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Abstract
Here, we have employed principal component analysis (PCA) and linear discriminant analysis (LDA) to analyze the Mie-
calculated UV-Vis spectra of gold nanospheres (GNS). Eigen spectra of PCA perform the Fano-type resonances. PCA vector
spectra determine the 3D vector fields which reveal the homoclinic orbit strange attractor. Quantum confinement effects are
observed by the 3D representation of LDA. Standing wave patterns resulting from oscillations of ion-acoustic phonon and
electron waves are illustrated through the eigen spectra of LDA. Such capabilities of GNPs have brought high attention to the
high energy density physics applications. Furthermore, accurate prediction of gold nanoparticle (GNP) sizes using machine
learning could provide rapid analysis without the need for expensive analysis. Two hybrid algorithms consist of unsupervised
PCA and two different supervised ANN have been used to estimate the diameters of GNPs. PCA-based artificial neural
networks(ANN) were found to estimate the diameters with a high accuracy.

Keywords Plasmonic nanoparticle . Plasmon spectra . Polariton . Fano resonance . Pattern recognition . Vector fields . Strange
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Introduction

The arrangement of metal nanoparticles in an order of chain or
array provides surface plasmon polaritons (SPPs), which are
the bosonic (quasiparticles) coupled modes of an incident
electromagnetic wave and free electrons (plasmon) of the sur-
face. SPPs can manipulate the electromagnetic radiation and
perform as micro-optical devices and can propagate in an

undistorted manner for several diffraction lengths along a met-
al surface [1–3]. Fano resonance stands as the primary phys-
ical mechanism behind the manipulation of electromagnetic
waves. Fano resonances are generated by the coupling of dis-
crete excited states to a continuum of states and can be pro-
duced through the scattering of the electromagnetic waves by
nano-particles [4, 5]. Furthermore, Semouchkina et al. showed
that Fano-type shape and significant strength of the observed
resonance are characteristic of the interaction of dielectric res-
onator arrays with the Fabry-Perot standing waves [6].
Besides, Sergeyev et al. proposed that spiral attractors gener-
ated by the interaction of dissipative solitons with carbon
nanotubes are the main mechanisms that provide the trapping
and manipulation of light [7]. Such capabilities of NPs
brought the attention of application for high energy density
physics. Kaymak et al. has shown that ultra-dense high energy
density plasmas (ne > 9 × 1024 cm−3) can be generated by the
irradiation of relativistic intensity femtosecond laser with
aligned nanowires [8]. Ostrikov et al. proposed that several
important properties of nanostructured targets are important
for various applications such as the creation of dense hot
plasmas at a temperature of 2–4 keV, efficient X-rays, and
ion sources [9]. Lastly, Rocca et al. has justified that array-
formatted nanowires completely absorb the high energy
pulses and thereby produce an efficient number of neutrons
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[10]. These capabilities of nanoparticles have strong impacts
in the field of high energy density physics of fusion
applications.

UV-vis spectroscopy as a useful tool is employed for the
characterization, estimation of the sizes of nanoparticles, con-
centration, and aggregation level. It is a useful technique as
UV-vis spectrometers can be found in many laboratories, the
analysis does not change the sample, and the time needed for
registration of the spectrum is very short. If the appropriate
correction of the metal-dielectric constant for the nanoparticle
size and the physicochemical environment is provided, then
the Mie theory can be used to analyze the extinction spectra of
AuNP recorded by UV-vis spectroscopy [10–12]. On the oth-
er hand, Yilmaz et al. has shown that the application of PCA
and LDA (linear discriminant analysis) over the spectral data-
base of plasma could inform more physical insight of deeper
structures and polarization types of the ion species and
electron-ion oscillations in the plasma [13, 14].

PCA and LDA are the two of the most common pattern
recognition techniques that are used in order to reduce the
dimensions of a given raw data in pattern recognition prob-
lems. PCA uses rotational transformation in a way that most of
the data variability remains in a space of low dimensions, and
it ignores the remaining dimensions that contain little variabil-
ity. LDA, as a pattern recognition technique, is quite similar to
that of PCA. The main difference is that LDA determines the
vectors that best separate the classes while trying to keep the
variance maximum. Although it looks like LDA outperforms
PCA in multi-class settings where class labels are known, it
might not always be the case, especially if the sizes of the
classes in the data sets are relatively small. Besides, LDA
performs well only if the classes have equal co-variance.
PCA is good at keeping dimensions of highest variance, but
it can disregard discriminant dimensions where LDA is need-
ed. It is easy to find examples where LDA outperforms PCA
and vice versa [13, 14].

Artificial neural network (ANN) algorithms have also been
of great interest and employed in the last few decades for
many applications such as remote sensing, computer vision,
pattern recognition, and medical diagnosis. The ANN algo-
rithms can easily identify and extract the patterns by setting a
correlation between sets of given inputs and outputs through a
training process. This adaptive nature makes them particularly
appropriate for dealing with complex and non-linear prob-
lems. Another advantage of a machine learning algorithm is
the fact that it can establish a strong correlation between the
parameters without any knowledge of them. Therefore, it en-
ables the handling of uncertainties, data with noise, and non-
linear relationships which are hard to determine [15].

ANNs have been applied to both X-ray spectra to predict
plasma electron temperatures and densities, and to UV-vis and
FTIR spectra to investigate forensics [16, 17]. Lately, they
have been used to estimate the diameters of nanoparticles

[18, 19]. Peurifoy et al. have proposed artificial neural net-
works to approximate light scattering by multi-layer nanopar-
ticles [20].

The selection of inputs is one of the most significant com-
ponents of designing a classifier based on pattern recognition
since even the best classifier does not work well unless the
inputs are chosen very well. The complexity of the classifier
method is inversely proportional to its classification efficien-
cy. Recently, Karlik et al. has indicated the positive effects of
hybrid learningmethods consisting of unsupervised clustering
and supervised classifiers [21]. So, in this work, a hybrid
classifier consisting of an unsupervised PCA and a supervised
ANN algorithm has been used. In this hybrid classifier, the
input nodes of supervised ANN activations are derived
through unsupervised PCA of the input data, which enables
the neural system to deal with the statistics of the measure-
ment error directly. Therefore, we have first employed theMie
scattering generated spectra of GNS as our database. This
database was then analyzed by PCA and LDA methods, and
the physical interpretations of PCA and LDA of UV-vis spec-
tra of gold were examined. Then, the extracted PCA coordi-
nates were used for the training of ANN to estimate the diam-
eters of GNS. Finally, the experimental spectra of gold
spheres with diameters 5, 7, 10, 15, 20, and 30 nm were tested
for the estimation of diameters. Our findings reveal that the
PCA-based artificial neural network (ANN) estimates the di-
ameters of gold nanoparticles with a remarkably high
accuracy.

Methods

Materials

Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4.3H2O,
gold salt), trisodium citrate (reducing agent), and sodium chlo-
ride were obtained from Aldrich and used as received. Gold
nanoparticles (AuNPs) with the sizes of 5, 7, 10, 15, 20, and
30 nm (Fig.1) were purchased from Nanocomposix, Inc.
Distilled water was used to prepare the aqueous solutions of
AuNPs. Au nanoparticles were synthesized through the well-
established reduction methods of Turkevich, Frens, and Jana
[22–24]. In the preparation of 5 nm AuNPs, a 10 mL aqueous
solution containing 0.25 mMHAuCl4 and 0.25 mM trisodium
citrate were first prepared. Ice-cooled 0.3 mL of 0.1M sodium
borohydride was added to this solution while stirring. The
change in the color of the solution was an indicator of particle
formation.

Synthesis

For the synthesis of 7 nm or larger AuNPs, aqueous solu-
tions of 0.254 mM HAuCl4 and 38.8 mM trisodium citrate
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were first prepared. In a typical synthesis, 50 mL HAuCl4
solution was heated to boiling. After 5 min, a 0.4–2.0 mL
trisodium citrate solution was added to this mixture at once
and the mixture was stirred for approximately 15 min. The
color of the reaction mixture turned from yellow to color-
less and then ruby red color depending on the AuNPs sizes.
After cooling to RT, the samples were centrifuged and
washed several times with DI water to obtain 5, 7, 10,
15, and 30 nm citrate-coated AuNPs.

Characterization

Dynamic light scattering (DLS, Malvern Zetasizer Nano ZS)
technique was employed for the calculation of the average
hydrodynamic diameters of gold nanoparticles. By using a
He-Ne laser (4 mW) operated at 633 nm, Nano ZS detects
the scattered light at an angle of 173°, which is known as
backscatter detection. Aqueous 10 mM NaCl solutions were
used in all DLS measurements.

Mie Scattering

The Mie theory describes the scattering of an electromag-
netic wave by homogenous spherical particles. Although it
is based on idealized initial conditions, it is widely used for
the radiation problems in a light scattering media. This
theory mainly calculates the coefficients for absorption,
scattering, and extinction. One can find several programs
that can perform Mie theory-based solutions. The main
advantage of the Mie methods is that they suggest solu-
tions for the cases where the diameter of the scattering
particle is comparable with the wavelength of the light.

For much larger or smaller particle sizes, there are already
several simple methods that can be used in order to de-
scribe the behavior of the corresponding systems. Since
our focus is on the sizes similar to the incoming light
wavelength, we employed the Mie theory calculated spec-
tra to create our database [12, 25]. Our database contains
25 spectra of gold spheres without polymer shell with the
diameters 2, 4, 6,…, 50 nm. In Fig. 2, experimental spectra
of 5, 7, 10, 15, and 30 nm and their Mie calculated spectra
are illustrated. By applying PCA to the whole database,
eigenvalues with corresponding eigenvectors of the covari-
ance matrix are obtained. Throughout this work, only the
first three eigenvectors, which correspond to the largest
three eigenvalues, are considered to reduce the dimension
of the initial.

The Mie theory we used in this work employs the
spherical vector harmonics to express the electromagnetic
fields in the form of scattered shapes for the dipole inter-
actions. Vector-basis functions are derived from the sep-
arable solutions to the scalar Helmholtz equation. The
relative intensity of the scattering or absorption of parti-
cles with different sizes is described by the particle effi-
ciency which is calculated by dividing the scattering/ab-
sorption/extinction cross-section by the geometrical cross-
sectional area. These cross-sections are obtained by the
integration of the Poynting vector for a spherical radius.
The experimental size-dependent dielectric electric effects
in gold nanoparticles are described by a Drude conduction
model. In addition, the enhancement of the local intense
fields due to the presence of local surface roughness is
described by amplification mechanisms in the model
[12, 25].

7 nm5 nm 10 nm

15 nm 20 nm 30 nm

Fig. 1 TEM images of gold
nanoparticles
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Principal Component Analysis

The goal of PCA is to detect a subspace spanned by the vec-
tors with the greatest variances. This is an optimization prob-
lem reducing the dimension of a data set while keeping its
variance. It is carried out by transforming the data set of pos-
sibly correlated variables to a new set of variables which are
called principal components (PC). These PCs are uncorrelat-
ed, and they determine the similarities and differences of the
data. PCs correspond to the eigenvectors of the covariance
matrix which consists of variances of all variables.
Therefore, every element of the original data can be stated as
a linear combination of PCs. In this paper, the eigenvectors
(|PC1>, |PC2>, and |PC3>) which correspond to the first three
largest (dominant) eigenvalues of the covariance matrix are
considered in order to reduce dimension. In PCA, since the
original data is projected into the space spanned by these PCs
which are orthonormal, some information is lost due to the
eigenvectors corresponding to the small eigenvalues, but this
information has less significance [13].

Linear Discriminant Analysis

Similar to PCA, LDA is another dimension reduction tech-
nique to identify the hidden structures of large data sets [14].
LDA is applied to data sets, which consist of different classes
of similar elements and used to find vectors, to discriminate
the classes while respecting the similarities among the class
members. Unlike LDA, it deals with the entire data, and it
does not consider different classes. Therefore, LDA is applied
to data sets when different classes must be considered. The
eigenvectors corresponding to the largest three eigenvalues in
LDA are |LD1>, |LD2>, and |LD3>.

Artificial Neural Networks

The artificial neural network (ANN) is the most popular
and useful method of machine learning algorithms. One

of the main features of ANN is the possibility to adapt their
behavior to the changing characteristics of the modeled
system. As a parallel processing distributed system, ANN
depends on learning through a training set of data using a
supervised learning algorithm [26]. The processing units in
feed-forward and back-propagation neural networks are ar-
ranged in multi-layered perceptron (MLP) architectures
which have a back-propagation (BP) algorithm and uses
various activation functions. The most commonly used
non-linear activation functions are the sigmoid and the hy-
perbolic tangent functions [27, 28]. Other difficulties of
deep learning for feed-forward neural networks with
multi-layer perceptron are included decision how many
numbers of nodes of hidden layers, optimum selection of
momentum coefficient, and learning rate [29, 30]. As seen
in Fig. 3, each layer of MLP is fully connected to the
previous layer and has no other connections. The MLP
consists of 3 or more layers including one input, one out-
put, and one or more hidden layers. Multiple hidden
layers of non-linearly activating nodes make a deep
neural network. In this study, we used four-layered
MLP architecture, input and output layers with one
node, and hidden layers with five nodes.

The BP with generalized delta learning rule with an itera-
tive gradient algorithm is implemented to minimize the mean
square error (MSE) between the actual output of a multi-
layered feed-forward neural network and a target output.
MSE is also used to measure how well ANN works.

In this study, two different MLP architectures (ANN-1
and ANN2) were used. The architecture of ANN-1 is
1:25:1 which has only 1 hidden layer. The other is
1:5:5:1 which has 2 hidden layers. After trying several
numbers of hidden nodes for both MLP architectures, we
have selected the optimum number as 25 and 5 respective-
ly. A single input is usually a significant problem in MLP
architecture. Moreover, the learning rates and momentum
coefficients are chosen to be 0.1 and 0.95 respectively after
trying many numbers of coefficients.

Fig. 2 a Experimental UV-Vis
spectra and b Mie calculated
spectra
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Results and Discussion

Figure 4a illustrates the 3D representation of PCA coordinates
of GNS, which exhibits a parabolic profile. Figure 4b illus-
trates the mean absorbance and vector representation of the
spectra. |PC2> vector represents the asymmetric line shape of
Fano-like resonance. Fano resonance which results from the

interference of the scattering amplitudes of continuous (bright
mode) and discrete states (dark mode) provides a field en-
hancement. It is known that a non-diffractive (airy) beam of
surface plasmon polariton (SPP) wave follows a parabolic
profile during its travel and Fano resonance originates from
the coupling of SPP and waveguide modes [31–34].
Therefore, Fig. 4 shows that PCA can efficiently extract the

Fig. 4 a 3D representation of PC1, PC2, and PC3 coefficients. b Spectra of the mean of the initial data, and first two dominant eigenvectors |PC1> and
|PC2> of the covariance matrix. c 3D vector field of |PC1>, |PC2>, and |PC3>

Fig. 3 Illustration of a general
MLP architecture
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propagation and resonance characteristics of the SPP over the
spectral database of GNS. Furthermore, SPPs are observed in
the array and chain form of nanoparticles. Since our database
is generated by the spectra of different diameters of gold nano-
spheres in ascending order, such an array behavior is expected
[35].

3D vector spectra plot is given in Fig.4c which represents
the homoclinic orbit with a saddle point. The homoclinic orbit
is one of the main examples of the occurrence of chaotic
strange attractors observed in 3D vector fields (aether) [36].
Such attractors arise under bifurcations of resonant points
(fixed saddle point). Luk‘Yanchuk et al. stated that Fano res-
onances from light scattering by nanowires are accompanied
by bifurcations of the Poynting vector [37]. Whistler
mode plasma waves are also an example of monoclinic
orbit attractors generated by stimulated Raman and
Brillouin scattering. The process is the conversion of
an incident photon into a forward and backscattered
photon and ion-acoustic waves (phonons) [38].

In Fig.5a, LDA coordinates in 3D exhibit quantum con-
finement structure. Such confinements are expected as the size
of the particle decreases to nanoscale comparable with the
electron’s wavelength. The electrons in these structures be-
have like a particle in a potential well. Confined standing
waves are the time-independent solutions of the Schrodinger

equations in the potential well which are formed by concur-
ring of two anti-propagating surface plasmon waves [39].
Fig. 5b shows the LDA vector spectra which illustrate the
oscillating wave pattern of ion-acoustic waves (|LD1>) and
electrons (|LD2>) [14]. Fast Fourier transform modeling of
ion-acoustic and electron waves results in oscillation frequen-
cy of 31 Hz and 72 Hz, respectively. For reference, typical
dust phonon (visible ion-acoustic) waves oscillate around 5–
35 Hz [40, 41].

Figure 6a shows that there is a non-linear relation between
the extracted PCA and LDA coordinates and the correspond-
ing diameters. PCA coordinates which are obtained from the
spectra produced from the Mie scattering theory are used for
the training process, and the outputs are the diameters of the
nanoparticles. The coordinates of PCA of the Mie calculated
spectral database are used for the training of ANN which
estimates the diameter of the GNP with high accuracy. In this
setting, it should be pointed out that the PCAmethod provides
an advantage for the use of ANN and other machine learning
algorithms as it enables the reduction of the dimension of
inputs. Since the LDA of spectra of GNSs reveals structures
of non-linear ion and electron oscillations (Fig. 6b), LDA-
based ANN was not studied in this work.

In Table 1, dynamic light scattering (DLS) measurements of
gold spheres and estimations of diameters obtained by ML

a) b)

I L
D2

>

f= 31 Hz

I L
D1

>

Wavelength(nm)

f= 72 Hz

Fig. 5 a 3D representation of LD1, LD2, and LD3 coefficients. b The spectra of the first two dominant eigenvectors: ion-acoustic (|LD1>) and electron
(|LD2>) waves obtained in LDA
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algorithms are compared. ANN-2, which consists of (1:5:5:1)
MLP structure, has shown the best recognition accuracy which
is 100%. Additionally, ANN estimations show that average
testing zero error was found for 6 different diameters.

It is difficult to estimate 1I1O (one input-1 output) compli-
cated data even if it has small-scale data which has the com-
plex convex region on the data space according to data mining
rules. It is also difficult to estimate the spectra for small nano-
particles of different sizes. In this work, we have solved this
problem by using multi-hidden-layered ANN as a deep learn-
ing algorithm. Deep learning is a class of machine learning
algorithms using a cascade of many layers of non-linear pro-
cessing units for feature extraction and transformation as in
ANN-2. Each successive layer uses the output from the pre-
vious layer as an input.

In a similar study, Peurifoy et al. have found that test results
are better than validation results for the nanoparticular shell 2
and 3, and for the others are the same percentages. These are
abnormal results according to ANN because the validation set
is different from the test set. The validation set can be

a)

b)

LD
1 

co
effi

cie
nt

s
PC

1 
co

effi
cie

nt
s

Diameter(nm)

Fig. 6 Plot of a |PC1> and b
|LD1> coordinates versus GNS
diameters

Table 1 Values of measured and estimated diameters with error

NSP (nm) DLS diameter (nm) ANN-1 (nm) ANN-2 (nm)

5 5.0 ± 0.6 7 5

7 7.5 ± 0.8 8 7

10 11.6 ± 1 9 10

15 15.4 ± 1.5 13 15

20 20.5 ± 2.1 20 20

30 31.0 ± 3 30 30

MSE_test_data 1.21 0
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considered a part of the training set because it is used to build
the ANN model. However, it is usually used for parameter
selection and to avoid overfitting. If the used model is non-
linear (like ANN) and trained on a training set only, it will
most likely get 100% accuracy which would constitute a case
of overfitting and result in poor performance when applied to
the test set. Thus, a validation set, which is independent of the
training set, is used for parameter selection. In this pro-
cess, ANN researchers usually use “cross-validation.”
Moreover, using many nodes for hidden layers is anoth-
er problem. It causes of longer training time and in-
creased complexity. In addition, our two models both
used MLP architectures as 1:25:1 and 1:5:5:1 which
are simpler than the MLP architectures which are changing
between 1:100:100:1 and 1:250:250:1. The following reasons
explain why we have found better results in the more simplest
ANN architecture:

1. to use unsupervised PCA for selecting meaningful data set
from large data size before ANN classifier.

2. to use better activation function (sigmoid is more effective
then rectified linear function).

3. to select the optimummomentum coefficient and learning
rate.

Conclusions

Our results show that pattern recognition over UV-vis spectra
can provide substantial insights into light-GNS interactions.
PCA of the spectral database reveals the Fano resonance char-
acteristics of the SPP. PCA allows us to observe the 3D vector
fields(aether) of the spectral data which exhibits the
homoclinic strange attractor fixed to resonant saddle points.
LDA of spectra reveals the quantum confinement effects, and
ion and electron oscillations. Such capabilities show that
GNPs have high potentials in high energy density physics
and fusion applications besides medical and industrial appli-
cations. After the calculation of PCA coordinates, a non-linear
relation between the coordinates and the particle diameters is
observed. It was due to the PCA coordinates that we could
reduce the dimension of input data for the training of ANN,
and thereby simplifying the inputs and outputs of ANN
modeling.

In this study, we used four well-known and effective ML
algorithms and found that the most error-free result came from
ANN-2. ANN-2 is, therefore, established as a powerful tool
for estimating the diameters with high accuracy, since it re-
sulted in the best recognition accuracy with 100% by using 6
different diameters. In conclusion, a 4-layered ANN model
could be suggested as a useful method for predicting the re-
sults of a proposedmodel in terms of saving time and cost, and

that pattern recognition–based multi-hidden-layered ANN is a
powerful method for estimating the diameters of
nanoparticles.
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