Information Sciences 546 (2021) 420-435

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins e

Al-HydRa: Advanced hybrid approach using random forest N
and deep learning for malware classification ™ ke

Suyeon Yoo ?, Sungjin Kim >*, Seungjae Kim ¢, Brent Byunghoon Kang ***

School of Computing, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
b Dept. of Intelligent System Engineering, Cheju Halla University, Jeju-si, Republic of Korea
€R&D center, SGA Solutions, 25 Beobwon-ro 11-gil, Songpa-gu, Seoul, Republic of Korea

ARTICLE INFO ABSTRACT
Article history: The extremely diffused architecture of the Internet enables the propagation of malware
Received 15 January 2019 and presents a significant challenge for the development of defenses against such malware

Received in revised form 29 July 2020
Accepted 23 August 2020
Available online 2 September 2020

propagation. Although machine learning-based malware detection models can improve
approaches in response to this problem, their detection rates vary according to their fea-
tures and classification methods. Single machine learning approaches for malware detec-
tion can vary in effectiveness according to the suitability of their classifiers despite the
use of an appropriate training dataset. Some classifiers result in high detection rates with
a malicious training dataset but have low detection rates with a benign training dataset,

Keywords:
Deep learning
Hybrid detection

Malware and false positive rates are particularly dependent on the use of appropriate classifiers.
Random forest In this paper, we propose a machine learning-based hybrid decision model that can achieve
Voting a high detection rate with a low false positive rate. This hybrid model combines a random

forest and a deep learning model using 12 hidden layers to determine malware and benign

files, respectively. This model also includes certain proposed voting rules to make final

decisions. In an experiment involving 6,395 atypical samples, this hybrid decision model

achieved a higher detection rate (85.1% and standard deviation of 0.006) than that of the

prior model (65.5%) without voting rules.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Malware is a powerful tool used in cyberattacks and has several individual variants that can easily reproduce and prop-
agate. For this reason, large malware outbreaks have become common in recent years.

In particular, adversarial malware binaries have become prevalent and are more capable of evading deep learning models
of malware detection than other types of malware. For example, an attacker can embed a “nematode” image y (with 8.2%
confidence) in a “panda” image x (with 57.7% confidence), resulting in a “gibbon” image z (having 99.3% confidence) [44].
Adversaries add garbage random bytes to the end of binaries to avoid being accurately detected as malware by reproducing
as a new type of malware. Hence, if a given antivirus uses a convolutional neural network (CNN)-based deep learning model

* We thank the reviewers for their insightful comments of the manuscript. This research was supported by the NRF (NRF-2017R1A2B3006360), [ITP
(IITP-2017-0-01889), and ONR (N00014-18-1-2661) grants.
* Co-primary author.
** Corresponding author.
E-mail addresses: yoosuyeon@kaist.ac.kr (S. Yoo), r3dzon3@chu.ac.kr (S. Kim), h112358132134@korea.ac.kr (S. Kim), brentkang@kaist.ac.kr (B.B. Kang).

https://doi.org/10.1016/j.ins.2020.08.082
0020-0255/© 2020 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.08.082&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ins.2020.08.082
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yoosuyeon@kaist.ac.kr
mailto:r3dzon3@chu.ac.kr
mailto:h112358132134@korea.ac.kr
mailto:brentkang@kaist.ac.kr
https://doi.org/10.1016/j.ins.2020.08.082
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

S. Yoo et al./Information Sciences 546 (2021) 420-435 421

to classify malware, adversarial malware may still pass that detection. These attacks [37,44], known as automated poisoning
attacks, are currently used, and such avoidance techniques are commonly used in attacks that employ packers.

Through these attacks, adversaries can disrupt user privacy via banker for later use in voice phishing. The proportional use
of ransomware has continuously and rapidly increased over the last three-year period for monetary gain. Incidents involving
both these malware types are closely related to financial fraud and confidential theft. They are distributed over a variety of
routes, such as emails or the Web, and the number of daily observed malware is countless.

Thus, several studies have been conducted to tackle malware delivery with zero-day attacks or adversarial attacks [7-
9,11,27,32]. Among them, [9,11,32] used dynamic-based approach methods to rapidly deactivate malware. [18] utilized
machine learning (ML)-based approaches to hamstring the dissemination of malware. However, previous studies [14,16]
showed difficulties in distinguishing between adversarial attacks and the behavior of certain benign files, which resulted
in false positives, thereby diminishing the value of this approach as a practical model.

We propose a hybrid ML-based malware detection model for critical security tasks of tracing malware propagation
through the Web and email as well as for precise classification of benign files. Rather than simply using a combined model
with static and dynamic features, this model uses a variety of hybrid approaches to improve detection rates, including hybrid
features, hybrid classifiers, and hybrid voting rules. This hybrid approach optimizes precision in the classification of malware
and benign files, providing a meaningful resource for blocking malware proliferation, particularly for automated analysis
approaches. The main contributions of this study are as follows:

o A new hybrid model is proposed to facilitate quick and concise malware detection to prevent their distribution. Compared
to extant models that do not include voting rules, the proposed model enhances detection accuracy by up to 19%, and can
identify malicious items within approximately 60.9 s without user analysis.

o It is demonstrated that the proposed model’s performance is comparable to that of current commercial models.

e The proposed progressive approach enhances the detection rate through feature analysis, application of an ensemble of
classifiers, and voting-rule optimization.

The remainder of this paper is organized as follows. Section 2 presents relevant extant studies and describes the proposed
approach. Section 3 provides an overview of the different features and classifiers included in the proposed detection model.
Section 4 explains the system framework and provides technical details concerning implementation of the proposed
approach. The dataset used is subsequently described in Section 5 along with the experimental setup and results obtained
therefrom. Limitations of the proposed model are discussed in Section 6, and major conclusions drawn from this study are
highlighted in Section 7.

2. Related works

In this section, we introduce the detection methods used in previous models. Then, we describe differences in these meth-
ods compared with those used in the proposed model.

The traditional approach for malware detection uses antivirus software and spyware scanners. However, these classical
detection methods, which use predefined syntactic signature matching to identify malware, can be easily evaded by code
polymorphism and metamorphism [27,7].

To address this shortcoming, various malware detectors have been recommended in two main analysis domains. The first
is static analysis with semantic signatures, and the second is dynamic analysis that can explore the behaviors of malware.
Malware detectors using static analysis rely on the semantics of instructions such as behavior template or model checking
[8,20,22]. These techniques have proven quite effective in identifying metamorphic malware, and they can usually cover the
overall program code faster than dynamic analysis [5]. However, static analysis can be defeated by deliberately crafting mali-
cious programs such that their malicious content is obfuscated and difficult to analyze.

The drawbacks of static analysis techniques have led to the development of dynamic analysis techniques [13], which ana-
lyze the behavior of malicious code while it is being executed in an emulated operating system environment. Function call
monitoring, function parameter analysis, and information flow tracking are commonly used techniques of a dynamic ana-
lyzer [11]. There are many automated tools supporting dynamic analysis such as CAMP [32], ZOZZLE [9], Cuckoo [16], TTAn-
alyze [5], CWSandbox [43], Anubis [3], Ether [10], and LoGos [19]. However, dynamic analysis is time consuming and
resource intensive. Furthermore, adversaries who account for dynamic detection mechanisms have created malware that
can be aware of virtual environments and respond to them in various ways to avoid running malicious code, thereby appear-
ing to be a benign program.

As mentioned above, both static analysis and dynamic analysis have some disadvantages. ML-based malware detection
methods have thus been proposed to overcome these disadvantages [2,1,6]. ML approaches first learn the features of an exe-
cutable file and then classify unknown malware samples into trained malware groups or determine if they are outliers.
Widely used ML classifiers include Decision Tree, Support Vector Machines (SVM), Random Forest, and so on. In the ML-
based detection model, it is important to choose appropriate features and an appropriate classifier model to account for sys-
tem performance.

422 S. Yoo et al./Information Sciences 546 (2021) 420-435

Several studies [35,21,28] have used static features such as byte-sequence n-grams, portable executables, string features,
opcode n-grams, and function-based features extracted from executable files [36]. Other studies [12,24] have applied
behavior-based features that can be obtained by executing the malicious program in a virtual environment.

Their results were later improved upon by Lu et al. [26], Islam et al. [15], and Santos et al. [33], who used both static fea-
tures and behavior-based features to improve accuracy. Islam et al. [15] presented a classification model based on the com-
bination of two static features and one dynamic feature. The three feature vectors are combined as an integrated feature
vector for a single classifier. Lu et al. [26] proposed an ensemble of classifiers (SVM and Association Rule algorithm) with
500 DLL/API function calls for static features and 12 behavior-based features. OPEM [33], which is a hybrid malware detector
proposed by Santos et al., utilizes not only sequences of operational codes for static features, but also a large number of
dynamic features. To validate the impact of their static and dynamic features, they trained a classifier with three datasets;
one with only static features, another with only dynamic features, and the other with both static and dynamic features. They
compared the results obtained using four classifiers, namely Decision Tree, K-nearest neighbor, Bayesian network, and SVM,
with those obtained using these three types of features. Khasawneh et al. [18] also used static and dynamic features with
ensemble classifiers in their malware detection model, but their detection system is supported by hardware and low-
level architectural features.

Recently, image-based malware detection systems [14,30,45] have been proposed. However, these detection systems are
vulnerable to image pixel attacks [25,37].

Based on the literature review, it is evident that ML techniques contribute to malware analysis, as classifiers can aid in
improving performance metrics such as computation time or detection rate. Furthermore, by taking advantage of both static
and dynamic analysis information, it is possible to construct a model that extracts the underlying structure of both malicious
and benign programs.

In this study, we propose a hybrid model that uses both random forest, a supervised learning model, and multilayer per-
ceptron, a deep learning model. This hybrid method provides more extensive detection coverage than typical pattern match-
ing, single dynamic models, or ML-based models. In particular, while supervised models cover most currently known
malware, these ML models still have difficulties in classifying benign files that exhibit malicious behaviors. In this case,
the deep learning module used in our hybrid model provides more precise classification.

3. Feature and classifier selection

In this section, we introduce the features and classifiers that we utilize. Most of these features have been used in prior
studies [22,33,17,4]. However, although we use well-known features, the number of features used differs, thereby affecting
the detection rate. To choose appropriate classifiers, we experimented using various ML algorithms with our selected static
features and dynamic features. We explain this approach below.

3.1. Static features

As listed in Table 1, we categorize the static features into five main classes: size, count, entropy, entry point, and Import
Address Table (IAT) information. The static feature comprises 79 features from these five feature classes in total. We also
categorize the dynamic features into five feature classes (see Table 2). The details of our features are presented in Table 1.

As represented in Table 1, most features have been used by previous studies, we refine these features to increase the
detection rate by manipulating the number of counts and size (i.e., # of API functions), or through the use of entropy infor-
mation. These attributes exposed unique characteristics in malware beyond what we expected (details in Table 3). Addition-
ally, these features differ and can have even higher results depending on the classification model used (see Table 3).

Our selection of static features include previous malware features such as the size of file sections, as well as the size of
parts of specific files parts such as data, text, bss, or header. Particularly, size is the atomic unit most frequently used for fea-
ture selection. In addition, we include API, DLL, and section quantities to enrich static features. We also include the entropy of
each section, the entry point, and the number of IAT listed. Malware triggers specific API calls, leaving IAT information that
can be used to distinguish it from benign files. Nonetheless, malware is often not accurately classified because attackers
mimic benign files to appear legitimate. For instance, malicious files obfuscated by packers are homogeneous in terms of
their length, number of file sections, or headers, when compared to benign files. These properties often overlap in other mal-
ware and are frequently encountered among them. Thus, we added dynamic approaches. For instance, a serial dynamic
behavior (file creation, network access, registry access) is considered to be suspicious, and these features are identified from
the use of the related API functions. Relevant details are described in the next subsection.

3.2. Dynamic features

Static features face limitations that prevent observation of malicious behaviors. To use behavioral information, dynamic
analysis provides a better solution, albeit this process is time consuming. Nonetheless, dynamic feature extraction is more
useful in such cases compared to use of static features.

S. Yoo et al./Information Sciences 546 (2021) 420-435

423

Table 1
Static features.
Feature Class Features Description
Size File (byte) Size of file
Headers byte Size of header
InitData (byte) Size of initialized data (.data section)
UnitializedData (byte) Size of uninitialized data (.bss section)
Text (byte) Size of text section
Debug (byte) Size of debug section
rsrc section (byte) Size of resource directory
Count API Counts of suspicious APIs (by PEframe)

DLL Counts of accessed DLL
Section Counts of file sections
Number of RVA sizes Number of data-directory entries
Language Number of languages used in resource section

Entropy entropy_data Entropy of data section
entropy_rdata Entropy of rdata section
entropy_reloc Entropy of reloc section
entropy_text Entropy of text section
entropy_rsrc Entropy of rsrc section

Entry point entry_point Entry point collected (by ExifTool)
IAT API functions 61 predefined API functions
Table 2
Dynamic features.
Feature class Feature Description

API File system changes

API call
DLL loaded info.

Location File changes in suspicious location
Suspicious DLL location
Suspicious registry access
Suspicious directory access

Mutex Mutex based features
Network Network (by winsock DLL)
Registry Command running

Suspicious registry

Predefined file system changes (copy, rename, delete)
Suspicious API call
Loaded DLL Information

suspicious file change; create, write, rename, delete
(Loaded) DLL location, where paths are predefined
Registry paths often used by malware

suspicious directory access

Classified by symbolized mutex
N/W open, outbound access and malicious IP spaces

Persistency (specific command running when reboot)
Registry changes (create, read, modify, delete)

To distinguish between benign and malicious properties, we adopted various features. Table 2 shows dynamic features,
most of which are independently critical. Among these features, the file system changes denote changes to the number of files
that we predefined, meaning files are created, copied, or deleted.

In particular, the location-based features relevant to file, DLL, and registry are used, where suspicious paths are prede-

fined. For details, refer to the link! below, where we provide file location, registry location, and predefined API functions. If
a file accesses the directory or registry (for create, read, copy, write, rename, or delete), we consider the file to be suspicious.
Malicious files (or scripts) often use specific locations to install and create new files. Hence, as these locations differ from those
of benign files, they are used to distinguish the malicious files. In particular, the file changes are considered as containing mali-
cious features. The file change feature depends on the directory information, where malware is often found. This feature helps
determine whether a given file is malicious.

Other API, network, and mutex-based features are often used in other studies [33,17] as malicious properties. API func-
tions were extracted from each value of the API functions in the DLLs that malware frequently accesses. Hence, these features
may be identified as symptoms of a suspicious trace. Although dynamic features are often used in previous studies, we rede-
fine these features as manipulating the number, counts, or via selective choice in location information and feature selection.

3.3. Classifiers

3.3.1. Test with typical dataset
To choose appropriate classifiers, we tested various ML algorithms with our selected static features and dynamic features.

T https://drive.google.com/file/d/1y279BbaKm44NVqKsuV7qHsk-KOHW-VjE/view

https://drive.google.com/file/d/1y279BbaKm44NVqKsuV7qHsk-K0HW-VjE/view

424 S. Yoo et al./Information Sciences 546 (2021) 420-435

Table 3

Static/dynamic feature-based detection rate by 10-fold cross validation. We used the default options in Weka for all classifiers in this experiment and the
results were based on weighted average. SD denotes standard deviation. The test was repeated three times to calculate SD values, and the average of three
calculations were used for each performance metric. Moreover, identical training datasets were used. The precision was calculated using the formula,
Precision = TP/(TP+FP). Static features were extracted from PEframe. Dynamic features were extracted from Cuckoo.

Classifier Static feature-based Dynamic feature-based
TP FP Precision ROC TP FP Precision ROC
Random Forest 0.946 0.070 0.946 0.988 0.984 0.003 0.987 0.995
SD 1.216E-16 0.00082 1.216E-16 1.216E-16 0 4.751E-19 0 0
AdaBoostM1 0.831 0.245 0.832 0.879 0.965 0.003 0.986 0.994
SD 0.00041 3.040E-17 0.00041 0.00041 0.04164 4.751E-19 1.216E-16 1.216E-16
RealAdaBoost 0.847 0.200 0.846 0.913 0.974 0.004 0.981 0.984
SD 0.00041 3.040E-17 0.00041 1.216E-16 1.216E-16 0 0 0
SVM 0.662 0.601 0.779 0.530 0.981 0.003 0.985 0.989
SD 0 0.00041 0 0.00041 0 4.751E-19 0 0
Logistic 0.840 0.219 0.839 0.904 0.973 0.013 0.980 0.984
SD 0.00041 0.00082 0.00041 0 0.00531 0.02123 0.00367 0.00204
Naive Bayes 0.486 0.316 0.703 0.750 0.856 0.011 0.953 0.975
SD 0.00367 0.00082 0.00122 0.00082 0 1.900E-18 0 0
K-Means 0.836 0.291 - - 0.807 0.722 - -
SD 0 0 - - 0 0 - -
MLP 0.879 0.151 0.878 0.939 0.976 0.004 0.983 0.993
SD 0.00163 0.00082 0.00163 0.00163 0.00653 0.00041 0.00327 0
LDA 0.833 0.235 0.833 0.890 0.945 0.004 0.969 0.972
SD 0.00163 0.00286 0.00122 0.00122 0 0 0 1.216E-16
FLDA 0.807 0213 0.810 0.890 0.908 0.007 0.960 0.969
SD 0.00163 0.00204 0.00163 0.00122 0 0 0 0

To demonstrate the best classifier, we collected datasets (from Jan. 2016 to Nov. 2018) from VirusChaser (a third-party
antivirus tool,https://www.viruschaser.com/). Out of the 149,859 samples used to evaluate our feature-based model,
139,384 were used as malware samples, and the remaining samples (10,475) were used as benign samples. All of these sam-
ples were labeled by VirusTotal [38].

The result was evaluated using Weka 3.9.1 [41] to produce optimal classifiers. We applied attribute values of five feature
classes in the static analysis and five feature classes in the dynamic analysis. We then performed 10-fold cross-validations to
avoid sample bias. We ran these evaluations six times to obtain average values; the results were typical. The ML classifiers
used for comparison were Random Forest, SVMs, Logistic, Naive Bayes, and K-Means.

Table 3 indicates that, for the experiment using static features, Random Forest has a true positive (TP) rate of 94.6% and a
false positive (FP) rate of 7.0%. In this model, bagging is applied using 100 iterations and the base learner. In the experiment
using dynamic features, Random Forest showed a high TP rate at 98.4% and a low FP rate at 0.3%. The deep learning model
MLP had a detection rate of approximately 97.6% in TP rate and 0.4% in FP rate.

A receiver operating characteristic (ROC) curve is a graphical plot of sensitivity against specificity. It is used here to rep-
resent the plot of the TP fraction versus the FP fraction. The point (0, 1) is the perfect classifier because it classifies all positive
and negative cases. Random Forest and MLP showed a high ROC area.

For static features, GainRatioAttributeEval [42] evaluates the worth of an attribute by measuring the gain ratio with
respect to the feature class.

GainR(Class, Attribute) = (H(Class) — H(Class|Attribute))/H(Attribute),

where H represents the entropy. The highest ranked attributes from Gain Ratio, sequentially, are API functions in IAT such as
_C_specific_handler,RtlLookupFunctionEntry, size-related features such as FileSize, entropy-related features such as entropy_re-
loc, count-related features such as APICount, and entry point, respectively. The attribute value range was [0.0046, 0.95754].
From this test, we assume that API functions and size-related features have a considerably greater effect on the detection
rate.

The standard deviation (SD) values listed in Table 3 indicate the robustness of a given model in view of the dataset
and features used. The performance results of statistical models might differ slightly during multiple repetitions of the
experiment under identical operating conditions. Therefore, most classifiers possess low SD values for typical datasets.
However, it is interesting to note that SD values obtained using Random Forest with dynamic features are slightly lower
than those obtained using static features. In contrast, for atypical datasets (Table 4), SD values obtained using Random
Forest with dynamic features exceed those obtained using Random Forest with static features. Therefore, use of both
static and dynamic features enhances the robustness of the proposed detection model irrespective of the type of data
processed.

https://www.viruschaser.com/

S. Yoo et al./Information Sciences 546 (2021) 420-435 425

Table 4
Static/dynamic feature-based detection rate in the atypical dataset. In general, precision indicates the relative closeness of multiple measurements in a grouped
series. Accuracy indicates the closeness of measurements to the accepted value it is given as (TP+TN) | (TP+TN+FP+FN).

Random Forest Static feature Dynamic feature
TP FP Accuracy Precision TP FP Accuracy Precision
Average 0.977 0.946 0.655 0.658 0914 0.532 0.758 0.762
SD 0.00289 0.00406 0.00113 0.00059 0.02109 0.04258 0.01334 0.01274
Table 5
Optimizer results.
Optimizer Loop MLPgynamic MLPgqic
Range (%) Average (%) Range (%) Average (%)
SGD 32 88.2-94.3 93.064 35.9-64.1 51.361
RMSprop 32 93.1-96.0 95.176 35.9-64.2 62.367
Adagrad 32 94.4-95.7 95.101 35.9-64.4 60.408
Adadelta 32 93.6-95.6 94.892 35.9-71.6 62.849
Adam 32 94.2-95.9 95.008 35.9-75.9 64.115
Adamax 32 94.2-95.7 95.127 35.9-73.6 65.354
Nadam 32 90.3-95.6 94.511 35.9-64.1 59.506

3.3.2. Evaluation with irregular dataset

The Korea Internet & Security Agency (KISA)? is a government body that develops policies to promote a safe internet envi-
ronment. They provide challenging datasets for research purposes that contain benign and malicious executables (https://
www.kisis.or.kr/kisis/subIndex/283.do). This R&D dataset contains very unusual data of benign files that show malicious behav-
iors as well as sets that include malware that can be overlooked by antivirus software. We used 4,160 labeled malware samples
and 2,235 benign samples from KISA-CISC2017-Malware-2nd.zip to evaluate our Random Forest classifier. We repeated this test
three times and used the average results obtained.

The result of FP in Random Forest, as presented in Table 4, shows that the detection rate is influenced by the type of
dataset. The FP rate in Random Forest increased to 94.6% and 53.2% in static and dynamic-feature based tests, respectively.
These high FP rates were caused by benign files that exhibited malicious behaviors. The TP rate with an identical dataset
slightly decreased to 97.7% and 91.4%, as listed in Table 4. Random Forest using static features classified the incorrect
instances of 2,114 out of 2,235 benign samples. As a result, we aimed to design a hybrid model that could increase the
overall classification performance using various types of file samples. The approach of this model is explained in the fol-
lowing section.

4. System design

In this section, we introduce a hybrid model to overcome the limitations of the atypical dataset in Section 3.3.2 for sup-
porting a comprehensive analysis of malware and atypical benign files. In the setup of the hybrid model, we use three
approaches to improve the detection rate. The first approach is the selection of well classified features. The second is to
use optimized classifiers (see Section 3). Lastly, we develop a voting method to increase detection performance. In this
approach, we use classifiers with high TP rates to augment the effects of voting. We also use training sets selected from data-
sets of VirusChaser and KISA.

4.1. Model setup

We adopted an ML-based hybrid model to develop the most feasible method. The overall system architecture is shown in
Fig. 1. We split the detection procedure into three steps, using Random Forest (RF) and Multi-Layer Perceptron (MLP), as shown
in Fig. 1.

Our model measures the degree of maliciousness via four classification models. The typical ML algorithm uses a scoring
range of [0,1] to express the degree of maliciousness with original files. By contrast, this proposed model uses four scoring
results via respective static and dynamic results of RF and MLP, and generates optimization results by applying our voting
model (detailed in Section 4.4) on the results from four scores of the hybrid model, namely RF;ic, RFaynamic, MLPstatic, and
MLdenamic~

2 https://www.kisa.or.kr/main.jsp.

https://www.kisis.or.kr/kisis/subIndex/283.do
https://www.kisis.or.kr/kisis/subIndex/283.do
https://www.kisa.or.kr/main.jsp

426 S. Yoo et al./Information Sciences 546 (2021) 420-435

Classification Model
JI static RF II @
:II dynamic RF II

Feature Extraction Training

dynamic
feature for RF Random

Forest
Training Sampl J

m EE— static feature

dynamic
feature for MLP

malicious or benign

O B

I static MLP I »
Deep

Learning

I dynamic MLP I »

‘%

feature extraction @

for RF and MLP

Test Samples

)

j
1
:
| e 1l N
:
:
:

Fig. 1. Overview of the proposed model.

First, the feature extraction stage (D) extracts the respective static and dynamic features from candidate files. Then, based
on four feature sets, the classification stage) generates results via four classification models. Finally, from the results, the
proposed model in the decision stage (3) searches the final decision values using a rule-based majority voting scheme.?

While a simple majority voting rule that selects alternatives having a majority can detect malware well, it is highly likely
to ignore the classifier that would correctly detect benign files with malicious behavior. For example, suppose there is a
benign file sample with features similar to malware. If three of the four models misclassify the sample as malware, and only
one model accurately classifies the sample as benign, then this benign sample is assigned to the incorrect category by simple
majority voting rule. Therefore, we concentrate on the benefits of minority that lead to decreases in false alarms, and propose
the rule-based majority voting scheme. In the rule-based majority voting scheme, the sample is preferentially labeled
according to the result of classifiers that detect the benign file well. We add a priority rule (see Table 6) to find an effective
classifier for detecting benign files. Samples not categorized by priority rule are then classified by the simple majority voting
rule. DMA in (3) expresses the decision making algorithm, which is detailed in Section 4.4. This concept relies on the proba-
bilistic diversity of malicious tendencies.

4.2. Preprocessing

For data preprocessing, we follow several steps. First, when a file is uploaded, the model performs a code review for static
analysis, and then executes dynamic analysis for the file. Then, the model collects various static analysis logs such as entropy,
active directory entries, and size of headers. Initially, the model collects several hundred static features. The information is
gathered using this format.

For instance, “ActiveDirectoryEntries”: [“IMAGE_DIRECTORY_ENTRY_EXPORT”, “IMAGE_DIRECTORY_ENTRY_IMPORT",
“IMAGE_DIRECTORY_ENTRY_RESOURCE”, “IMAGE_DIRECTORY_ENTRY_DEBUG”, “IMAGE_DIRECTORY_ENTRY_IAT"]. Subse-
quently, this model reduces the number of features until the number of features we use (i.e., 79 features for static analysis),
including registry, network, core API functions, and critical commands that malware often uses. In this processing, this model
changes the feature values to integers even though they contain characters. We do not use symbolic data in this model,
although we do count them. For instance, we count the number of accessed directory names, or the number of accessed
API functions.

This model selectively collects features to be used only in this model among collected results. For instance, these 79 fea-
ture values for static models are numeric numbers such as “feature”: [“0”, “0”, “42929", “382206", “0", 5", “0”, “0”, “0", “0”,
“0”, “5”,“67584",“0", “1024”, “21504", ...“0", “0”, “0"]. Then, we predict the suspiciousness of the file based on these feature
values with trained models. Examples of the preprocessing can be viewed via the provided link.*

In this preprocessing, we do not normalize data into specific intervals. We know that normalizing can have a negative
effect on the sensitivity of units when the features are meaningful. In this case, the distance between feature values makes
a difference. There is a large scale of malware. In particular, attackers attempting to neutralize certain properties of malware
can make them appear to be benign features. The difference that could be used to distinguish them has been diminished.

3 The most widespread decision fusion rule used to make conclusions from multiple classifiers is majority voting; it is a method in which a class is chosen if it
is voted for by the most classifiers. In majority voting, each classifier gets one vote, regardless of its detection accuracy level. To solve this problem, we can set a
weight for classifiers’ votes according to the accuracy of the result. Weighted voting was used in this study to determine the final decision.

4 https://drive.google.com/file/d/1T2EFarGa-OnbcQ_w-Yo5VdoimkXB-ovU/view.

https://drive.google.com/file/d/1T2EFarGa-OnbcQ_w-Yo5VdoimkXB-ovU/view

S. Yoo et al./Information Sciences 546 (2021) 420-435 427

Table 6
Rules of the decision maker, where RF denotes Random Forest and MLP is the deep learning classifier. In this rule set, RFy;. denotes the malicious probability
value of an executable as predicted by a RandomForest classifier to which static features are applied.

Rule 1 If RFsqric < 0.5, then return “benign”.

Rule 2 If RF gynamic < 0.5, then return “benign”

Rule 3 If RFs¢qtic < 0.5 or RFgynamic < 0.5, then return “benign”
Rule 4 If RF gynamic < 0.5 or MLPgypamic < 0.5, then return “benign”

However, some features are still valuable, such as directories that attackers often use to download malware, or the counts of
suspicious API calls. The units of these features are meaningful. We think that the differently-scaled features contribute sig-
nificantly to classification. Hence, we do not perform normalization into specific intervals (i.e., range [0.,1]).

4.3. Deep learning model optimization

We recognize that, in practice, it is more difficult to classify benign files that show malicious symptoms. General single
ML-based models remain inadequate in this approach because it is difficult for a single model to satisfy both a high TP and a
low FP at the same time. To increase the detection accuracy for benign files, we employ a deep learning model, as it provides
in-depth classification. We performed the measurement of respective detection rates in various ML models (see Table 3), and
chose a classification model for malware detection via random forest and MLP. We particularly focused on optimization of a
deep learning model to increase detection rate. To address these issues, we investigated optimized values that strongly affect
the detection rate. For deep learning model optimization, parameters were set up as follows. We initially set the default ini-
tial values. For example, the node was 250, an epoch was 512, the batch size was 2,048, the hidden layer was 16, the opti-
mizer was sgd, and there was no dropout. Then, we changed the value from low to high to find the optimal value for the first
parameter, “node”. After finding the optimal value of the node, we experimented to find the optimal value of the next param-
eter, epoch, after reflecting the optimal value to the node. The performance test to find the optimal value of each parameter
was applied sequentially to all hyperparameters. However, random weight, activation function (RELU for hidden layer and
softmax for output layer), and cross-entropy as cost function were used as default without modification. Through experi-
mentation, optimized arguments for nodes, epochs, batch size, and hidden layers are as shown in next section. In this exper-
iment, we used samples from KISA.

4.3.1. Node

Fig. 2 (left) shows the change in the detection rate in MLPgynamic as the number of nodes increases. As shown by this figure,
the detection rate was the highest when the model had 205 nodes, while the lowest detection rate occurred with three
nodes. To verify this experiment, we repeatedly tested the detection rate for each node between 1 and 256. The general range
of the detection rate with MLP was 83.7-96.1%. However, MLP,;. showed a stable tendency in the range between 20-38
nodes.

Although MLPy;. exhibited relatively weak performance, it is still valuable as a component of a hybrid classification sys-
tem, because this classifier contributes one vote to the final decision by the majority voting rule.

- dynamic_rmsprop static_adamax
70
90 - =l
60
s 807 2
o € 55 4
[V [
g 8
1] @
So870 2 5 |
45 -
60 -
40 -
50 +— T T T T T o410 T T T T T T T T
0 50 100 150 200 250 0 5 10 15 20 25 30 35 40
node node

Fig. 2. Detection rate comparison according to node increases, performed 256 times (left) and 39 times (right) each.

428 S. Yoo et al./Information Sciences 546 (2021) 420-435

4.3.2. Epoch

The highest detection rate using epochs was at an epoch count of 364, which exhibited a detection rate of 96.004%. When
the number of epochs was increased, this experiment showed increasing instability. The results of our experiment exhibited
increasing unstable tendency along with the increase of epoch, as shown in Fig. 3 (left). In fact, the detection rate did not
depend on the increased number of epochs. This tendency was also exhibited in MLPg;. of Fig. 3 (right).

4.3.3. Batch size

Batch sizes higher than 200 generally presented higher detection rates, with the highest detection rate being 95.8%. The
lowest detection rate was roughly 46.7%, at a batch size of 176 in MLPgynamic. The MLPsysic of Fig. 4 (right) illustrates the results
of an additional experiment showing that a higher batch size provides greater instability and low detection rates, as stability
becomes increasingly unstable as batch sizes increase.

4.3.4. Hidden layer

In determining an optimized hidden layer count, our experiment (see Fig. 5) showed the highest detection rate at 12 hid-
den layers with an average detection rate of 95.002%. We repeated this test 16 times on each hidden layer count between 1-
16.

4.3.5. Optimizer

We performed additional verification of the optimizer used in a deep-learning model. This optimizer selection is an
important factor for increasing the detection rate. As shown in the experimental results listed in Table 5, the highest detec-
tion rates for MLPgynamic and MLPgqc resulted from RMSProp and Adamax, respectively.

4.3.6. Dropout

The general ML-based classifier is susceptible to overfitting. In particular, benign files with malicious behaviors are crit-
ical in ensuring proper classification. We applied dropout in an attempt to overcome false positives and overfitting, but the
results showed a high fluctuation range. The deep learning model is sensitive to our features, and the result shows that the
dropout simultaneously expressed both high and low detection rates in some places. Thus, we assumed that the drastically
fluctuating detection rate resulted from the instability caused by dropout with small node amounts. Consequently, we
inserted two dropout layers in the proposed model with average rates of 0.5 to avoid overfitting.

4.3.7. Random weight

In applying the intervals for random weight, we configured a random weight using a random uniform interval
[-0.05,0.05] in the first hidden layer, and after the first layer, we used a Glorot uniform initializer called the Xavier uniform
initializer. It draws samples from a uniform distribution within [—limit, limit], where the limit is sqrt(6 / (fan_in + fan_out)).
In this formula, fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the
weight tensor. Additionally, the bias was initialized to zero, which is the default value in a keras.

4.3.8. Activation functions

Al-HydRa used the rectified linear unit (ReLU [23,29]) as activation functions in hidden layers; ReLU is a simple non-linear
function f(x) = max(x, 0). The softmax activation function was used in the output layer. In the back-propagation step, we used
RMSProp and Adamax optimizer for the dynamic MLP model and static MLP model, respectively.

4.3.9. Other parameters

In the proposed model, we used the default values of our optimizer, RMSprop. The default value of keras.optimizers.
RMSprop is coded as follows: Ir = 0.001, rho = 0.9, epsilon = None, decay = 0.0, where Ir denotes learning rate with float >= 0.
rho is also float, >= 0, and RMSprop denotes the decay factor, corresponding to fraction of the gradient to be retained at each
time step. Epsilon is the Fuzz factor and the float >= 0. If epsilon = None, it defaults to K.epsilon(). Decay is the learning rate
decay over each update with float >= 0. The bias is initialized to zero, the default setting of the keras “kernel_initalizer”.

Through these experiments, our MLPgynamic used 39 nodes, 1072 batch sizes, 12 hidden layers, 87 epochs, RMSprop as the
optimizer, and 432 features. MLPgy used 18 nodes, 1520 batch sizes, seven hidden layers, 103 epochs, adamax as the opti-
mizer, and 79 features. Both classification models adopted ReLu and softmax as the activation function. In particular, to avoid
the learning slowdown caused by the (z) term, we used a cross-entropy cost function instead of the mean squared error
(MSE) cost function.

4.4. Decision making algorithm

This system basically uses a majority vote to execute decision making based on results from four models: RF and MLP
with static features, as well as RF and MLP with dynamic features. In this experiment, we found that single classifier RF
shows high performance in malware detection, but with a high FP rate for benign executables. To reduce this FP rate, we
propose additional voting rules as shown in Table 6.

percent %

100

S. Yoo et al./Information Sciences 546 (2021) 420-435

dynamic_rmsprop

90 4

80

70 A

60

50

P A A A A A

o

T T T
100 200 300
epochs

static_adamax

429

80 1
70 1
e
2 60
c
ol
=
L}
a
50 4
40
T T T T T T
0 100 200 300 400 500
epochs

Fig. 3. Graph of detection rates with increasing epoch values. The detection rate was unstable even when higher epoch values were applied. The X-axis
denotes the number of trials and the Y-axis denotes the detection rate.

percent %

100

dynamic_rmsprop

90

80

70 A

60

50

WWWWWV

percent %

T T T T T
1000 1250 1500 1750 2000

batch_size

T T T
250 500 750

static_adamax

75 A

70 A

65

60

55 A

35 4

T T T T
1000 1250 1500 1750

batch_size

T T T T
250 500 750 2000

Fig. 4. Graph of detection rates with increasing batch sizes. Detection rates became more stable when the batch size was more than 200 in MLPgynamic. In
contrast, MLPg,,;. was relatively unstable.

percent %

100

dynamic_rmsprop

90

80

70 A

60

50

——————— T, ——

percent %

static_adamax

75 4

70 1

65

60

55

35

Fig. 5. Optimizing test on the number of hidden layer.

430 S. Yoo et al./Information Sciences 546 (2021) 420-435

Table 7

Rule combination.
Index Rule combination Index Rule combination
1 majority voting (MV) 9 MV + Rule 2,3
2 MV + Rule 1 10 MV + Rule 2,4
3 MV + Rule 2 11 MV + Rule 3,4
4 MV + Rule 3 12 MV + Rule 1,2,3
5 MV + Rule 4 13 MV + Rule 1,2,4
6 MV + Rule 1,2 14 MV + Rule 1,3,4
7 MV + Rule 1,3 15 MV + Rule 2,3,4
8 MV + Rule 1,4 16 MV + Rule 1,2,3,4

The rules in Table 6 can be described as 16 possible cases (listed in Table 7) according to the majority vote outcome and
combinations of the four decision rules. The results are reflected in Table 8.

Previous studies have used a majority vote for distinguishing between malware and benign files. However, the prediction
values of TP and FP are produced differently according to classifiers. Some classifiers show a high TP rate while simultane-
ously showing a high FP rate. On the other hand, some classifiers show a low rate of both TP and FP. Due to limitations of
individual classifiers, it is not practical to pursue building a single optimized classifier with both a high TP rate and a low FP
rate. Hence, we utilize a hybrid model that employs several classifiers that are optimized for either a low FP rate or a high TP
rate. To overcome FP issues, this proposed model makes a final decision via rule-based majority vote based on
RFtatic, RF gynamic, MLPstaric, and MLPgyamic, reflecting the optimized properties of every classifier.

If a given model only depends on the majority vote, classifiers that have difficulties in benign detection generally show a
high FP rate. In general, benign programs that exhibit malicious behaviors can be determined to be malicious, which
increases the overall FP rate. Thus, in this paper, we propose four decision rules to perform benign classification well via clas-
sifiers with a low FP rate.

Although we use four classification models, we did not add a decision rule of MLPy,;. as shown in Table 6 because,
although it provides a high TP rate, it simultaneously produces a high FP rate. In Rule 1, RFyq. values frequently show
0.5 probability. Thus, we include RF,=0.5 to observe the effect on FP rate. Our rule-based majority model prefers rule poli-
cies, and subsequently applies a majority rule. In the files with no majority element, we evaluated which one is more val-
idated when the model gives a result of benign or malicious. Consequently, it affected 2% more when this model gave a
decision as malicious, as shown in Table 8.

Algorithm 1: Decision making algorithm for detection with high accuracy. Rule 1 and Rule 4 are applied.

1 Rule-based Majority Vote (RFsatic, RFaynamic: M L Psatic, M L Pyynamic);
Input : Non-negative benign floats RFaric: REgynamic, and M LPyynamic from
prediction results of the classification model. They are constant in the
range [0,1]
Output: benign or malicious
2 if (RE i <) or (RFyynamic < 0.5 or M LPynamic < 0.5) then
3 \ return benign;
4 else
5

L return MajorityVote(RFiatic, RFaynamics M L Psatic: M L Paynamic);

Although all single classifiers are optimized, this does not mean that the ensemble of classifiers is optimized. Thus, to
make a final decision, we use an optimal decision-making algorithm. We provide an example of the prediction results for
which this decision rule is applied to the unusual dataset in Table 8. In this approach, we found that voting with Rule 1
and Rule 4 resulted in the best performance for TP and FP rates. Namely, RF;qic in Rule 1, and RFgyngmic and MLPgynamic in Rule
4 are the best classifiers in our model in terms of a high TP rate and a low FP rate.

The TP rate via rule combination was more than 90% in most cases. Malware is detected best, with the highest TP rate,
when majority voting is applied to the proposed system. There are two reasons for this. Firstly, both the RF and MLP clas-
sifiers perform malware detection well, with features that accurately characterize malware. Therefore, there is a high prob-
ability that three or more classifiers are classified as malware on actual malicious files. Secondly, the added decision rules all
return lower FP results. This means that benign programs can be categorized well, but malware is relatively less detected.
However, because Rules 1, 2, and 3 do not significantly affect the TP rate, we can confirm that the RF classifier is effective for
detection of malware rather than detection of benign programs.

S. Yoo et al./Information Sciences 546 (2021) 420-435 431

Table 8
Results based on our rule-based majority vote.
Broad dataset Narrow dataset

Voting type Accuracy TPrate FPrate Precision Accuracy TPrate FPrate Precision
Majority Vote 0.968 0.96 0.023 0.976 0.383 0.96 0.885 0.335
MV+1 0.964 0.952 0.023 0.975 0.449 0.952 0.784 0.361
MV+2 0.968 0.96 0.023 0.976 0.386 0.96 0.881 0.336
MV+3 0.968 0.96 0.023 0.976 0.407 0.96 0.849 0.344
MV+4 0.945 0.904 0.016 0.983 0.48 0.904 0.717 0.369
MV+1,2 0.964 0.952 0.023 0.975 0.452 0.952 0.781 0.362
MV+1,3 0.964 0.952 0.023 0.975 0.452 0.952 0.781 0.362

Case 1 MV+1,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
MV+2,3 0.968 0.96 0.023 0.976 0.407 0.96 0.849 0.344
MV+2,4 0.945 0.904 0.016 0.983 0.48 0.904 0.717 0.369
MV+3,4 0.945 0.904 0.016 0.983 0.501 0.904 0.686 0.38
MV+1,2,3 0.964 0.952 0.023 0.975 0.452 0.952 0.781 0.362
MV+1,2,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
MV+1,3,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
MV+2,3,4 0.945 0.904 0.016 0.983 0.501 0.904 0.686 0.38
MV+1,2,34 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
Majority Vote 0.988 1 0.023 0.977 0.396 1 0.885 0.344
MV+1 0.508 0.988 0.961 0.501 0.406 0.988 0.864 0.347
MV+2 0.968 0.96 0.023 0.976 0.381 0.96 0.889 0.334
MV+3 0.968 0.96 0.023 0.976 0.407 0.96 0.849 0.344
MV+4 0.945 0.904 0.016 0.983 0.48 0.904 0.718 0.369
MV+1,2 0.964 0.952 0.023 0.975 0.452 0.952 0.781 0.362
MV+1,3 0.964 0.952 0.023 0.975 0.452 0.952 0.781 0.362

Case 2 MV+1,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
MV+2,3 0.968 0.96 0.023 0.976 0.407 0.96 0.849 0.344
MV+2,4 0.945 0.904 0.016 0.983 0.48 0.904 0.718 0.369
MV+3,4 0.945 0.904 0.016 0.983 0.501 0.904 0.686 0.38
MV+1,2,3 0.964 0.952 0.023 0.975 0.452 0.952 0.781 0.362
MV+1,2,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
MV+1,3,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399
MV+2,3,4 0.945 0.904 0.016 0.983 0.501 0.904 0.686 0.38
MV+1,2,3,4 0.941 0.896 0.016 0.982 0.538 0.896 0.628 0.399

Case 1: If there is no majority element, then the system returns "benign”

Case 2: If there is no majority element, then the system returns "malicious”

Broad dataset: this dataset consists of usual benign programs and malicious programs Narrow dataset: this dataset consists of unusual benign programs
(with characteristics similar to those of malware) and malicious programs.

On the other hand, the false positive rate can decrease according to the addition of decision rules. The lowest FP rate is
achieved when Rule 1 and Rule 4 are applied, while the FP reduction effect of Rule 2 is insufficient. Therefore, we can say that
the MLPyyqmic model classifies benign programs well.

The decision rule was able to confirm to a greater effect when applied to a dataset of unusual but benign programs (nar-
row dataset). In other words, we can confirm that it is effective in detecting benign programs that exhibit behaviors similar
to malware. When all decision rules are applied, the FP rate is reduced by about 26% (from 88.5% to 62.8% in Case 2 of
Table 8).

If the majority element does not exist, and the decision rule is not applied, it is better to judge a target as malicious
because the accuracy is 2% higher than benign. When the system follows the decision rule, there is a potential problem
we should consider.

Notably, when only decision Rule 1 is used against a broad dataset, it results in a high FP rate. Therefore, the RF;,;. model
should be used in combination with other classifiers rather than being used alone for benign program classification.

Consequently, to increase the TP rate, majority vote is preferable. However, if accuracy is preferred, a rule-based majority
vote should be used. This choice is at the developers’ discretion.

4.5. Implementation

This model consists of 445 lines of code in total. Further, our code includes 150 lines of the keras (version 2.2.2) library for
MLP, 45 lines of Random Forest-based classification, and 250 lines of configuration-related code using Python 2.7.12 on
Ubuntu 16.04.4 LTS. The training dataset used for Random Forest contains 22,004 static records and 7,513 dynamic records,
while that used for MLP contains 15,139 static records and 15,353 dynamic records, as shown in Tables 9 and 10. Our model
is the de facto model. This proposed model uses a small training dataset for detecting a large-scale executable.

432 S. Yoo et al./Information Sciences 546 (2021) 420-435
5. Evaluation

This section presents a demonstration of the proposed classification model. In total, 6,395 samples were evaluated using
our ML-based approach. In this evaluation, we conducted two experiments: a detection rate test compared to antivirus prod-
ucts, and the result of voting method for building a model. These datasets were also used to investigate the performance.

5.1. Datasets and experimental setup

For experiments with our optimized model, we collected 6,395 samples from KISA. We compared the detection rates of
commercial antivirus products and our model. This dataset is entirely different from general datasets, as benign files are
commonly used application files, but they show malicious behaviors.

We ran the experiments on Linux inside VirtualBox with an Intel XeonCore Silver 4116 CPU 2.10 GHz with 48 cores, 128
GB of memory, and an Nvidia Titan V. We used six Virtualbox instances on Windows 7 Ultimate 32-bit. The VM images were
configured to be run for 360 s/file for dynamic analysis at most.

5.2. Detection rate and voting results

In this evaluation with 6,395 (4,160 malicious and 2,235 benign) labeled files, this model showed both a high detection
rate and a low rate of false positives.

Table 11 indicates that our model performs well at detecting various malware instances. Likewise, this provides a TP rate
of 85.7% and an FP rate of 16.1% with a performance of 60.9 s per file, including the time for static/dynamic feature extrac-
tion. This model is comparable to that of current commercial products. During the real test, the model detected most mali-
cious and benign files. Consequently, the hybrid model with our voting approach is effective in detecting malware and
benign files.

5.3. Performance

In general, MLP and SVM show a high trade-off in training and testing. The Random Forest classifier took a total of 17.06
seconds to train and predict 149,859 instances, while MLP and SVM took 882.77 seconds and 866.55 seconds, respectively.
Thus, SVM and MLP have high computational complexity. In contrast, RVFL [31,34] and SCNs [40,39] show reasonable per-
formance. In this study, we evaluated the difference between these models. The results are presented in Table 13.

In this evaluation, RVFL and SCNs exhibited a high performance; however, their detection rates were lower than that of
Al-HydRa, as shown in Table 12 and 13. RVFL was faster than SCN, but SCN exhibited higher accuracy than RVFL. As a result,
RVFL and SCNs were found to have potential for implementation in a real-time detection system. In particular, if these mod-
els apply our approaches, such as the proposed voting system, we believe that the accuracy can be increased even further. In
this case, both models may be useful in online and mobile systems. Thus, in the future, we need to conduct further inves-
tigations on these models to draw reliable conclusions on their use in actual systems.

6. Discussion

This model requires heavy computation to extract various features from the content. In general, a feature-based approach
provides high performance for cases with small feature classes; however, for cases with a large number of features, this
approach results in performance delays because a considerable time is required for feature extraction. We utilize a variety
of features, and dynamic features, in particular, require considerable time for processing. The dynamic feature extraction
uses a high-interaction analysis in separated environments. As such, the model makes frequent tradeoffs while monitoring
behavior. Consequently, this dynamic feature selection is a critical aspect that determines a high accuracy rate; however,
heavy loads result in low performance. Our dynamic analysis system may be vulnerable to anti-VM attacks from malware
and can be stopped without any actions. Then, we use static models. This static model exhibited high detection rates on gen-
eral files, in particular, for experiments with almost 15 M samples.

In this study, we focused on improving the detection rate by using hybrid classifiers and voting, rather than improving the
performance by using well-defined features. Nonetheless, we need to apply an advanced detection rate in the future because
our detection rate is unsatisfactory on narrow datasets. Further studies must be conducted to improve the detection rate. In
this approach, we can apply the difference between static features and dynamic features in terms of the # of API functions.
Adversaries hide API functions in IAT tables of malware, and static analysis is limited. Thus, we can examine the numbers of
API functions accessed from malware files created during the run time. In particular, malware with anti-VM does not run in a
virtual machine, so the difference between the static and dynamic analysis can be effective.

In addition, we found that one of the most critical features for classifying benign executables that have malicious behav-
iors is based on sign codes. For instance, sign codes provide critical information for classification. In our datasets, “None,”
“Microsoft Corporation. All right reserved.,” “(C),” and “ ” comprised 84.2% in total. Among them, “None” was 74.3%. In Pro-
ductName, “None” was 75.8% and “None,” “Microsoft Windows Operating System,” and “ ” were 81.5% in total. The features

S. Yoo et al./Information Sciences 546 (2021) 420-435 433

Table 9
Number of features.
classifier trainset # feature # train sample
RF static malicious 79 15279
benign 79 6725
dynamic malicious 513 6492
benign 513 1021
MLP static malicious 79 9686
benign 79 5453
dynamic malicious 432 12425
benign 432 2928

Table 10
Number of samples in the dataset used for verifying our model. We split the dataset into three groups in advance: training dataset, validation dataset, and test
dataset.

Classifier Dataset Type Total Benign Malicious

Static RF Train 22,004 6,725 15,279
Validation - - -

Test 6,395 2,235 4,160

Dynamic RF Train 7,513 1,021 6,492
Validation - - -

Test 6,395 2,235 4,160

Static MLP Train 15,139 5,453 9,686

Validation 1,514 545 969

Test 6,395 2,235 4,160

Dynamic MLP Train 15,353 2,928 12,425

Validation 2,078 340 1,738

Test 6,395 2,235 4,160

Table 11

Comparison of detection between a hybrid model and antivirus products. Al — Hydra decides in favor of benign in the case of majority votes that are applied
using rules (MV+1,2,3,4 applied). Otherwise, this model decides in favor of malicious. In this experiment, Al-HydRa showed an average detection rate of 0.851
from three repeated tests, and its standard deviation was 0.00588.

Classifier TP FP Accuracy Precision
BitDefender 1091 0 0.520 1
ClamAV 2537 9 0.745 0.996
Sophos 2553 0 0.749 1
Al — HydRa 3564 360 0.851 0.908
Table 12

Performance test results of RVFL, SCN, and Al-HydRa. The time is based on # of samples analyzed by each model in Table 10. Model in the first column indicates
the learning model, and dataset represents our four feature datasets. For instance, the RF static set is the static feature dataset extracted for RF in our model.

Dataset \ Model RVFL SCN Al-HydRa
Accuracy Time (seconds) Accuracy Time (seconds) Accuracy Time (seconds)
RF static set 0.276 0.028 0.650 2331 0.851 60.899
RF dynamic set 0.603 0.132 0.746 1.419
MLP static set 0.457 0.040 0.613 1.713
MLP dynamic set 0.749 0.183 0.777 2411

LegalCopyright and ProductName entirely increased TP rate to 0.05% and decreased FP rate to 0.058%. We leave this
study for future work.

Finally, additional experiments are required for a large fraction of file instances. Thus, we intend to evaluate this approach
in future work. Nonetheless, this model is built to overcome previous limitations: packing, adversarial attacks, and 0-day
attacks.

In addition, the rule-based majority vote might be replaced by a weighted majority vote because it allows different scor-
ing for each classifier according to TP and FP.

434 S. Yoo et al./Information Sciences 546 (2021) 420-435

Table 13

Performance test results of Al-HydRa from training to prediction time. Model in the first column indicates the four internal classifiers of Al-HydRa. The second
column represents the time taken to learn each internal classifier using the training samples in Table 10. Test time in the third column represents the average
time to test one sample and 6,395 labeled samples were used for the test dataset. Total time indicates the sum of training time in the second column and test
time in the third column. Average total time in the last column was calculated as the average of the four values of the total time in the fourth column. The
detection procedure of Al-HydRa can be understood from the following link (http://shorturl.at/IsSNY3).

Model Al-HydRa
Training Time Test Time Total Time Average Total Time
(seconds) (seconds/sample) (seconds) (seconds)
Static RF 0.152 60.8144 60.966 60.899
Dynamic RF 0.153 60.967
Static MLP 0.017 60.831
Dynamic MLP 0.016 60.830

7. Conclusions

Although evasion methods are continually evolving, adversaries leave a footprint within the malware. The malware exhi-
bits specific patterns or leaves considerable traces during activation. Although many features utilized by malware have been
studied, further studies can be conducted to achieve a high detection accuracy to overcome 0-day attacks and adversarial
attacks.

To do this practically, we proposed a mechanism using a deep-learning model and a supervised model. This hybrid model
serves as a comprehensive detection scheme for preventing the dissemination of malware and is unlike prior ML-based tech-
niques. The hybrid-based model provides hybrids in feature, classifier, and voting systems, unlike prior hybrid approaches
(i.e., static/dynamic). This model helps to identify core aspects of benign files, which exhibit seemingly malicious files, pro-
viding a practical model with real-time processing. In particular, we realized that a hybrid model, by combining a respective
different classifier that shows a high TP and a low FP, is very effective in malware detection. The proposed model also pro-
vides insights for achieving comprehensive detection with a small training dataset. We believe that the use of this model
clarifies malware classification for 0-day attacks, and it can be employed extensively.

CRediT authorship contribution statement

Suyeon Yoo: Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing. Sungjin
Kim: Methodology, Software, Formal analysis, Writing - original draft, Writing - review & editing. Seungjae Kim: Data cura-
tion, Software. Brent Byunghoon Kang: Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] ML.F. Ab Razak, N.B. Anuar, R. Salleh, A. Firdaus, The rise of “malware”: Bibliometric analysis of malware study, Journal of Network and Computer
Applications 75 (2016) 58-76. doi: 10.1016/j.jnca.2016.08.022.
[2] M. Ahmed, A.N. Mahmood, J. Hu, A survey of network anomaly detection techniques, Journal of Network and Computer Applications 60 (2016) 19-31,
https://doi.org/10.1016/j.jnca.2015.11.016.
[3] Anubis, URL:http://anubis.iseclab.org/.
[4] G.N. Barbosa, R.R. Branco, Prevalent characteristics in modern malware, black hat USA 2014 (2014).
[5] U. Bayer, A. Moser, C. Kruegel, E. Kirda, Dynamic analysis of malicious code, Journal in Computer Virology 2 (2006) 67-77, https://doi.org/10.1007/
s11416-006-0012-2.
[6] Z. Bazrafshan, H. Hashemi, S.M.H. Fard, A. Hamzeh, A survey on heuristic malware detection techniques, in: Information and Knowledge Technology
(IKT), 2013 5th Conference on, 2013, pp. 113-120. doi: 10.1109/IKT.2013.6620049.
[7] M. Christodorescu, S. Jha, University of Wisconsin-Madison Department of Computer Sciences, 2006.
[8] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, R.E. Bryant, Semantics-aware malware detection, Proceedings of Security and Privacy, [EEE Symposium
on, 2005, pp. 32-46. doi: 10.1109/SP.2005.20.
[9] C. Curtsinger, B. Livshits, B.G. Zorn, C. Seifert, ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection, Proceedings of USENIX Security
Symposium (2011) 33-48.
[10] A. Dinaburg, P. Royal, M. Sharif, W. Lee, Ether: malware analysis via hardware virtualization extensions, in: Proceedings of the 15th ACM Conference on
Computer and Communications Security, 2008, pp. 51-62, https://doi.org/10.1145/1455770.1455779.
[11] M. Egele, T. Scholte, E. Kirda, C. Kruegel, A survey on automated dynamic malware-analysis techniques and tools, ACM Computing Surveys 44 (2012) 6,
https://doi.org/10.1145/2089125.2089126.
[12] L Firdausi, A. Erwin, A.S. Nugroho, et al., Analysis of machine learning techniques used in behavior-based malware detection, Advances in Computing,
Control and Telecommunication Technologies (ACT), 2010 Second International Conference on, 2010, pp. 201-203. doi: 10.1109/ACT.2010.33.
[13] E. Gandotra, D. Bansal, S. Sofat, Malware analysis and classification: A survey, Journal of Information Security 5 (2014) 56, https://doi.org/10.4236/
jis.2014.52006.
[14] K. Han, B. Kang, E.G. Im, Malware analysis using visualized image matrices, The Scientific World Journal (2014), https://doi.org/10.1155/2014/132713.

https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.1007/s11416-006-0012-2
http://refhub.elsevier.com/S0020-0255(20)30852-5/h0045
http://refhub.elsevier.com/S0020-0255(20)30852-5/h0045
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1155/2014/132713
http://shorturl.at/lsNY3

S. Yoo et al./Information Sciences 546 (2021) 420-435 435

[15] R.Islam, R. Tian, L.M. Batten, S. Versteeg, Classification of malware based on integrated static and dynamic features, Journal of Network and Computer
Applications 36 (2013) 646-656, https://doi.org/10.1016/j.jnca.2012.10.004.

[16] S. Jamalpur, Y.S. Navya, P. Raja, G. Tagore, G.R.K. Rao, Dynamic malware analysis using cuckoo sandbox, in: 2018 Second International Conference on
Inventive Communication and Computational Technologies (ICICCT), 2018, pp. 1056-1060, https://doi.org/10.1109/ICICCT.2018.8473346.

[17] N. Kaur, AK. Bindal, A. PhD, A complete dynamic malware analysis, International Journal of Computer Applications 135 (2016) 20-25, https://doi.org/
10.5120/ijca2016908283.

[18] K.N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, D. Ponomarev, Ensemble learning for low-level hardware-supported malware detection,
International Workshop on Recent Advances in Intrusion Detection (2015) 3-25, https://doi.org/10.1007/978-3-319-26362-5_1.

[19] S. Kim, S. Kim, D. Kim, Logos: Internet-explorer-based malicious webpage detection, ETRI Journal 39 (2017) 406-416.

[20] J. Kinder, S. Katzenbeisser, C. Schallhart, H. Veith, Detecting malicious code by model checking, International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2005, pp. 174-187. doi: 10.1007/11506881_11.

[21] J.Z. Kolter, M.A. Maloof, Learning to detect malicious executables in the wild, in: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004, pp. 470-478, https://doi.org/10.1145/1014052.1014105.

[22] C. Kruegel, W. Robertson, G. Vigna, Detecting kernel-level rootkits through binary analysis, Computer Security Applications Conference, 2004 20th
Annual, 2004, pp. 91-100. doi: 10.1109/CSAC.2004.19.

[23] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436, https://doi.org/10.1038/nature14539.

[24] T. Lee, J. Mody, Y. Lin, A. Marinescu, A. Polyakov, Application behavioral classification, Google Patents (2007).

[25] X. Liu, Y. Lin, H. Li, J. Zhang, Adversarial examples: Attacks on machine learning-based malware visualization detection methods, arXiv preprint
arXiv:1808.01546 (2018) (2018).

[26] Y.B. Lu, S.C. Din, C.F. Zheng, B.J. Gao, Using multi-feature and classifier ensembles to improve malware detection, Journal of CCIT 39 (2010) 57-72.

[27] A. Moser, C. Kruegel, E. Kirda, Limits of static analysis for malware detection, Twenty-Third Annual Computer Security Applications Conference
(ACSAC) (2007) 421-430, https://doi.org/10.1109/ACSAC.2007.21.

[28] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev, Y. Elovici, Unknown malcode detection using opcode representation, Intelligence
and Security Informatics (2008) 204-215, https://doi.org/10.1007/978-3-540-89900-6_21.

[29] V. Nair, G.E. Hinton, Proceedings of the 27th International Conference on Machine Learning (ICML) (red2010), pp. 807-814.

[30] L. Nataraj, S. Karthikeyan, G. Jacob, B. Manjunath, Malware images: visualization and automatic classification, in: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, 2011, p. 4, https://doi.org/10.1145/2016904.2016908.

[31] Y.H. Pao, Y. Takefuji, Functional-link net computing: theory, system architecture, and functionalities, Computer 25 (1992) 76-79, https://doi.org/
10.1109/2.144401.

[32] M.A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, N. Provos, CAMP: Content-Agnostic Malware Protection, Proceedings of Network and Distributed
System Security Symposium (NDSS), 2013.

[33] L Santos, J. Devesa, F. Brezo, J. Nieves, P.G. Bringas, Opem: A static-dynamic approach for machine-learning-based malware detection, International
Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, 2013, pp. 271-280. doi: 10.1007/978-3-642-33018-6_28.

[34] S. Scardapane, D. Wang, Randomness in neural networks: an overview, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7
(2017), https://doi.org/10.1002/widm.1200.

[35] M.G. Schultz, E. Eskin, F. Zadok, S.J. Stolfo, Data mining methods for detection of new malicious executables, Proceedings of Security and Privacy, IEEE
Symposium on, 2001, pp. 38-49. doi: 10.1109/SECPRI.2001.924286.

[36] A. Shabtai, R. Moskovitch, Y. Elovici, C. Glezer, Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-
art survey, Information Security Technical Report 14 (2009) 16-29, https://doi.org/10.1016/j.istr.2009.03.003.

[37] J. Su, D.V. Vargas, S. Kouichi, One pixel attack for fooling deep neural networks, arXiv preprint arXiv:1710.08864 (2017) (2017). doi: 10.1109/
TEVC.2019.2890858.

[38] Virus_Total, URL:https://www.virustotal.com.

[39] D. Wang, C. Cui, Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics, Information Sciences 417
(2017) 55-71, https://doi.org/10.1016/j.ins.2017.07.003.

[40] D. Wang, M. Li, Stochastic configuration networks: Fundamentals and algorithms, IEEE Transactions on Cybernetics 47 (2017) 3466-3479, https://doi.
org/10.1109/TCYB.2017.2734043.

[41] Weka_3, URL:https://www.cs.waikato.ac.nz/ml/weka/.

[42] Weka_Class_GainRatioAttributeEval, URL:http://weka.sourceforge.net/doc.dev/weka/attributeSelURL:ection/GainRatioAttributeEval.html.

[43] C. Willems, T. Holz, F. Freiling, Toward automated dynamic malware analysis using cwsandbox, Proceedings of Security and Privacy, IEEE Symposium
on, vol. 5, 2007. doi: 10.1109/MSP.2007.45.

[44] X. Yuan, P. He, Q. Zhu, R.R. Bhat, X. Li, Adversarial examples: Attacks and defenses for deep learning, arXiv preprint arXiv:1712.07107, 2017. doi:
10.1109/TNNLS.2018.2886017.

[45] S. Yoo, S. Kim, B. Kang, The Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks, IEEE ACCESS (2020), https://doi.org/
10.1109/ACCESS.2020.2967746.

https://doi.org/10.1016/j.jnca.2012.10.004
https://doi.org/10.1109/ICICCT.2018.8473346
https://doi.org/10.5120/ijca2016908283
https://doi.org/10.5120/ijca2016908283
https://doi.org/10.1007/978-3-319-26362-5_1
http://refhub.elsevier.com/S0020-0255(20)30852-5/h0095
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1038/nature14539
http://refhub.elsevier.com/S0020-0255(20)30852-5/h0120
http://refhub.elsevier.com/S0020-0255(20)30852-5/h0130
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1007/978-3-540-89900-6_21
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/2.144401
https://doi.org/10.1109/2.144401
https://doi.org/10.1002/widm.1200
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1016/j.ins.2017.07.003
https://doi.org/10.1109/TCYB.2017.2734043
https://doi.org/10.1109/TCYB.2017.2734043
https://doi.org/10.1109/ACCESS.2020.2967746
https://doi.org/10.1109/ACCESS.2020.2967746

	AI-HydRa: Advanced hybrid approach using random forest �and deep learning for malware classification
	1 Introduction
	2 Related works
	3 Feature and classifier selection
	3.1 Static features
	3.2 Dynamic features
	3.3 Classifiers
	3.3.1 Test with typical dataset
	3.3.2 Evaluation with irregular dataset

	4 System design
	4.1 Model setup
	4.2 Preprocessing
	4.3 Deep learning model optimization
	4.3.1 Node
	4.3.2 Epoch
	4.3.3 Batch size
	4.3.4 Hidden layer
	4.3.5 Optimizer
	4.3.6 Dropout
	4.3.7 Random weight
	4.3.8 Activation functions
	4.3.9 Other parameters

	4.4 Decision making algorithm
	4.5 Implementation

	5 Evaluation
	5.1 Datasets and experimental setup
	5.2 Detection rate and voting results
	5.3 Performance

	6 Discussion
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

