
PHYSICAL REVIEW B 101, 134423 (2020)

Realization of Su-Schrieffer-Heeger states based on metamaterials of magnetic solitons
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We theoretically investigate coupled gyration modes of magnetic solitons whose distances to the nearest
neighbors are staggered. In a one-dimensional bipartite lattice, we analytically and numerically find that there
is a midgap gyration mode bounded at the domain wall connecting topologically distinct two phases which is
analogous to the Su-Schrieffer-Heeger model. As a technological application, we show that a one-dimensional
domain-wall string in a two-dimensional soliton lattice can serve as a waveguide of magnetic excitations, which
offers functionalities of a signal localization and selective propagation of the frequency modes. Our result
offers an alternative way to control the magnetic excitation modes by using a magnetic metamaterial for future
spintronic devices.
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I. INTRODUCTION

Topological properties embedded in band structures are
one of the central themes in modern condensed-matter
physics. In two-dimensional (2D) electron systems, represen-
tative examples supporting topologically protected edge states
[1] are the Haldane model [2] and the Kane-Mele model
[3], which exhibit the quantum Hall and quantum spin Hall
phases, respectively. A classical example in one-dimensional
(1D) topological systems is the Su-Schrieffer-Heeger (SSH)
model supporting a midgap bound state with fermion number
1/2 [4,5]. Inspired by the topological effects in electronic
systems, numerous studies have been devoted to investigating
topological properties in bosonic systems such as magnons
[6–8], phonons [9,10], and their hybridized states [11–14].

Such topological effects of band structures can also be
realized in artificially structured composites, called meta-
materials, whose functionalities arise as the collective dy-
namics of local resonators [15]. Analogs of topologically
protected edge states in 2D systems have been proposed and
experimentally observed in acoustic [15,16], optical [17–21],
magnetic [22–24], mechanical [25,26], and electric circuit
[27–29] systems. Moreover, the 1D SSH model has been
realized in optical waveguides [30], electric circuits [31,32],
and magnetic spheres [33]. An intriguing feature of the meta-
materials is that the band structures and their topological
properties can be manipulated by changing the crystal param-
eters. This tunability of metamaterials is of crucial importance
for widespread applications of topological properties in, for
instance, reconfigurable logic devices [15,19].

Magnetic solitons such as magnetic vortices and skyrmions
are resonators whose dynamics exhibit gyroscopic mo-
tion [34–36]. Theoretical [37–39] and experimental [40–42]
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results on the dynamics of coupled gyration modes of the
magnetic solitons provide a potential application for a dif-
ferent type of information device [39]. Moreover, internal
degrees of freedom of magnetic solitons such as polarity and
chirality can offer efficient control of the functionalities of
soliton-based metamaterials [43]. One of us has shown that
the collective excitation of the magnetic solitons supports a
chiral edge mode in a honeycomb lattice [23], which was
later confirmed by micromagnetic simulation [24]. Recently,
the topological corner states have been realized in breathing
kagome [44] and honeycomb lattice [45]. However, the SSH
state in the 1D system has not been realized for collective
gyration modes of magnetic solitons.

In this paper, we first study a metamaterial composed of
the magnetic soliton disks structured in a one-dimensional
bipartite chain. By using both analytic calculation and micro-
magnetic simulation, we show the existence of a midgap state
bounded at a domain wall connecting topologically distinct
two configurations, which is analogous to the electronic SSH
model. Then we derive a 2D extension of our 1D magnetic
SSH model, which is shown to be able to support a magnetic
waveguide with selective propagation of frequency modes.

II. REALIZATION OF THE SSH MODEL WITH AN ARRAY
OF SOLITON DISKS

We consider a quasi-one-dimensional array of nanodisks
containing magnetic vortices or skyrmions. In general, the
steady-state motion of topological solitons can be described
by the dynamics of the center-of-mass position R(t ) and
m = m[r − R(t )], where m is a unit vector along the direc-
tion of local magnetization. The dissipationless magnetization
dynamics of the coupled vortices/skyrmions is described by
Thiele’s equation [46]:

Gẑ × dU j

dt
+ F j = 0, (1)
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where U j = R j − R0
j is the displacement of the soliton from

the equilibrium position R0
j , G = −4πMstDQ/γ is the gy-

rotropic coefficient, Ms is the saturation magnetization, tD
is the thickness of the disk, and γ is the gyromagnetic
ratio. Here, Q = 1

4π

∫
dxdym · (∂xm × ∂ym) is the topologi-

cal charge which characterizes the topological solitons. The
topological charge of the magnetic vortices and skyrmions
are Q = ±1/2 and ±1, respectively. F j = −∂W /∂U j is the
conservative force from the potential energy

W =
∑

j

K

2
U2

j +
∑
j �=k

Ujk

2
, (2)

where K > 0 is the spring constant and U j ≡ (u j, v j ) is
the displacement vector. Here, Ujk is the interaction energy
between two solitons:

Ujk (d jk ) = Ix(d jk )u juk − Iy(d jk )v jvk, (3)

where d jk (= |R0
j − R0

k |) is the distance between centers of
two neighboring disks, and Ix(d jk ) and Iy(d jk ) are interac-
tion parameters between two disks. This system of coupled
magnetic solitons has been studied both theoretically and
experimentally [37,38,41,42]. In particular, the values of the
parameters in Eqs. (2) and (3) have been experimentally mea-
sured and theoretically calculated for certain sizes of soliton
disks.

Let us first consider the situation where the nearest-
neighbor disk pairs are separated by a uniform distance. Using
the complex variable ψ j ≡ u j + iv j , we write Eq. (1) in a
simplified form [23,24]:

iψ̇ j = ωKψ j +
∑
k∈〈 j〉

(ζψk + ξψ∗
k ), (4)

where ωK = K/G is the gyration frequency of an isolated
soliton and ζ = (Ix − Iy)/G and ξ = (Ix + Iy)/G are the
reparametrized interactions. In order to eliminate ψ∗

k , we
expand the complex variable as

ψ j = χ jexp(−iω0t ) + η jexp(iω0t ), (5)

where χ j (η j) is a counterclockwise (clockwise) gyration am-
plitude. Substituting Eq. (5) into Eq. (4) and applying |χ j | �
|η j | (|χ j | 	 |η j |) for counterclockwise (clockwise) soliton
gyrations, we have

iψ̇ j =
(

ωK − ξ 2

ωK

)
ψ j + ζ

∑
k∈〈 j〉

ψk − ξ 2

2ωK

∑
l∈〈〈 j〉〉

ψl , (6)

where 〈〈 j〉〉 represents second-neighbor sites of j. The right-
hand side of Eq. (6) contains zeroth-order (ωK ), first-order (ζ ),
and second-order (ξ 2) terms of the interdisk interactions. For
1D chain systems, we have

iψ̇ j =
(

ωK − ξ 2

ωK

)
ψ j + ζ (ψ j+1 + ψ j−1)

− ξ 2

2ωK
(ψ j+2 + ψ j−2). (7)

Taking the Fourier transformation, we obtain an eigenvalue
equation, i�̇(kx, t ) = Hk�(kx, t ) with a momentum space

FIG. 1. A schematic illustration of the staggered 1D chain of
magnetic nanodisks without the domain-wall defect (a), and with
a pair of domain-wall and anti-domain-wall defects (b). A single
(double) bond represents the longer (shorter) interdisk distance. Band
structure of the system without the domain-wall defect (c), and with
a pair of domain-wall and anti-domain-wall defects (d). A pair of
states at ω = ωK is induced by the defects (red).

Hamiltonian

Hk = ωK + 2ζ cos kx − 2ξ 2

ωK
cos2 kx, (8)

describing a single-band Hamiltonian of magnetic excitations.
Now, let us consider a staggered 1D chain of magnetic

nanodisks [Fig. 1(a)] with periodic boundary condition which
mimics the SSH system [4]. Because of the staggered lattice
structure, the interdisk interactions (ζ and ξ ) are divided into
two different types:

ζ →
{
ζ (1 + �)
ζ (1 − �) , ξ →

{
ξ (1 + �′)
ξ (1 − �′) . (9)

Here, � and �′, which can be either positive or negative, rep-
resent the staggeredness of the SSH system. By substituting
Eq. (9) into Eq. (6) and introducing sublattice indices A and
B, we have

iψ̇A
2m =

(
ωK − ξ 2(1 + �′2)

ωK

)
ψA

2m

+ ζ (1 + �)ψB
2m+1 + ζ (1 − �)ψB

2m−1

− ξ 2(1 − �′2)

2ωK

(
ψA

2m−2 + ψA
2m+2

)
, (10)

iψ̇B
2m+1 =

(
ωK − ξ 2(1 + �′2)

ωK

)
ψB

2m+1

+ ζ (1 − �)ψA
2m+2 + ζ (1 + �)ψA

2m

− ξ 2(1 − �′2)

2ωK

(
ψB

2m−1 + ψB
2m+3

)
. (11)

We note that ξ 2�′2 terms, which are induced from the stag-
geredness of ξ , appear in the identity matrix part of the
momentum space Hamiltonian. Because these terms cannot
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change the topology of the Hamiltonian and are negligible
in the small �′ limit, we discard ξ 2�′2 terms in this paper.
Taking the Fourier transformation, we obtain

Hk =
(

ωK − 2ξ 2

ωK
cos2 kx 2ζ (cos kx − i� sin kx )

2ζ (cos kx + i� sin kx ) ωK − 2ξ 2

ωK
cos2 kx

)

=
(

ωK − 2ξ 2

ωK
cos2 kx

)
I2×2 + n(kx ) · σ, (12)

where the basis of the Hamiltonian is �(kx ) =
(ψA(kx ), ψB(kx ))T and σ = (σx, σy) are the Pauli matrices.
The eigenvalues of Eq. (12) are given by

ω± = ωK − 2ξ 2

ωK
cos2 kx ± 2ζ

√
cos2 kx + �2 sin2 kx . (13)

In Fig. 1(c), we show the dispersion relation of Eq. (13).
For calculation, we take the model parameters ωK/2π =
0.955 GHz, ζ/2π = −0.04 GHz, ξ/2π = 0.13 GHz, and
� = 0.3 in accordance with micromagnetic simulation results
in next section. The staggeredness � induces a finite gap. We
note that the particle-hole symmetry is broken because of the
momentum dependent diagonal component in Eq. (12) from
the second-order interactions (− 2ξ 2

ωK
cos2 kxI2×2). The second-

order interaction term can be treated as a smooth perturbation
of the Hamiltonian and does not change the topological char-
acter of the system. The topological number of the Hamil-
tonian (12) is the winding number of the two-component
unit vector n̂(kx ) = n(kx )/|n(kx )| ≡ (cos θk, sin θk ) which is
expressed by the integral [47–49]

N = 1

2π

∫
BZ

dkx

(
dθk

dkx

)
= sgn(�), (14)

where θk = tan−1(ny/nx ) = tan−1(� tan kx ) is a polar angle of
the unit vector in momentum space. The winding number is
corresponding to the homotopy map π1(S1) = Z. Equation
(14) implies that there are two topologically distinct phases
which are represented by the sign of �.

Expanding Eq. (12) around kx = π/2, which minimizes the
band gap, we obtain an effective Dirac Hamiltonian

Hk =
(

ωK −2ζ
[(

kx − π
2

) + i�
]

−2ζ
[(

kx − π
2

) − i�
]

ωK

)
. (15)

Diagonalizing Eq. (15), we obtain the eigenfrequencies with
a band gap �,

ω± = ωK ± 2ζ

√(
kx − π

2

)2
+ �2. (16)

Because a topological bound state exists at the interface
between the two topologically distinct phases, we consider
a situation where the staggeredness � is reversed its sign at
x = 0: �(x) = �0sgn(x). In this case, a midgap bound state
appears at ω = ωK , without changing the bulk dispersions of
upper and lower bands [see Fig. 1(d)]. From Eq. (15), we read
that the midgap bound state satisfies(

0 i∂x − i�(x)
i∂x + i�(x) 0

)
�bound = 0, (17)

FIG. 2. Band structures of the Dirac Hamiltonian (a) and lo-
calization of the bound state (b) for �0 = 0.2 (dotted), �0 = 0.3
(dashed), and �0 = 0.5 (solid).

which results in

�bound(x) ∼
(

0
e−�0|x|

)
(�0 > 0),

�bound(x) ∼
(

e�0|x|
0

)
(�0 < 0). (18)

Equation (18) shows that the bound state is exponentially
localized at the domain wall. This is a magnetic analog
of the SSH system which possesses a soliton with half-
electric charge [4]. Creation of the bound state is compensated
by one-half of a state missing from the two bulk bands
corresponding to ω = ω±. In Fig. 2, we show the band
structures of the effective Dirac Hamiltonian in Eq. (15)
and localization of the bound state for different values
of �0.

III. MICROMAGNETIC SIMULATION

We perform micromagnetic simulations to visualize the
collective dynamics of the magnetic vortex lattice. Here,
we use following parameters of typical permalloy [37]: the
saturation magnetization Ms = 800 erg/cm3, the exchange
stiffness A = 1.3 × 10−6 erg/cm. In order to obtain the
clear fast Fourier transform (FFT) image, we choose a
small Gilbert damping constant α = 0.001. The diameter
and thickness of magnetic nanodisk are chosen to be 80
and 20 nm, respectively. The unit-cell size is chosen to be
4 × 4 × 20 nm3.

We consider a 1D bipartite chain of 40 identical magnetic
nanodisks with a periodic boundary condition as shown in
Fig. 3(a). Each disk has a magnetic vortex with the same
polarity (p = 1) and chirality (C = −1) [see Fig. 3(b)]. We
simulate the collective dynamics of the vortex gyration in
the bipartite lattice with a domain wall (11th disk) and an
anti-domain wall (31st disk) which are separated by 20 disks.
To obtain the dispersion relation of collective vortex gyra-
tion modes, we apply a sinc function of external magnetic
field,

H(t ) = H0 sin[2π f (t − t0)]/[2π f (t − t0)]x̂, (19)

on one of the disks with H0 = 10 mT, f = 20 GHz, and t0 =
1 ns.

Then, we obtain the dispersion relation from the fast
Fourier transform (FFT) of the temporal oscillations of x
component of the vortex core position. Figure 3(d) shows
the resonant spectrum of a vortex gyration mode in an
isolated magnetic nanodisk. We find that the single vortex
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FIG. 3. (a) Illustration of the 1D bipartite lattice of magnetic nanodisk with a domain wall (11th disk) and an antidomain wall (31st disk)
profile. (b) A magnetic nanodisk containing a single vortex. (c) Vortex core dynamics in an isolated magnetic nanodisk. (d) Resonant spectrum
of single vortex gyration in an isolated magnetic nanodisk. Dispersion relation of collective vortex gyration in the bipartite lattice when the
external field is far away from the domain-wall position (21st disk) with interdisk distance [d1, d2] of (e) [16 nm, 24 nm], (f) [12 nm, 28 nm],
(g) [8 nm, 32 nm], and (h) [4 nm, 36 nm], and when the external field is on the domain-wall position (11th disk) with interdisk distance of (i)
[16 nm, 24 nm], (j) [12 nm, 28 nm], (k) [8 nm, 32 nm], and (l) [4 nm, 36 nm].

gyration mode has a peak at f0 = ωK/2π = 0.955 GHz.
Figures 3(e)–3(h) show the dispersion relation of the bipartite
chain when the external field is located far away from the
domain-wall position (21st disk). As the difference of inter-
disk distance (d = d2 − d1) increases, a more distinct band
splitting (into upper and lower bands) is observed. Note that
the in-gap mode between the upper and lower bands has not
been excited in this case, because it is localized on the defect
position and thus far away from the external-field position.
When the external field locates on the domain-wall position
(11th disk), we find that a midgap mode is excited near f0

without significant change of the bulk dispersion [Figs. 3(i)–
3(l)]. The simulation results coincide with the analytic results
in Sec. II with appropriate model parameters [see Figs. 1(c)
and 1(d)].

IV. 2D MAGNETIC WAVEGUIDE

Now let us consider a 2D extension of our 1D magnetic
SSH model, which will be shown to support a magnetic
waveguide of excitations below. The schematic illustration of
the 2D lattice is shown in Fig. 4(a). The 2D extended model
includes additional interactions proportional to ζ y, ξ 2

y /2ωK ,
and ξ 2

xy(1 ± �̄)/2ωK [see Fig. 4(b)]. We note that �̄ represents
the staggeredness of the second-order interactions, and its
sign is reversed at the defect position. In momentum space
representation, we have an effective Hamiltonian (see the
Appendix)

H2D(kx, ky) =
(

HAA HAB

(HAB)∗ HBB

)
, (20)
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FIG. 4. (a) A schematic illustration a two-dimensional extension
of the 1D magnetic SSH model. (b) Additional interactions of the
2D tight-binding model. Bulk and bound-state dispersions of the 2D
model without the domain-wall defect (c) and with the domain-wall
defect (d). For calculation, we take the model parameters ωK/2π =
0.955 GHz ζ/2π = −0.04 GHz, ξ/2π = 0.13 GHz, � = 0.3, ζy =
ζ/4, ξxy = ξ/4, ξy = ξ/6, and �̄ = �. (e) Magnetic wave propaga-
tion in the magnetic waveguide supporting signal localization. (f)
Magnetic wave propagation in the magnetic waveguide supporting
selective propagation of frequency.

where

HAA = ω2D
0 − 2ξ 2

ωK
cos2 kx = HBB, (21)

HAB = 2ζ (cos kx − i� sin kx )

+ 2ξ 2
xy

ω0
cos ky(cos kx − i�̄ sin kx ), (22)

and ω2D
0 (ky) = ωK − 2ξ 2

y

ωK
cos2 ky + 2ζy cos ky. The additional

interactions yield the additional dispersion along ky direction.
The resultant 2D band dispersions without and with the
(stringlike) domain-wall defect are shown in Figs. 4(c) and
4(d), respectively. In the 2D lattice, the pointlike defect in the
1D model is extended in the y direction and forms a domain-
wall string. In the presence of the domain-wall defect, we find
that the bound state with a frequency ω2D

0 (ky) is localized on
the defect position (see the Appendix).

In this 2D soliton lattice model, the topological midgap
bound states are localized at the defect position and spatially
connected in the y direction. Therefore, magnetic excitations
on the bound state propagate well along the defect string
with a small spread in the transverse (x) direction. This
propagation characteristic realizes a magnetic waveguide by
using magnetic solitons with signal localization and selec-
tive propagation of frequency modes. Figures 4(e) and 4(f)
show the schematic illustration of two functionalities of the
magnetic soliton waveguide. In Fig. 4(e), the incoming wave

packet is a plane wave (i.e., uniform along the x direc-
tion) and has a frequency corresponding to the bound state.
Because this frequency mode can only propagate through
the defect string, the outgoing wave packet is localized on
the defect site. In Fig. 4(f), the incoming wave packet on the
defect site is a white signal having equal intensities for all
frequencies. However, most frequency modes on the defect
site cannot propagate in the y direction, except for the bound
state. As a result, the outgoing wave packet on the defect
site has a peak at a frequency corresponding to the bound
state. Unfortunately, in our magnetic waveguide, we cannot
obtain a single frequency outgoing wave packet because the
group velocity along the bound state (vy) is very small if the
bandwidth of the bound state is too narrow. For a waveguide
with finite group velocity, we need some intermediate values
of y-directional hopping parameters. In Figs. 4(c) and 4(d), we
choose a set of parameters which results in |vy|/|vupper

x | ≈ 1

and |vy|/|vlower
x | ≈ 0.4, where |vupper

x | and |vlower
x | are the aver-

aged absolute value of group velocities (along the x direction)
of the upper and lower band over the first Brillouin zone,
respectively.

Note that our 2D magnetic waveguide does not show the
topologically protected (back-scattering free) transport. Any
disorders or defects in our 2D waveguide give rise to back-
scattering for transport along the waveguide. However, the
existence of the waveguide with frequencies separated from
the bulk bands is topological in a sense that the waveguide is
composed of topological modes in each SSH chain.

We note that the frequency of the bound state is mainly
determined by the gyrotropic frequency of a single magnetic
soliton, which is tunable by external perturbations. For ex-
ample, in the presence of an effective magnetic field Heff

perpendicular to the disk plane, the gyrotropic frequency can
be described as [50,51]

ω � K

G
(1 + kHeff ), (23)

where k is a proportionality constant. This suggests that
the waveguide property can be manipulated by the exter-
nal magnetic field or voltage-induced magnetic anisotropy
change [52].

V. CONCLUSION

To summarize, we have studied collective dynamics in
a one-dimensional bipartite chain of the magnetic vortices
or skyrmions. In our magnetic system, the domain-wall-like
defects are produced by changing the interdisk distances.
We have found that the defects induce the midgap states
which are confined at the defect position. We also provide
the micromagnetic simulation results supporting the analytic
results. Our finding on the 1D model is analogous to that of the
SSH model in the electron system. In contrast to the electronic
SSH model, in which it is hard to manipulate the domain-wall
profiles of atomic arrangement, the topological manipulation
is feasible in our magnetic SSH model. As a technological
application, we propose a two-dimensional extension of our
1D model, which supports a magnetic waveguide of magnetic
excitations. The magnetic waveguide provides not only a sig-
nal localization but also selective propagation of the frequency
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modes. Our work suggests that a spintronics device based on
magnetic metamaterials can offer a way for precise control of
the the oscillation of magnetic soliton lattice.
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APPENDIX: COMPUTATIONAL DETAILS
OF THE 2D MODEL

Here, we derive the effective Hamiltonian of the 2D ex-
tension of our 1D magnetic SSH model. The lattice structure
of our 2D model is shown in Fig. 4(a) and the second-order
interactions are shown in Fig. 4(b). By using Eq. (6) of
Ref. [23], we write

iψ̇A
2m =

(
ωK − ξ 2 + ξy

2

ωK

)
ψA

2m + ζ (1 + �)ψB
2m+x + ζ (1 − �)ψB

2m−x + ζy
(
ψA

2m+y + ψA
2m−y

)
− ξ 2

2ωK

(
ψA

2m+2x + ψA
2m−2x

) − ξ 2
y

2ωK

(
ψA

2m+2y + ψA
2m−2y

)
+ ξ 2

xy(1 + �̄)

2ωK

(
ψB

2m+x+y + ψB
2m+x−y

) + ξ 2
xy(1 − �̄)

2ωK

(
ψB

2m−x+y + ψB
2m−x−y

)
, (A1)

iψ̇B
2m+x =

(
ωK − ξ 2 + ξy

2

ωK

)
ψB

2m+x + ζ (1 − �)ψA
2m+2x + ζ (1 + �)ψA

2m + ζy
(
ψB

2m+x+y + ψB
2m+x−y

)
− ξ 2

2ωK

(
ψB

2m+3x + ψB
2m−x

) − ξ 2
y

2ωK

(
ψB

2m+x+2y + ψB
2m+x−2y

)
+ ξ 2

xy(1 − �̄)

2ωK

(
ψA

2m+2x+y + ψA
2m+2x−y

) + ξ 2
xy(1 + �̄)

2ωK

(
ψA

2m+y + ψA
2m−y

)
. (A2)

In Eqs. (A1) and (A2), we neglect ξ 2�′2/ωK terms which are induced from the staggeredness of ξ . Taking the Fourier
transformation, we obtain a momentum space Hamiltonian

H2D(kx, ky) =
(

HAA HAB

HBA HBB

)
, (A3)

where

HAA = ωK − 2ξ 2

ωK
cos2 kx − 2ξ 2

y

ωK
cos2 ky + 2ζy cos ky = HBB, (A4)

HAB = 2ζ (cos kx − i� sin kx ) + 2ξ 2
xy

ω0
cos ky(cos kx − i�̄ sin kx ) = (HBA)∗. (A5)

In order to obtain the bound-state solution, we expand the Hamiltonian around kx = π/2 and replace kx − π/2 to −i∂x. Then we
have

HAA = ω2D
0 (ky) = HBB, (A6)

HAB = 2ζ (i∂x − i�) + 2ξ 2
xy

ω0
cos ky(i∂x − i�̄) = 2ζ [1 + α(ky)]i∂x − 2iζ�[1 + β(ky)] = (HBA)∗, (A7)

where ω2D
0 (ky) = ωK − 2ξ 2

y

ωK
cos2 ky + 2ζy cos ky, α(ky) = ξ 2

xy

ζ
ωK cos ky, β(ky) = �̄

�
α(ky). In the presence of the domain-wall

defect, i.e., �(x) = �0sgn(x) and �̄(x) = �̄0sgn(x), by solving the Schrödinger equation

H2D(x, ky)�bound(x, ky) = ω2D
0 (ky)�bound(x, ky), (A8)

we obtain the bound-state solution which is confined at the defect position:

�bound(x, ky) ∼
(

0
e−ρ(ky )�0|x|

)
(�0 > 0),

�bound(x, ky) ∼
(

e−ρ(ky )�0|x|
0

)
(�0 < 0), (A9)

where ρ(ky) = 1+β(ky )
1+α(ky ) .
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