � 4 � O � Q S 7 S 8 9 7 U ; Q W 8 9� 7 X ; Z ; \ ^ X a

(14)

whereb � � ! � 	 � 8 9 c e � 8 9 c e
� 
 � 8 9 c e� � 9 c e�  � ! �� ��  � ! � g $ � � e � � � � � i 8 9 c e

� (15)

Further, the following sequence of (nonrandomized) detectors is
asymptotically locally most powerful with size 4 for (10, 3):2 � 4 k l n 	 > Decide

? 

if o � 4 
 6 @ 8 9 � 4 � �

Decide
? 9

if o � 4 
 2 @ 8 9 � 4 � � (16)

whereo � 4 
 	 � 8 9 c e � 8 9 c e
 g $ � � e � � � � � i 8 9 c e
�� �

+ q * � � � � � � + � # � � 
 $ � � � � � � � & ' � (17)

Proof may be found in [13], and is omitted here due to space
limitations.

Conditions (C.1)-(C.3) are mild: it suffi ces for the underlying
spatial signal to be non-negative, bounded, and not identically zero
over the sensor fi eld. These conditions are general enough to in-
corporate various spatial variations including step function, linear
decay, Gaussian, or exponential decay

� � t � u � 	 w 8 x D � b 	 y t e � u e � (18)

Notice that the ALMP test statistic o � 4 

is the weighted sum of

alarmed sensors under the Poisson setup. The weight � � � � is the
shape of underlying spatial signal D � � � . Since o � 4 


is normalized
to have a limit distribution of E � ! � � � , any scaling of � � � � is irrel-
evant in forming the test statistic. This is in contrast with models
and approaches, such as in [5], where the shape and magnitude of
the intensity function are required. Theorem 1 describes how to
optimally use the knowledge of the signal shape and the locations
of the sensors. However, in the next section we will show that the
proposed detector is robust with respect to both the shape func-
tion � � � � as well as its ‘origin’. Note that, as expected, the power
of the detector increases monotonically with sensor density, sig-
nal strength, and MAC transmission success rate. From (14), we
observe that if the signal strength is halved, sensor density must
be quadrupled in order to maintain the asymptotic performance.
This is consistent with the notion of fusing independent signal de-
cisions. When the POI is uniform over the space ( � � � � { �

) or the
observation for each sensor is i.i.d., the ALMP test statistic simply
becomes the number of alarmed sensors. Hence, for the i.i.d. case,
the counting-based rule is ALMP under the Poisson regime.

Another advantage of the Poisson approach is that it facili-
tates derivation of the optimal threshold for a single sensor. Since
the upper bound on the power is achieved asymptotically by the
ALMP detector, the optimal local threshold is obtained so as to
maximize the upper bound on the global power. The next theorem
follows immediately from (14,15).

Theorem 2 Suppose that the power function � �  � G � for a single
sensor is continuous and piecewise differentiable. Under the Pois-
son regime, the following threshold for a single sensor maximizes
the global power for a fixed and sufficiently large number of sen-
sors in the region.

H k l n 	 | } ! ~ | ��  
� ��  � ! � e

� �  � ! � � (19)

For example, the Gaussian noise model has � �  � ! � 	 @ � H 
 � I 
 � ,
and � ��  � ! � 	 9� e � J  � � � � # 9e L �  J  M

e � . The corresponding lo-

cal size 4 

for the optimal threshold is 0.2703 which agrees well

with the simulation results in Section 4. However, the optimal lo-
cal threshold doesn’t change the increasing rate of power as the
number of sensors increases, but the multiplicative coeffi cient of
the rate is affected. Notice that under the assumption of binary
decisions and Poisson distributed sensors, the individual sensors
need not be very good; a design with a PFA of ! � + � ! 1 is opti-
mal! Notice also that the optimal fusion scheme (17) and optimal
local threshold (19) do not depend on the unknown strength pa-
rameter � . Hence, the optimal rule is actually the asymptotically
uniformly most powerful detector when the Poisson model (10) is
true. However, our conversion to the Poisson regime is valid in the
local neighborhood of � 	 ! for a typical power function � �  � G � .
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4. NUMERICAL RESULTS
We considered a two dimensional space

�
which is circular with

radius one. The spatial signal shape we considered is the symmet-
ric exponential in (18) with different decaying rates. The average
number of sensors in

�
was chosen to be 1,000. For the local

sensor function, we used the additive Gaussian noise model (5)
and the UMP detector with a given local size � �

described in Sec-
tion 2.1. For the simulation of power and false alarm probability,
10,000 Monte Carlo runs were executed. For each run, the follow-
ing procedures were performed. The locations of the sensors were
randomly generated according to a homogeneous Poisson process
with the given mean intensity. The local threshold was calculated
from the local size constraint and set to be the same for all sen-
sors. Zero-mean Gaussian noise with variance one was generated
independently for each sensor and added to the signal strength cal-
culated from the location of the sensor and the amplitude param-
eter to form a sensor observation. Threshold detection was made
based on the sum of the signal and noise for the local decision.
The global decision was made based on the test statistic � � � �
and the number of alarmed sensors for the ALMP detector and
the counting-based detector, respectively. The global thresholds
for both detectors were determined via the Gaussian limit distri-
bution. Throughout the simulations, the probability of successful
data collection from a sensor was set to 0.9. The initial homo-
geneous density � � and the local false alarm probability � �

were
assumed to be known, and the true values were used for the sim-
ulation. For the analytic calculation, the linear approximation for
the power function � � � � 
 � was used.
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Fig. 3. ROC. Left: analytic vs. simulated( � � � ). Middle: ALMP
(solid) vs. counting rule (dashed); � � � � � � � � � �

. Right: with
different local sizes, � � � � � � � � � � � � � � � � � � ; ( � � � ).

Fig. 3 shows the analytic upper bound (14) and simulated
powers with respect to the false alarm probability. The power of
the ALMP detector almost achieves the upper bound with an aver-
age of 1000 sensors in the area. The ALMP detector utilizing the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

ALMP with the true s(x,y)=exp(−6r)
ALMP with s

1
 (x,y)=exp(−9r)

ALMP with s
2
 (x,y)=I(r<r

0
)

Counting−based detector

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

ALMP with the true s(x,y)
ALMP with s(x−0.0372,y), 80%
ALMP with s(x−0.0851,y), 60%
ALMP with s(x−0.1527,y), 40%
Counting−based detector

Fig. 4. ROC. Left: mismatched rate. Right: Mismatched center).

spatial information drastically improves the performance over the

counting-based detector. Fig. 3 also shows the ROC with different
local sizes. All other parameters were kept the same. The maxi-
mum power is attained between � � � � � � and 0.3, which agrees
well with the analytic result of � � � � � � 	 � � .

Mismatched Case: Fig. 4 shows the ROC of the proposed
detector with mismatched signal shapes. The true signal shape of
POI was the symmetric exponential with � � � . We used two mis-
matched shapes as the weighting function to construct � � � �

. First,
we considered the symmetric exponential � � � � � � � with a different
decay rate � � � . As expected, the proposed detector with the
mismatched shape performs worse than the true ALMP detector.
Next, we further approximated the signal shape by a step function� � � � � � � that has 90 % of spatial power compared to the true shape.
Even with this rough approximation, the performance degradation
was not severe. The other plot shows the ROC with signal shapes
with different centers. The true shape was shifted to form mis-
matched shapes with displacements corresponding to 80,60,40 %
of the original peak. The proposed detector also shows robustness
to the mismatched center. Hence, a rough estimation of � � � � from
the sensor decisions is enough to get the most improvement.

5. CONCLUSIONS
We considered the distributed detection of a spatially varying sig-
nal, with unknown strength, using identical sensors that make bi-
nary decisions. Assuming Poisson distribution of sensor locations
and the availability of location information, we proposed an effi -
cient way to optimize the global decision in the Neyman-Pearson
context. We obtained the asymptotically locally optimal detector
jointly over the fusion scheme and the sensor threshold. Robust-
ness of the proposed detector was demonstrated via simulations.2
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