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Abstract. Tweakable block ciphers (TBCs) have proven highly useful to boost the
security guarantees of authentication schemes. In 2017, Cogliati et al. proposed two
MACs combining TBC and universal hash functions: a nonce-based MAC called NaT
and a deterministic MAC called HaT. While both constructions provide high security,
their properties are complementary: NaT is almost fully secure when nonces are
respected (i.e., n-bit security, where n is the block size of the TBC, and no security
degradation in terms of the number of MAC queries when nonces are unique), while
its security degrades gracefully to the birthday bound (n/2 bits) when nonces are
misused. HaT has n-bit security and can be used naturally as a nonce-based MAC
when a message contains a nonce. However, it does not have full security even if
nonces are unique.
This work proposes two highly secure and efficient MACs to fill the gap: NaT2 and
eHaT. Both provide (almost) full security if nonces are unique and more than n/2-bit
security when nonces can repeat. Based on NaT and HaT, we aim at achieving these
properties in a modular approach. Our first proposal, Nonce-as-Tweak2 (NaT2),
is the sum of two NaT instances. Our second proposal, enhanced Hash-as-Tweak
(eHaT), extends HaT by adding the output of an additional nonce-depending call to
the TBC and prepending nonce to the message. Despite the conceptual simplicity,
the security proofs are involved. For NaT2 in particular, we rely on the recent proof
framework for Double-block Hash-then-Sum by Kim et al. from Eurocrypt 2020.
Keywords: Provable security · tweakable block cipher · message authentication
code · authentication

1 Introduction

Message Authentication Codes (MACs) belong to the core algorithms in symmetric-
key cryptography as they protect the authenticity and integrity of the communication
between two parties that share a secret key. For this purpose, they provide keyed algorithms
for the generation and verification of an authentication tag that is sent alongside the message.
A variety of MACs exists in practice, many of which are based on block ciphers, such as the
the NIST standard CMAC [Dwo05, Dwo16], the ISO/IEC 9797-1 constructions [ISO11],
or the 3GPP standards [3GP99]. Nevertheless, the manyfold applications and security
desiderata render research in this area still of high interest and progress.
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A widespread approach of constructing efficient MACs for variable-input-length messages
is the combination of a universal hash function H with a pseudorandom function (PRF) F .
The former is used to reduce the potentially long input to a small hash value, and the latter
is to process that hash value to produce a tag. Following Handschuh and Preneel [HP08],
the classical options are T ← F (H(M)), T ← H(M) ⊕ F (N), or T ← F (N ‖ H(M)),
where M is a message, N is a nonce (a value expected to never repeat, to protect against
replay), and T is a tag. The tuple (N,M, T ) will be sent to the verifier. For instance,
the second option is well-known as Wegman-Carter(-Shoup) construction [WC81, Sho96],
and employed, e.g., in the Poly1305-AES [Ber05b] or GMAC [Mor07] standards. The
principles have been studied in depth [Ber05a]; n evertheless, the approaches suffer from
two disadvantages: the security was limited to the birthday bound [Yuv79] (the application
to MACs was studied by [PvO95]) of the primitive’s block length, that is, an n-bit block
cipher can provide up to n/2-bit security in terms of the data complexity. Moreover, the
security can become void whenever a nonce is used for two authentication tags, which can
happen by, e.g., a poor randomness source, or by misuse of the protocol.
Higher security guarantees can be desirable for many applications. A small block length,
such as 64 bits, of the underlying primitive can render it a practical attack target when used
in modes with birthday-bound security, as was illustrated by the recent attacks on popular
communication protocols [BL16]. Even worse, Wegman-Carter(-Shoup) constructions risk
that the hash-function key becomes known once a hash collision can be detected or a
nonce is reused. Furthermore, robustness in the case of potential nonce repetitions can be
of high interest to protect users from erroneous implementations.
Beyond-birthday-bound Security. The community has proposed a portfolio of MACs
with higher security guarantees, namely the beyond-birthday-bound (BBB) security. The
first such approach was probably suggested by [ISO99], which contained six CBC-like MACs.
For higher security, it recommends to XOR two single-pass MACs under independent keys.
Though, the analysis was given in [SW19]. Already at the beginning of the previous decade,
Yasuda proposed and analyzed SUM-ECBC [Yas10]. Many works followed this direction,
including but not limited to 3kf9 [ZWSW12], PMAC+ [Yas11], LightMAC_Plus [Nai17],
or 1k_PMAC+ [DDN+17]. Many of those double-block constructions were shown to be
secure for up to at least O(22n/3) authentication queries. Datta et al. [DDNP18] coined
the term Double-Block Hash-then-Sum (DbHtS) for this approach in general. Leurent et
al. [LNS18] proposed generic attacks on DbHtS constructions with a query complexity of
O(23n/4). Very recently, Kim et al. [KLL20] showed that the bound of O(23n/4) queries
for DbHtS MACs is tight.
Tweakable block ciphers (TBCs) [LRW02]. Tweakable block ciphers (TBCs) enrich
the domains of classical block ciphers by an additional public input called the tweak.
Thus, they could effectively increase the security and/or to simplify the design of modes
based on block ciphers by providing an input that cleanly separates several domains.
While TBCs have originally been built from block ciphers [LRW02, Rog04], the increasing
number of existing dedicated TBCs, such as Deoxys-BC [JNP14a] or Skinny [BJK+16],
allow efficient instantiations. Nowadays, these are attractive primitives for the construction
of highly secure modes from TBCs. For example, deterministic (i.e. there is no nonce),
n-bit secure MACs those solely based on n-bit block TBCs1 have been studied in the
literature [Nai15, IMPS17, LN17, Nai18].
In a different approach, Cogliati et al. [CLS17] presented compact designs for n-bit
secure nonce-based/deterministic MACs that exploited n-bit block TBCs combined with a
universal hash function. They used a (first) hash of the message with either a nonce or a
second hash under an independent key as state and tweak inputs to a TBC. Accordingly,
their nonce-based and deterministic constructions were called Nonce-as-Tweak (NaT) and

1The tweak length is also assumed to be n bits.
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ẼK ẼK′

V
U

X Y

T

(d) eHaT.

Figure 1: The previous constructions NaT and HaT [CLS17] and our proposals NaT2 and eHaT.

a Hash-as-Tweak (HaT), respectively.2
Due to their attractive simplicity, the constructions by Cogliati et al. pose an interesting
research question: How can we strengthen their security with (at least conceptually) minimal
changes? In more detail, NaT is almost fully secure when nonces are unique, i.e. under
nonce-respecting (NR) adversaries, as its security bound is O(vδ), where v denotes the
maximal number of verification queries, and δ denotes the bound of the universal hash
function for almost uniformity3. Thus, there is no contribution from MAC (tagging)
queries in this setting. Note that this is the optimal security for a MAC scheme with n-bit
tags. However, its security degrades gracefully to the birthday bound of n/2 bits when
nonces repeat among MAC queries, i.e., under nonce-misusing (NM) adversaries.
HaT can be trivially converted into a nonce-based MAC by prepending a nonce to the
message (e.g., by using N ‖M instead of M). In this case, its security in the NM setting
is unchanged. On the downside, its security in the NR setting degrades concerning the
number of MAC queries. Thus, it cannot achieve full security per se. Therefore, when
used as nonce-based MACs, their security properties are complementary. Our goal is to
achieve the best of both worlds by simple changes to the base constructions. We believe
that this helps understand strong MAC constructions in general.
Our Contributions. We answer the aforementioned question by two novel constructions.
Nonce-as-Tweak 2 (NaT2) is a sum of two instances of NaT. As a result, it is (almost) fully
secure under nonce-respecting adversaries if the underlying TBCs are ideal – a property
shared with NaT. However, in the nonce-misuse setting, its security degrades gracefully to
2n/3 bits – instead of n/2 bits as NaT. If the number of verification queries is limited to
2n/2, NaT2 can effectively ensure 3n/4-bit security, which is useful in some applications,
e.g., that terminate communication when a number of verification failures are detected.
Our second construction, enhanced Hash-as-Tweak (eHaT), extends HaT by adding the
result of a nonce-dependent call of the TBC to its output of HaT, in addition to attaching
the nonce to the message. This simple and generic approach leads also to (almost) full
NR-security while maintaining n-bit NM-security with graceful degradation. In general,
eHaT offers stronger security than NaT2. However, this implies some costs, such as an
increased input length to the universal hash functions, a non-static tweak input to TBCs,
and a certain limitation on the maximal allowable number of MAC queries (see Section 6).
On the other hand, the second TBC call of eHaT can be substituted by a call to a PRF if
available. Both constructions are illustrated in Figure 1.
The security bounds in Table 1 reflect our explanations above. The only security terms
in the nonce-respecting setting for NaT2 and eHaT depend on the number of verification
queries and the properties of the hash-function. The bound NaT2 in the nonce-repeating

2They also considered counterparts based on ideal ciphers, which is beyond the scope of this paper.
3Assuming the universal hash function is n-bit polynomial hash function, we can set δ = `/2n for

`-block inputs, or `/2t if the output size is t bits.
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Table 1: Comparison of existing TBC- and nonce-based MACs with BBB security with our
proposal assuming an n-bit, O(`/2n)-AU polynomial hash function using n-bit hash keys (and
t-bit, O(`/2t)-AU polynomial hash function using t-bit keys when used for tweaks) for `-block
inputs, and a TBC with n-bit state and t-bit tweaks. NR = nonce-respecting setting; NM =
nonce-misusing setting. µ = #faulty nonces (Section 2), q = #MAC queries, v = #verification
queries, σ = #blocks in MAC queries, #Mults. = #field multiplications, #TBC = #TBC
calls for `-block messages, State size in bits, (∗) = deterministic MACs have no µ term, their
mac bound is shown in the NM setting. w = Size of the TBC.

Security (O(·)) Efficiency

Construction NR NM #Mults. #TBC #Key bits State size

EPWC [PS16] (q+v)
2n

(µ2+v)
2n – `+ 3 k w + n

PMAC_TBC1k(∗) [Nai15] – q+v
2n + q2

22n – `+ 2 k w + 2n
PMAC_TBC3k(∗) [Nai15] – q2

22n + v
2n – `+ 2 3k w + 2n

ZMAC(∗) [IMPS17] – σ2

2n+min(n,t) + ( q
2n )1.5 + v

2n – `n
(n+t) + 4 k w + 4n

ZMACb/ZMACt(∗) [Nai18] – (q2+v)
2n – (`−1)n

(n+t) + 1 k w + 4n
ZMAC1(∗) [Nai18] – σ2

2n+min(n,t) + (q+v)
2n – `n

(n+t) + 2 k w + 4n
NaT [CLS17] v`

2n
µ(q+v)`

2n `− 1 1 n+ k max{w, n+ t}
NaT2 [Sect. 5] v`

2n
µ2v`2

22n + µ2`1.5

21.5n + v`
2n 2(`− 1) 2 2n+ 2k 2 max{w, n+ t}

HaT(∗) [CLS17] – (q2+qv)`2

2n+t + v
2n 2(`− 1) 1 n+ t+ k max{w, 2n+ 2t}

eHaT [Sect. 6] v
2n + v`2

2n+t
(µ2+µv+v)`2

2n+t + v
2n 2` 2 n+ t+ 2k w + max{w, 2n+ 2t}

setting is considerably stronger than that of NaT. The costs for the additional hash-function,
TBC call, and the additional key for NaT2 are illustrated in the efficiency part. Similarly,
the bound for eHaT is stronger in both settings, at the cost of an additional TBC call, two
more multiplications in the hash function for the prepended nonce, and a second TBC key.
We assumed that the underlying universal hash function is a polynomial hash function of
O(`/2n)-almost-universal for an n-bit output (or `/2t-almost-universal for a t-bit output)
for at most ` input blocks. Such a polynomial hash is well-known to need (m− 1) field
multiplications over GF(2n) for m-block inputs. We note that `/2n can be reduced by
using a different universal hash function: an inner-product hash function achieves optimal
1/2n-almost-universality. As a disadvantage, the key length has to match that of the
message. A better trade-off between collision probability and key size is possible, e.g.,
using the proposal by Sarkar [Sar11], who suggested multi-stage hash functions in the
spirit of VHASH [Kro06]. For example, a two-stage hash construction with two polynomial
hashes, a standard block length of n = 128 bits, and a maximal message length of 232

words would be 2−96-almost-universal with only two 128-bit keys.
Computations vs. Security. Our constructions have a certain computational overhead,
i.e., a second hash-function evaluation for NaT2 compared to NaT and the additional
processing of the nonce in the hash function in eHaT compared to HaT, respectively. Plus,
our constructions need one additional (parallelizable) call to the TBC each. Although
the computational costs are increased, we believe that our constructions are close to the
minimum for achieving our security goals. If a nonce is available, full nonce-respecting
security can be obtained by using the nonce as tweak one TBC call. For security under
repeating nonces with variable-length messages, a single n-bit hash can collide at the
birthday bound. If the output size of the polynomial hash is fixed to n bits, one needs a
second hash call to produce more than n bits of hash material.4 Similarly, if the tweak
space is limited to n bits, two TBC calls are needed to process a 2n-bit hash and an n-bit
nonce. Thus, we consider our constructions minimal.
Use of Extended Mirror Theory. We note that our proof of NaT2 develops a
variant of the Extended Mirror Theory [DDNY18] further, which itself advanced Patarin’s

4Block-cipher-based hashes can produce longer hash outputs more efficiently. However, this holds also
if they were used in our constructions. For comparison, we focus on polynomial hash functions hereafter.
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famous Mirror Theory [Pat10, Pat17] by adding inequalities, which are necessary to address
failed verification queries in the mac setting. Our approach can prove for the first time a
security level of 3n/4 bits for a system of equalities and inequalities, whereas earlier works
[DDNY18, DNT19] showed at most 2n/3-bit security.
Generalized Tweak Lengths. NaT2 and eHaT provide security advantages compared
to NaT and HaT, respectively, not only when t = n but in a more general setting. For
smaller tweaks, t < n, the bounds are comparable. Though, they are better if the tweak
length can exceed the block length, t > n, as is possible in practice, e.g., with Deoxys-
BC-128-384 [JNP14b] or Skinny-64-192 [BJK+16] (although, the TWEAKEY framework
unifies key and tweak [JNP14b]). For a concrete example, assume t = 2n; in this case,
NaT2 is secure for up to q ∈ O(22n) queries in the nonce-respecting and µ ∈ O(23n/4)
queries under nonce repetitions – assuming for simplicity that the adversary does not
ask too many verification queries v � 2n and the hash functions are universal for all
constructions. The security of NaT is capped at q ∈ O(2n) and µ ∈ O(2n/2). Similarly,
the security of eHaT under nonce-respecting adversaries depends only on v, and scales up
to µ ∈ O(2(n+t)/2) nonce-misusing queries. The security of HaT is limited by O(2(n+t)/2)
queries in both settings, and thus cannot benefit from nonces.
As shown in Figure 2d, NaT2 and eHaT offer higher security than deterministic MACs (e.g.
ZMAC) when µ is small and v � q, which we think is a reasonable assumption. Compared
to the nonce-based NaT, NaT2 is more secure when 0 < µ� q3/4. eHaT is more secure for
a broader range of µ. Moreover, NaT2 and eHaT are the only constructions that are still
secure for q > 2n queries when the tweak space is large enough.
Security Comparison. For better illustration, we compare the security of the con-
structions in four scenarios in Figure 2, for n = t = 64: (a) with many nonce repetitions
µ = q = v, (b) some repetitions, with µ = q3/4, v = √q, and (c) µ = √q and v = q, as
well as (d) under nonce-respecting adversaries with µ = 0 and v = √q. We comment that
(d) mostly keeps its shape even when µ is a small positive constant. For comparability, we
assumed a practical universal hash function with ε = `/2n for ` = 210 blocks as a practical
standard size. We also included EPWC and ZMAC for comparison, whose TBC-based hash
functions are close to optimally almost universal. The dashed lines red and blue curves
represent NaT and HaT, the solid ones NaT2 and eHaT, respectively.
Note that we considered only constructions based on tweakable block ciphers. For exam-
ple, while the DbHtS constructions [LNS18] are comparable in structure, they are built
from classical block ciphers. Since those are weaker primitives, comparing with those
constructions would be unfair to our advantage.
Outline. After Section 2 briefly recalls the necessary notations and definitions, Section 3
describes our proposed constructions NaT2 and eHaT. In Section 4, we provide what we
call the extended mirror theory, which plays a key role in our analysis of NaT2, and several
proofs of the lemmas. We start our analysis in Section 5 with NaT2, followed by that of
eHaT in Section 6. Section 7 concludes this work.

2 Preliminaries

Notation. We fix a positive integer n such that n ≥ 3. We denote 0n (i.e., n-bit
string of all zeros) by 0. For positive integers p ≤ q, we write [q] = {1, . . . , q} and [p..q] =
{p, p+1, . . . , q}. Given a finite non-empty set X , x←$ X denotes that x is chosen uniformly
at random from X . The set of all sequences that consist of b pairwise distinct elements of
X is denoted X ∗b. For integers 1 ≤ b ≤ a, we will write (a)b = a(a− 1) · · · (a− b+ 1) and
(a)0 = 1 by convention. If |X | = a, then (a)b becomes the size of X ∗b.
When two sets X and Y are disjoint, their (disjoint) union is denoted X t Y. For a
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(a) Scenario 1: µ = q = v. (b) Scenario 2: µ = q3/4, v = √
q.

(c) Scenario 3: µ = √
q, q = v. (d) Scenario 4: µ = 0, v = √

q.

Figure 2: Security comparison of existing schemes with NaT2 and eHaT in four scenarios with
different number of repeating-nonce queries µ and verification queries v.

set X ⊂ {0, 1}n and λ ∈ {0, 1}n, we will write X ⊕ λ = {x ⊕ λ : x ∈ X}. For a graph
G = (V, E), we will interchangeably write |V| and |G| for the number of vertices of G.
Universal Hash Functions. Let δ > 0, and let H : K ×M→ X be a keyed function
for three non-empty sets K,M, and X . H is said to be δ-almost universal (AU) if for any
distinct M , M ′ ∈M, it holds that

Pr [K ←$ K : HK(M) = HK(M ′)] ≤ δ .

For a positive integer q, fix M1, . . . ,Mq ∈M. For a random key K ∈ K, let Xi = HK(Mi)
for i = 1, . . . , q. Then we can define an equivalence relation ∼ on [q]: for α, β ∈ [q],
α ∼ β if and only if Xα = Xβ . For some nonnegative integer r, let P1, . . . ,Pr denote the
equivalence classes of [q] with respect to ∼ such that pi := |Pi| ≥ 2 for i = 1, . . . , r. Jha
and Nandi [JN20] proved the following lemma, which is also useful in our security proof.

Lemma 1. Let pi, i = 1 . . . , r, be the random variables as defined above. Then we have

E
[

r∑
i=1

p2
i

]
≤ 2q2δ ,

where the expectation is taken over the uniform distribution of K ∈ K.
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Proof. Let c denote the random variable that counts the number of “X-colliding” pairs.
More precisely,

c :=
∣∣{(i, j) ∈ [q]2 : i < j and Xi = Xj

}∣∣ .
Then it is easy to show that

r∑
i=1

p2
i = 2c+

r∑
i=1

pi ≤ 4c .

Furthermore, we have E [c] ≤
(
q
2
)
δ, which completes the proof.

Thus, Lemma 1 says that the number of collisions is limited by 2q2δ on expectation.
Moreover, the corollary below yields an upper bound on the number of occurrences of any
single hash value. The proof in [JN20] stems from Markov’s inequality.

Corollary 1 (Corollary 4.1 in [JN20]). Let pmax = max{pi : i ∈ [r]}. Then, for a ≥ 1, it
holds that Pr[pmax ≥ a] ≤ 2q2δ

a2 .

In our security proof, we also need to upper bound the probability of three hash collisions
with two independent hash keys. With a smaller number of hash keys, the three collisions
are not independent of each other anymore. To address this situation, one should carefully
upper bound the number of colliding pairs made by a single key, and then use the
randomness of the second hash key; Jha and Nandi [JN20] proved the following lemma.

Lemma 2 (Alternating Collisions Lemma in [JN20]). Let q be a positive integer, let
δ > 0, and let H : K ×M → X be a δ-almost universal hash function. Then, for any
(M1, . . . ,Mq) ∈M∗q, we have

Pr
[
K1,K2 ←$ K : ∃(i, j, k, l) ∈ [q]∗4, HK1(Mi) = HK1(Mj)

∧HK2(Mj) = HK2(Mk) ∧HK1(Mk) = HK1(Ml)] ≤ q2δ3/2 .

Tweakable Block Ciphers. A tweakable permutation with tweak space N and message
space X is a mapping π̃ : N ×X → X such that, for any tweak N ∈ N , X 7→ π̃(N,X) is
a permutation of X .
A tweakable block cipher [LRW02] Ẽ with key space K, tweak space N and message space
X is a mapping Ẽ : K×N ×X → X such that for any key K ∈ K, (N,X) 7→ Ẽ(K,N,X)
is a tweakable permutation with tweak space N and message space X . Note that the
tweak is public and can be chosen freely for every query by the adversary as long as a
scheme does not restrict its usage otherwise. We will sometimes write ẼK(N,X) to denote
Ẽ(K,N,X). We also write TPerm(N ,X ) to mean the set of all tweakable permutations
with tweak space N and message space X .
To analyze the security of a tweakable block cipher Ẽ : K × N × {0, 1}n → {0, 1}n,
we consider a distinguisher A whose goal is to tell apart the real world and the ideal
world; in the real world, A is given oracle access to ẼK where a secret key K ∈ K
is chosen uniformly at random. In the ideal world, A is given a random tweakable
permutation π̃ ∈ TPerm(N , {0, 1}n) instead of ẼK . In any world, the adversary is allowed
to adaptively make forward and backward queries to the oracle. Formally, A’s tprp
(tweakable pseudorandom permutation) advantage is defined by

Advtprp
Ẽ

(A) =
∣∣∣Pr
[
π̃ ←$ TPerm(N , {0, 1}n) : 1← Aπ̃

]
− Pr

[
K ←$ K : 1← AẼK

]∣∣∣ .
We define Advtprp

Ẽ
(q, t) as the maximum of Advtprp

Ẽ
(A) over all distinguishers A against

Ẽ making at most q encryption oracle queries and running in time at most t. When we
consider information-theoretic security, we will drop the parameter t.
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Nonce-based MACs. Given four non-empty sets K, N ,M, and T , a nonce-based keyed
function with key space K, nonce space N , message spaceM and tag space T is simply a
function F : K×N ×M→ T . Stated otherwise, it is a keyed function whose domain is a
cartesian product N ×M. We denote FK(N,M) for F (K,N,M).
For K ∈ K, let AuthK be the mac oracle which takes as input a pair (N,M) ∈ N ×M
and returns FK(N,M), and let VerK be the verification oracle which takes as input a
triple (N,M, T ) ∈ N ×M×T and returns 1 (“accept”) if FK(N,M) = T , and 0 (“reject”)
otherwise. We assume that an adversary makes queries to the two oracles AuthK and VerK
for a secret key K ∈ K. A MAC query (N,M) made by an adversary is called a faulty
query if the adversary has already queried to the mac oracle with the same nonce but with
a different message (cf. [DNT19]). For example, if i-th query is denoted by (Ni,Mi) and
there are four distinct queries, (Ni,Mi) for i ∈ [4] such that N1 6= N2 = N3 = N4, the
third and the fourth queries are faulty and the number of faulty queries is two. We would
like to emphasize that the term of faulty queries to provide consistency for readers familiar
with [DNT19], where it characterized faulty implementations or environments that led
to repeating nonces. It does not represent faults from processing errors or side-channel
attacks.
A (µ, q, v, t)-adversary against the nonce-based mac security of F is an adversary A with
oracle access to AuthK and VerK , making at most q MAC queries to its first oracle with at
most µ faulty queries and at most v verification queries to its second oracle, and running
in time at most t. We say that A forges if any of its queries to VerK returns 1. The
advantage of A against the nonce-based mac security of F is defined as

Advmac
F (A) = Pr

[
K ←$ K : AAuthK ,VerK forges

]
,

where the probability is also taken over the random coins of A, if any. The adversary
is not allowed to ask a verification query (N,M, T ) if a previous MAC query (N,M) to
AuthK returned T . However, it is still possible that a verification query (N,M, T ) is first
made, possibly rejected, and a MAC query (N,M) is subsequently made.
When µ = 0, we say that A is nonce-respecting, that is, all nonces in the MAC queries are
unique. Otherwise, A is called nonce-misusing. However, the adversary is always allowed
to repeat nonces in its verification queries and reuse a nonce from a previous MAC query.
We define Advmac

F (µ, q, v, t) as the maximum of Advmac
F (A) over all (µ, q, v, t)-adversaries.

When we consider information-theoretic security, we will drop the parameter t.
This work shows the mac security of NaT2 and eHaT using the advantage of an adversary
trying to distinguish the real world (AuthK ,VerK) and the ideal world. The ideal world
oracles are (Rand,Rej), where Rand returns an independent random value (instantiating a
truly random function) and Rej returns 0 for every verification query. Then,

Advmac
F (µ, q, v, t) ≤ max

A

(
Pr
[
K ←$ K : 1← AAuthK ,VerK

]
− Pr

[
1← ARand,Rej] ) ,

whereas for mac security, an adversary makes at most q MAC queries to its first oracle
with at most µ faulty queries and at most v verification queries to its second oracle, runs
in time at most t, and returns a decision bit. The detail of obtaining the bound is given in
Section 2.3 of [CLS17].
Expectation Method. Consider a construction F based on a universal hash function H
and a tweakable block cipher Ẽ using keys (Kh,K). Suppose, a distinguisher A adaptively
makes q MAC queries and v verification queries to either (AuthKh,K ,VerKh,K) for a random
secret key (Kh,K) ∈ Kh ×K (in the real world) or (Rand,Rej) (in the ideal world), where
Rand returns an independent random value (instantiating a truly random function) and
Rej return 0 for every verification query. Moreover, A records all the queries in

τm
def= ((N1,M1, T1), . . . , (Nq,Mq, Tq)) ,
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τv
def= ((N ′1,M ′1, T ′1, b′1), . . . , (N ′v,M ′v, T ′v, b′v)) ,

where either AuthKh,K(Ni,Mi) = Ti or Rand(Ni,Mi) = Ti for i = 1, . . . , q, and either
VerKh,K(N ′i ,M ′i , T ′i ) = b′i or Rej(N ′i ,M ′i , T ′i ) = b′i(= 0) for i = 1, . . . , v, according to the
world that A interacts with.
As a common means to alleviate the proof, we will provide the distinguisher A with
additional information τa (e.g. hash key Kh) for free after A has finished its interaction
with the oracles, but before it releases its output decision bit. Thus, A can compute
all inputs to the internal primitives itself. In the ideal world, that information will be
selected uniformly at random from the appropriate domain and given to A. This will not
degrade the adversarial distinguishing advantage since the distinguisher is free to ignore
this additional information. We will call

τ = (τa, τm, τv)

the transcript of the attack; it contains all information that A has obtained at the end of
the attack. When we consider an information-theoretic distinguisher, we can assume that
the distinguisher is deterministic without making any redundant query.
A transcript τ is called attainable if the probability to obtain this transcript in the ideal
world is non-zero. Note that any key Kh ∈ Kh and any sequence of tags (T1, . . . , Tq) ∈
({0, 1}n)q uniquely determine an attainable transcript containing them, and each attainable
transcript appears in the ideal world with the same probability, namely 1/(2n)q. We
denote Γ the set of attainable transcripts. We also denote Tre (resp. Tid) the probability
distribution of the transcript τ induced by the real world (resp. the ideal world). By
extension, we use the same notation to denote a random variable distributed according to
each distribution.
In this setting, it is obvious that A’s distinguishing advantage upper bounds A’s forging
probability. To upper bound the distinguishing advantage, we will use Patarin’s H-
coefficient technique; we partition the set of attainable transcripts Γ into a set of “good”
transcripts Γgood such that the probabilities to obtain some transcript τ ∈ Γgood are close
in the real world and the ideal world, and a set Γbad of “bad” transcripts such that the
probability to obtain any τ ∈ Γbad is small in the ideal world. The lower bound in the
probability ratio for obtaining a good transcript in both worlds will be given as a function
of τ , and we will take its expectation. This refinement is called the expectation method,
first introduced in [HT16], summarized in the following theorem.

Lemma 3. Fix a distinguisher A. Let Γ = ΓgoodtΓbad be a partition of the set of attainable
transcripts, and there exists a non-negative function ε1(τ) s. t. for any τ ∈ Γgood,

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− ε1(τ) ,

and there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then, one has

Advmac
F (A) ≤ E [ε1(τ)] + ε2 , (1)

where the expectation is taken over the distribution Tid in the ideal world.

Proof. Since the distinguisher’s output is a (deterministic) function of the transcript, its
distinguishing advantage5 is upper bounded by the statistical distance between Tid and
Tre. Thus we have

Advmac
F (A) ≤ ‖Tre − Tid‖ := 1

2
∑
τ∈Γ
|Pr[Tre = τ ]− Pr[Tid = τ ]| .

5For simplicity we took the specific notion (Advmac). However, the framework holds for the general
distinguishing advantage.
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Algorithm 1 NaT2
101: function NaT2[HK1 , HK2 , ẼK , ẼK′ ](N,M)
102: U ← HK1 (M)
103: V ← HK2 (M)
104: X ← ẼK(N,U)
105: Y ← ẼK′ (N, V )
106: T ← X ⊕ Y
107: return T

Algorithm 2 eHaT
201: function eHaT[HK1 , H

′
K2 , ẼK , ẼK′ ](N,M)

202: U ← HK1 (N ‖M)
203: V ← H′K2 (N ‖M)

204: X ← ẼK(V, U)
205: Y ← ẼK′ (N, 0

n)
206: T ← X ⊕ Y
207: return T

Figure 3: Our proposals, NaT2 and eHaT.

Moreover we have:

‖Tre − Tid‖ =
∑
τ∈Γ

Pr[Tid=τ ]>Pr[Tre=τ ]

(Pr[Tid = τ ]− Pr[Tre = τ ])

=
∑
τ∈Γ

Pr[Tid=τ ]>Pr[Tre=τ ]

Pr[Tid = τ ]
(

1− Pr[Tre = τ ]
Pr[Tid = τ ]

)

≤
∑

τ∈Γgood

Pr[Tid = τ ]ε1(τ) +
∑
τ∈Γbad

Pr[Tid = τ ] ≤ E [ε1(τ)] + ε2 .

Remark 1. The standard H-coefficient technique [Pat08, CS14] correspond to a special
case of the expectation method that requires ε1(τ) is independent of (good) τ . Thus it
reduces to ε1 and the distinguishing advantage is at most ε1 + ε2.

3 The NaT2 and eHaT Constructions
This section describes our proposals and discusses their efficiency.

3.1 Descriptions

NaT2. Let H : Kh×M→ {0, 1}n be a keyed function and let Ẽ : K×T ×{0, 1}n → {0, 1}n
be a TBC, where M = {0, 1}∗ denotes the message space and T = {0, 1}t denotes the
tweak space. NaT2 is based on them using T as the nonce space. Specifically, for an input
tuple (N,M) ∈ T ×M, the n-bit tag T is computed as

T = ẼK(N,HK1(M))⊕ ẼK′(N,HK2(M)) .

This is exactly a sum of two independent instances of NaT. An illustration is given in
Figure 1c. The security bounds of NaT2 will be given in Section 5.
eHaT. For eHaT, we extend HaT. Let H ′ : K′h ×M→ T be a keyed function. The values
U and V are hash values from hash instances of H and H ′, respectively. In this case, the
keyed hash functions take the concatenation N ‖M instead of M as in HaT. The two hash
values V and U are given to a TBC to produce X, which corresponds to the output of
HaT taking N ‖M as the message (recall that HaT is a deterministic MAC). Moreover,
there is an additional TBC to process the nonce (as a tweak, the block input is set to a
constant) to produce the output Y . The sum of X and Y is used as the tag output:

T = ẼK(V,U)⊕ ẼK′(N, 0n), where U = HK1(N ‖M), V = H ′K2
(N ‖M) .

An illustration is given in Figure 1d. The security bounds will be given in Section 6.
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Both schemes use two keys of a TBC, however it is trivial to reduce to the single key by
assuming one additional tweak bit. For example, we can use [ẼK(0 ‖ ∗, ∗), ẼK(1 ‖ ∗, ∗)]
instead of [ẼK(∗, ∗), ẼK′(∗, ∗)].

3.2 Brief Comparison

Both constructions have two keyed hash functions and two TBC calls. In this sense, their
respective efficiency values are close in general. Still, there are some differences: the
keyed hash function under NaT2 takes the message, while those under eHaT takes the
concatenation of the nonce and the message. Therefore, eHaT is more costly, and this can
be non-trivial when the messages are short. For t = n, the hash functions H and H ′ for
eHaT can be reduced to a single one under two independent keys. For t 6= n, both can
also use the same core operation, e.g., a polynomial hash, that operates in different fields.
In the case that a polynomial hash function over GF(2n), this implies that the number of
multiplications is increased by two (See Table 1). We note that omitting N in the hash
computations in eHaT (but keeping the nonce encryption by the second TBC) results in a
nonce-based MAC without NM security. This corresponds to the classical hash-then-mask
MAC, with the underlying keyed hash function being the whole HaT.
Another difference between NaT2 and eHaT is their tweak usage: NaT2 takes the nonce
as a tweak for two TBCs, while eHaT takes a nonce for one TBC and a hash output for
the other TBC. We observe that dedicated TBCs often employ a tweak schedule together
with a key (dubbed tweakey schedule in Skinny for example) to derive the round keys. If
the tweak is a nonce, most typically a counter, the tweak schedule can be pre-computed
or incrementally computed to save the total computation. This implies that NaT2 is
advantageous over eHaT in terms of tweak processing.
The difference in security is more involved. Despite the conceptual simplicity, the security
analyses of both constructions are surprisingly complex, in particular for NaT2. It can be
seen as a nonce-based variant of DbHtS MAC and adopt the security proof framework for
DbHtS recently introduced by Kim et al. [KLL20].

4 Extended Mirror Theory
The goal of this section is to lower bound the number of solutions to a certain type of
system of equalities and inequalities. This will be the foundation that we can thereupon
prove the security of NaT2 in Section 5. For simplicity, we will denote Z = 2n throughout
this section.
Transcript Graph. We will represent a system of inequalities and inequalities by a
“bipartite” graph. The vertices in the graph are divided into two parts; P and Q are the two
disjoint and independent vertex sets such that every edge connects a vertex in P to one in
Q. For both P and Q, the vertices correspond to n-bit distinct unknowns. We will assume
that the number of vertices is at most Z/2, and by abuse of notation, identify the vertices
with the values assigned to them. We distinguish two types of edges, namely, =-labeled
edges and 6=-labeled edges that correspond to inequalities and inequalities, respectively.
Each edge is additionally labeled by an element in {0, 1}n. So, if two vertices P and Q are
adjacent by an edge with label (λ,=) (respectively (λ, 6=)) for some λ ∈ {0, 1}n, then it
would mean that P ⊕Q = λ (respectively P ⊕Q 6= λ).
Consider a graph G = (V, E= t E 6=), where E= and E 6= denote the set of =-labeled edges
and the set of 6=-labeled edges, respectively. Then G can be seen as a superposition of two
subgraphs G= := (V, E=) and G 6= := (V, E 6=). Let P

λ
−Q denote a (λ,=)-labeled edge in
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G=. For ` > 0 and a trail6

L : P0
λ1
− P1

λ2
− · · ·

λ`

− P`

in G=, its label is defined as

λ(L) def= λ1 ⊕ λ2 ⊕ · · · ⊕ λ` .

Nice Graphs. In this work, we will focus on a graph G = (V, E= t E 6=) with certain
properties, as listed below.

1. G= contains no cycle.

2. λ(L) 6= 0 for any trail L in G=.

3. If P and Q are connected with a (λ, 6=)-labeled edge, then they are not connected by
a λ-labeled trail in G=.

Any graph G satisfying the above properties will be called a nice graph. Given a nice graph
G = (V, E= tE 6=), an assignment of distinct values to the vertices in P and Q satisfying all
the inequalities in E= and all the inequalities in E 6= is called a solution to G. We remark
that if we assign any value to a vertex P , then =-labeled edges determine the values of all
the other vertices in the component containing P in G=, where the assignment is unique
since G= contains no cycle, and the values in the same component are all distinct since
λ(L) 6= 0 for any trail L. Furthermore, any inequation between two vertices in the same
component will be redundant due to the third property above.
The number of possible assignments of distinct values to the vertices in V is (Z)|V|. One
might expect that when such an assignment is chosen uniformly at random, it would satisfy
all the inequalities and inequalities in G with probability close to 1/Zq, where q denotes
the number of =-labeled edges (i.e., inequalities) in G=. Indeed, we can prove that the
number of solutions to G is close to (Z)|V|

Zq up to a certain error (that can be negligible
according to the parameters).
Proof Idea. Given an arbitrary nice graph G, we will decompose G= into three subgraphs,
denoted G=

1 , G=
2 and G=

3 , respectively, where

• G=
1 = (V1, E=

1 ) is the union of components containing at least one trail of length two;

• G=
2 = (V2, E=

2 ) is the union of components of size two (i.e., trails of length one);

• G=
3 = (V3, E=

3 ) is the set of isolated vertices.

For i = 1, 2, 3, let E 6=i denote the set of 6=-labeled edges connecting a vertex in Vi and one
in
⊔i
j=1 Vj , and let

Gi =

 i⊔
j=1
Vj ,

i⊔
j=1
E=
j t

i⊔
j=1
E 6=j

 .

In order to lower bound the number of solutions to G, we will first lower bound the number
of solutions to G1 using Lemma 4, and then G2 and G3 (= G) using Lemma 5 and Lemma 6,
respectively.

Theorem 1. For positive integers q and v, let G = (V, E= tE 6=) be a nice graph such that
|E=| = q and |E 6=| = v. With the notation defined as above, assume that G=

1 is decomposed
6A trail is a walk wherein all edges are distinct.
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into k components C1, . . . , Ck for some k. Then, the number of solutions to G, denoted
h∗(G), satisfies

h∗(G)2nq
(2n)|P|(2n)|Q|

≥ 1− |G
=
1 |

2

22n

k∑
i=1
|Ci|2 −

|G=
1 |q2

22n − q2

22n −
4q4

23n −
2v
2n −

4qv
22n ,

provided that q ≤ 2n−3.

Proof. For i = 1, 2, 3, let Pi = Vi ∩ P, Qi = Vi ∩ Q, qi = |E=
i | and vi = |E 6=i |. Then we

have q = q1 + q2 (with q3 = 0) and v = v1 + v2 + v3. Note that we interchangeably write
|G=
i | and |Vi|.

By Lemma 4, the number of solutions to G1, denoted h(G1), satisfies

h(G1)Zq1

(Z)|P1|(Z)|Q1|
≥ 1− |V1|2

Z2

k∑
i=1
|Ci|2 −

2v1

Z
. (2)

By Lemma 5, for a fixed solution to G1, the number of solutions to G2, denoted h(G2),
satisfies

h(G2)Zq2

(Z − |P1|)|P2|(Z − |Q1|)|Q2|
≥ 1− |V1|2 q2

2Z2 − |V1| q2
2

Z2 − 8 |V1| q3
2

3Z3

− q2
2
Z2 −

4q4
2

Z3 −
2v2

Z
− 4q2v2

Z2

≥ 1− |V1| q2

Z2 − q2

Z2 −
4q4

Z3 −
2v2

Z
− 4qv
Z2 (3)

since 2
3 |V1| + q2 ≤ q1 + q2 ≤ q. By Lemma 6, for a fixed solution to G2, the number of

solutions to G3, denoted h(G3), satisfies

h(G3)
(Z − |P1| − |P2|)|P3|(Z − |Q1| − |Q2|)|Q3|

≥ 1− 2v3

Z
. (4)

By (2), (3), (4), we have

h∗(G)Zq
(Z)|P|(Z)|Q|

= h(G1)Zq1

(Z)|P1|(Z)|Q1|
· h(G2)Zq2

(Z − |P1|)|P2|(Z − |Q1|)|Q2|

× h(G3)
(Z − |P1| − |P2|)|P3|(Z − |Q1| − |Q2|)|Q3|

≥ 1− |V1|2

Z2

k∑
i=1
|Ci|2 −

|V1| q2

Z2 − q2

Z2 −
4q4

Z3 −
4qv
Z2

− 2v1

Z
− 2v2

Z
− 2v3

Z

≥ 1− |V1|2

Z2

k∑
i=1
|Ci|2 −

|V1| q2

Z2 − q2

Z2 −
4q4

Z3 −
2v
Z
− 4qv
Z2 .

The proof is based on three lemmas:

• Lemma 4 will study the number of solutions of G=
1 , that is, for a graph that contains

exactly the components with a trail of length two or larger.

• Lemma 5 considers the number of solutions of G=
2 , that is, for a graph that contains

exactly the components with a trail of length one.
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• Finally, Lemma 6 considers G=
3 , that is the set of isolated vertices.

In the proofs of those lemmas, we will proceed stepwise. However, the other graphs may
already have fixed some values before. For this purpose, we partition the set of vertices V
into two disjoint sets, denoted Vk and Vu, respectively.
The vertices in Vk represent those distinct values that have been fixed already by other
graphs. Then, the number of possible assignments of distinct values to the vertices in Vu
can be lower bounded in a way that the entire assignment becomes a solution to G.

Lemma 4. For a positive integer q and a nonnegative integer v, let G = (V, E= t E 6=) be
a nice graph such that |E=| = q and |E 6=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vk and Vu;

2. P (resp. Q) is partitioned into two subsets, denoted Pk = P∩Vk and Pu = P∩Vu (resp.
Qk = P ∩Qk and Qu = Q∩ Vu);

3. there is no =-labeled edge that is incident to a vertex in Vk;

4. there is no 6=-labeled edge connecting two vertices in Vk.

Suppose that G=
uk = (Vu, E=) is decomposed into k components C1, . . . , Ck for some k.

Given a fixed assignment of distinct values to the vertices in Vk, the number of solutions
to G, denoted h(G), satisfies

h(G)Zq
(Z − |Pk|)|Pu|(Z − |Qk|)|Qu|

≥ 1− |V|
2

Z2

k∑
i=1
|Ci|2 −

2v
Z
.

Proof. For i = 1, . . . , k,

• let Ci = Pi tQi where Pi ∈ P and Qi ∈ Q;

• let ri = |Pi|, si = |Qi| and ci = |Ci| = ri + si;

• let αi = |Pk|+
∑i
j=1 rj and βi = |Qk|+

∑i
j=1 sj ;

• let σi = |Vk|+
∑i
j=1 cj = αi + βi;

• let Gi = (Vi, Ei) be the graph obtained from Vk t C1 t C2 t · · · t Ci by adding all the
6=-labeled edges connecting the vertices in Vk t C1 t C2 t · · · t Ci;

• let vi be the number of 6=-labeled edges that connect a vertex in Ci and one in Gi−1;

• let h(i) be the number of solutions to Gi.

Let h(0) = 1 and let σ0 = |Vk|. Then we have Gk = G, and hence h(k) = h(G). If there
exists i such that σici+1 ≥ Z, we have

|V|2
k∑
i=1
|Ci|2 ≥ σ2

i c
2
i+1 ≥ Z2 .

Thus, the lemma trivially holds. Therefore, we can assume that for i = 0, . . . , k − 1,
σici+1 ≤ Z. In order to find a relation between h(i) and h(i+ 1), we fix a solution to Gi.
If we fix a vertex V ∗ ∈ Pi+1 and assign any value to V ∗, then the other unknowns in Pi+1
are uniquely determined, since there is a unique trail from V ∗ to any other vertices in
Pi+1. In order to make all assigned values distinct (for each P and Q), it is sufficient that

V ∗ /∈
⋃

1≤j≤i
P∈Pi+1

((Pk t Pj)⊕ λP ) ∪
⋃

1≤j≤i
Q∈Qi+1

((Qk tQj)⊕ λQ) ,
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where λV denotes the label of the unique trail from V ∗ to V if V 6= V ∗ and λV ∗ = 0.
Moreover, V ∗ should satisfy vi+1 inequalities. The number of choices satisfying these
conditions is at least Z − αiri+1 − βisi+1 − vi+1, which means

h(i+ 1) ≥ (Z − αiri+1 − βisi+1 − vi+1)h(i) .

Then, for 0 ≤ i ≤ q − 1, we have

h(i+ 1)Zci+1−1

h(i)(Z − αi)ri+1(Z − βi)si+1

≥ h(i+ 1)
h(i) · 1

Z

(
Z

Z − αi

)ri+1 ( Z

Z − βi

)si+1

≥ h(i+ 1)
h(i) · 1

Z

(
1 + αiri+1

Z − αi

)(
1 + βisi+1

Z − βi

)
≥
(

1− αiri+1 + βisi+1 + vi+1

Z

)(
1 + αiri+1 + βisi+1

Z

)
≥ 1−

(
αiri+1 + βisi+1

Z

)2
− (Z + αiri+1 + βisi+1)vi+1

Z2

≥ 1−
σ2
i c

2
i+1

Z2 − 2vi+1

Z

since σici+1 ≤ Z. From
∑k
i=1 vi = v, we obtain

h(G)Zq
(Z − |Pk|)|Pu|(Z − |Qk|)|Qu|

=
k−1∏
i=0

h(i+ 1)Zci+1−1

h(i)(Z − αi)ri+1(Z − βi)si+1

≥
k−1∏
i=0

(
1−

σ2
i c

2
i+1

Z2 − 2vi+1

Z

)

≥ 1−
k−1∑
i=0

(
σ2
i c

2
i+1

Z2 + 2vi+1

Z

)

≥ 1− σ2
k

Z2

k∑
i=1

c2i −
2v
Z
.

The next lemma considers the case that every component of the graph contains exactly
two vertices.

Lemma 5. For a positive integer q and a nonnegative integer v, let G = (V, E= t E 6=) be
a nice graph such that |E=| = q and |E 6=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vk and Vu;

2. P (resp. Q) is partitioned into two subsets, denoted Pk = P∩Vk and Pu = P∩Vu (resp.
Qk = P ∩Qk and Qu = Q∩ Vu);

3. there is no =-labeled edge that is incident to a vertex in Vk;

4. there is no 6=-labeled edge connecting two vertices in Vk.

Suppose that G=
uk = (Vu, E=) is decomposed into q components of size two. Given a fixed

assignment of distinct values to the vertices in Vk, the number of solutions to G, denoted
h(G), satisfies

h(G)Zq
(Z − |Pk|)|Pu|(Z − |Qk|)|Qu|

≥1− |Vk|2q
2Z2 −

|Vk|q2

Z2 − 8|Vk|q3

3Z3
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− q2

Z2 −
4q4

Z3 −
2v
Z
− 4qv
Z2 .

Proof. We will write the connected components of G=
unknown as follows:

Ci : Pi
λi

−Qi ,

for i = 1, . . . , q, where Pi ∈ Pu, Qi ∈ Qu and λi ∈ {0, 1}n. For i = 1, . . . , k,

• let αi = |Pk|+ i and βi = |Qk|+ i;

• let σi = |Vk|+ 2i = αi + βi;

• let Gi = (Vi, Ei) be the graph obtained from Vk t C1 t C2 t · · · t Ci by adding all the
6=-labeled edges connecting the vertices in Vk t C1 t C2 t · · · t Ci;

• let vi be the number of 6=-labeled edges that connect a vertex in Ci and one in Gi−1;

• let h(i) be the number of solutions to Gi.

Let h(0) = 1, α0 = |Pk|, β0 = |Qk| and σ0 = |Vk|. Then we have Gk = G, and hence
h(k) = h(G).
In order to find a relation between h(i) and h(i+ 1), we fix a solution to Gi. Then we can
choose Pi+1 from {0, 1}n \ (Xi ∪ Yi), where

Xi
def= Pk t {P1, P2, . . . , Pi} ,

Yi
def= (Qk t {Q1, Q2, . . . , Qi})⊕ λi+1 .

Since |Xi|+ |Yi| = σi, we have

h(i+ 1) ≥
∑

solutions to Gi

(Z − |Xi ∪ Yi| − vi+1)

=
∑

solutions to Gi

(Z − σi − vi+1 + |Xi ∩ Yi|)

= (Z − σi − vi+1)h(i) +
∑

solutions to Gi

|Xi ∩ Yi| . (5)

For X ∈ Xi and Y ∈ Yi ⊕ λi+1, let h′(X,Y ) denote the number of solutions to Gi such
that X ⊕ Y = λi+1. Then we have∑

solutions to Gi

|Xi ∩ Yi| =
∑
X∈Xi

Y ∈Yi⊕λi+1

h′(X,Y ) ≥
∑

X∈{P1,...,Pi}
Y ∈{Q1,...,Qi}

h′(X,Y ) . (6)

We observe that

1. if X and Y are connected with a (λi+1,=)-labeled edge, then the additional equation
X ⊕ Y = λi+1 is redundant, and hence h′(X,Y ) = h(i);

2. if X and Y are connected with either a (λ,=)-labeled edge such that λ 6= λi+1 or
a (λi+1, 6=)-labeled edge, then the system of equations and inequalities (with the
additional equation) has no solution.

Let i ≥ 2. Suppose that X = Pj and Y = Qj′ for distinct j and j′, X and Y are not
connected with any 6=-labeled edge, and λi+1 /∈ {λj , λj′}, then we have

h′(X,Y ) ≥ h(i)
Z

(
1− 4σi

Z

)
(7)
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since

h′(X,Y ) ≥ (Z − 4σi−2)h(i− 2) ≥ (Z − 4σi)h(i− 2),
h(i− 2)Z2 ≥ h(i− 2) (Z − 2σi−2) (Z − 2σi−1) ≥ h(i) .

Let

S1 =
{

(j, j′) ∈ [i]∗2 : there is a 6= -labeled edge between Pj and Qj′
}
,

S2 =
{

(j, j′) ∈ [i]∗2 : λj = λi+1 ∨ λj′ = λi+1
}
,

and let

G = |{1 ≤ j ≤ i : λj = λi+1}|
H =

∣∣[i]∗2 \ (S1 ∪ S2)
∣∣ .

Since |S1| ≤ 2v and |S2| ≤ 2iG, we have

H ≥ i(i− 1)− 2v − 2iG . (8)

By (6), (7), (8), and since 2i ≤ 2q ≤ Z, we have∑
solutions to Gi

|Xi ∩ Yi| ≥
(
G+ i2 − i− 2v − 2iG

Z

(
1− 4σi

Z

))
h(i)

≥ i2 − i− 2v
Z

(
1− 4σi

Z

)
h(i) ,

and by (5),

h(i+ 1) ≥ (Z − σi − vi+1)h(i) + i2 − i− 2v
Z

(
1− 4σi

Z

)
h(i) .

Since σi ≤ Z/2, we have

h(i+ 1)Z
h(i)(Z − αi)(Z − βi)

≥
Z2 − σiZ − vi+1Z + (i2 − i− 2v)

(
1− 4σi

Z

)
Z2 − σiZ + αiβi

≥ 1−
αiβi + vi+1Z − (i2 − i− 2v)

(
1− 4σi

Z

)
Z2 − σiZ + αiβi

≥ 1−
(α0 + i)(β0 + i) + vi+1Z − (i2 − i− 2v)

(
1− 4σi

Z

)
Z2/2

≥ 1−
α0β0 + σ0i+ vi+1Z + i+ 2v + 4σ0i

2

Z + 8i3
Z

Z2/2

≥ 1− 2α0β0

Z2 − 2σ0i

Z2 −
8σ0i

2

Z3 − 2i
Z2 −

16i3
Z3 −

2vi+1

Z
− 4v
Z2 .

Finally, with |Pk||Qk| ≤ |Vk|2/4 we have

h(G)Zq
(Z − |Pk|)|Pu|(Z − |Qk|)|Qu|

=
q−1∏
i=0

h(i+ 1)Z
h(i)(Z − αi)(Z − βi)
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≥
q−1∏
i=0

(
1− 2α0β0

Z2 − 2σ0i

Z2 −
8σ0i

2

Z3 − 2i
Z2 −

16i3
Z3 −

2vi+1

Z
− 4v
Z2

)

≥ 1−
q−1∑
i=0

(
2α0β0

Z2 + 2σ0i

Z2 + 8σ0i
2

Z3 + 2i
Z2 + 16i3

Z3 + 2vi+1

Z
+ 4v
Z2

)
≥ 1− |Vk|2q

2Z2 −
|Vk|q2

Z2 − 8|Vk|q3

3Z3 − q2

Z2 −
4q4

Z3 −
2v
Z
− 4qv
Z2 .

Finally, we consider a graph containing no =-labeled edges. So G= consists only of isolated
vertices.

Lemma 6. For a nonnegative integer v, let G = (V, E 6=) be a nice graph such that |E 6=| = v.
Suppose that

1. V is partitioned into two subsets, denoted Vk and Vu;

2. P (resp. Q) is partitioned into two subsets, denoted Pk = P∩Vk and Pu = P∩Vu (resp.
Qk = P ∩Qk and Qu = Q∩ Vu);

3. there is no 6=-labeled edge connecting two vertices in Vk.

Given a fixed assignment of distinct values to the vertices in Vk, the number of solutions
to G, denoted h(G), satisfies

h(G)
(Z − |Pk|)|Pu|(Z − |Qk|)|Qu|

≥ 1− 2v
Z
.

Since the proof is short, we can list it here:

Proof. The number of possible assignments of distinct values outside Vk to the vertices in Vu
is (Z−|Pk|)|Pu|(Z−|Qk|)|Qu|. Among these assignments, at most 1

Z−|Vk| (Z−|Pk|)|Pu|(Z−
|Qk|)|Qu| assignments violate any fixed 6=-labeled edge. Therefore, we have

h(G) ≥ (Z − |Pk|)|Pu|(Z − |Qk|)|Qu| −
v

Z − |Vk|
(Z − |Pk|)|Pu|(Z − |Qk|)|Qu| ,

which means
h(G)

(Z − |Pk|)|Pu|(Z − |Qk|)|Qu|
≥ 1− 2v

Z
.

As a special case of interest of Theorem 1, we can also consider Theorem 2. In fact, it
considers a nice transcript graph of a transcript that contains only a single MAC query,
and v verification queries.

Theorem 2. For a nonnegative integer v, let G = (V, E= t E 6=) be a nice graph such that
|E=| = 1 and |E 6=| = v. The number of solutions to G, denoted h∗(G), satisfies

h∗(G)
(2n)|P|(2n)|Q|

≥ 1− 2v
2n .

Proof. Let G= = (V=, E=) be a unique component of size two. The number of solutions to
G=, denoted h(G=), is exactly Z. By Lemma 6, for a fixed solution to G=, the number of
solutions to G, denoted h(G), satisfies

h(G)
(Z − 1)|P|−1(Z − 1)|Q|−1

≥ 1− 2v
Z
. (9)
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By h(G=) = Z and Equation (9), we have

h∗(G)Z
(Z)|P|(Z)|Q|

= h(G=)Z
Z2 · h(G)

(Z − 1)|P|−1(Z − 1)|Q2|−1

≥ 1− 2v
Z
.

5 Security Analysis of NaT2
Recall that NaT2 computes a tag T for a tuple (N,M) following Algorithm 1 and Figure 1c.
Up to the tprp-security of Ẽ, the keyed tweakable permutation ẼK (resp. ẼK′) can be
replaced by a truly tweakable random permutation π̃ (resp. π̃′). The core task will be to
show the following Theorem.

Theorem 3. Let δ > 0, and let H : K ×M → {0, 1}n be a δ-almost universal hash
function. For positive integers µ, q, v, such that µ+ v ≤ 2n−3, we have

Advmac
NaT2(µ, q, v) ≤ 16µ2δ

2n + 8µ2δ3/2 + 24µ2δ

2n/2 + 16µ3δ2

2n + 4µ2

23n/2 + 4µ2

22n + 64µ4

23n

+ 2v
2n + 8µv

22n + 4(v + 1)µ2δ2 + vδ + 3
2n/2 .

The remaining part of this section will be devoted to the proof of Theorem 3.

5.1 Graph Representation of Transcripts
Suppose that an adversary A makes q MAC queries using at most µ faulty nonces, and
makes v verification queries. Let

τm = (Ni,Mi, Ti)1≤i≤q and
τv =

(
N ′j ,M

′
j , T
′
j , b
′
j

)
1≤j≤v

denote the list of MAC queries and the list of verification queries, respectively. For a nonce
w, we also define

τm(w) = {(N,M, T ) ∈ τm : N = w} and
τv(w) = {(N ′,M ′, T ′, b′) ∈ τv : N ′ = w}

and let qw = |τm(w)| and vw = |τv(w)|. Note that A is given K1 and K2 for free at the
end of the attack. Then, from the transcript

τ = (K1,K2, τm, τv) ,

one can fix Ui := HK1(Mi) (resp. Vi := HK2(Mi)), for i ∈ [q], and U ′j := HK1(M ′j) (resp.
V ′j := HK2(M ′j)) for j ∈ [v].
The core of the security proof is to estimate the number of possible ways of fixing evaluations
of π̃ and π̃′ in a way that π̃(Ni, Ui)⊕π̃′(Ni, Vi) = Ti for i ∈ [q], and π̃(N ′j , U ′j)⊕π̃′(N ′j , V ′j ) 6=
T ′j for j ∈ [v]. For a fixed w, we will identify {π̃(Ni, Ui) : Ni = w} ∪

{
π̃(N ′j , U ′j) : N ′j = w

}
with a set of unknowns (by an abuse of notation)

Pw = {P1, . . . , Prw} ,

where rw ≤ qw + vw since there can be hash collisions. Similarly, we will identify
{π̃′(Ni, Vi) : Ni = w} ∪

{
π̃′(N ′j , V ′j ) : N ′j = w

}
with a set of unknowns

Qw = {Q1, . . . , Qsw
} ,
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where sw ≤ qw + vw.
For i ∈ [q] where Ni = w, let π̃(w,Ui) = Pj ∈ Pw and let π̃′(w, Vi) = Qk ∈ Qw. Then Pj
and Qk are connected with a (Ti,=)-labeled edge. Similarly, for i ∈ [v] where N ′i = w, Pj
and Qk are connected with a (T ′i , 6=)-labeled edge if π̃(w,U ′i) = Pj and π̃′(w, V ′i ) = Qk.
In this way, we obtain a graph Gw = (Vw, Ew) on Vw := Pw t Qw, and call the union of
graphs Gw for all nonces as the transcript graph of τ and denoted Gτ . By definition, Gτ has
no isolated vertices. Furthermore, Gτ is a bipartite graph with independent sets

⊔
w Pw

and
⊔
wQw, and contains no edge between Pw and Qw′ for w 6= w′.

5.2 Bad Transcripts
For a fixed positive integer L (to be optimized later), a transcript τ = (K1, K2, τm, τv) is
defined as bad if one of the following conditions holds.

• bad1 := bad1a ∨ bad1b ∨ bad1c where

− bad1a: there exist (i, j) ∈ [q]∗2 such that Ni = Nj , Ui = Uj , and Vi = Vj ;
− bad1b: there exist (i, j, k, l) ∈ [q]∗4 such that Ni = Nj = Nk = Nl, Ui = Uj ,
Vj = Vk, and Uk = Ul;

− bad1c: there exist (i, j, k, l) ∈ [q]∗4 such that Ni = Nj = Nk = Nl, Vi = Vj ,
Uj = Uk, and Vk = Vl;

• bad2 := bad2a ∨ bad2b, where

− bad2a: there exist (i, j) ∈ [q]∗2 such that Ni = Nj , Ui = Uj , and Ti = Tj ;
− bad2b: there exist (i, j) ∈ [q]∗2 such that Ni = Nj , Vi = Vj , and Ti = Tj ;

• bad3 := bad3a ∨ bad3b, where

− bad3a: there exist i ∈ [q] and j ∈ [v] such that Ni = N ′j , Ui = U ′j , Vi = V ′j , and
Ti = T ′j ;

− bad3b: there exist (i, j) ∈ [q]∗2 and k ∈ [v] such that Ni = Nj = N ′k, Ui = U ′k,
and V ′k = Vj ;

• bad4 := bad4a ∨ bad4b, where

− bad4a: |{i ∈ [q] : Ni = Nj ∧ Ui = Uj for some j such that j 6= i}| ≥ L;
− bad4b: |{i ∈ [q] : Ni = Nj ∧ Vi = Vj for some j such that j 6= i}| ≥ L.

If a transcript τ is not bad, then it will be called a good transcript. For a good transcript
τ and for a w such that qw + vw > 0, we observe that

1. G=
w , being a bipartite graph, contains no cycle without bad1;

2. G=
w contains no even length trail L such that λ(L) = 0 without bad1 ∨ bad2;

3. if two vertices are connected by a λ-labeled trail in G=
w , then they cannot be connected

with a (λ, 6=)-labeled edge without bad1 ∨ bad3.

Furthermore, we see that G=
τ contains no trail of length 4 without bad1. With this

observation, we conclude that for any w and a good transcript τ , it holds that

1. Gw is nice (as defined in Section 4);

2. |Gw| ≤ 2(2µ+ v) ≤ 2n−2.
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These properties allow us to apply Theorem 1 later.
In the following, we upper bound the probabilities of the individual bad events in the ideal
world.
bad1. The number of queries using any repeated nonce is at most 2µ. So the number of
pairs (i, j) ∈ [q]∗2 such that Ni = Nj is at most 4µ2. For each of such pairs, say (i, j), the
probability that Ui = Uj and Vi = Vj is at most δ2. Therefore, we have

Pr[bad1a] ≤ 4µ2δ2 .

bad2a and bad2b can be upper bounded from a similar argument: Since Pr [Ti = Tj ] = 2−n
in the ideal world, we have

Pr[bad2a] ≤ 4µ2δ

2n and Pr[bad2b] ≤
4µ2δ

2n .

bad1b. Since the number of queries using any repeated nonce is at most 2µ and by Lemma 2,
we have

Pr[bad1b] ≤ 4µ2δ3/2 .

bad1c can be upper bounded again from a similar argument:

Pr[bad1c] ≤ 4µ2δ3/2 .

bad3a. When an adversary makes a verification query (N ′j ,M ′j , T ′j), there is at most one
MAC query (Ni,Mi, Ti) such that Ni = N ′j , Ui = U ′j , and Ti = T ′j without bad2a.7 For
this pair of indices, the probability that Vi = V ′j is upper bounded by vδ. Therefore, we
have

Pr[bad3a | ¬bad2a] ≤ vδ .

bad3b. The number of pairs (i, j) such that (i, j) ∈ [q]∗2 and Ni = Nj is at most 4µ2. For
each of such pairs and k ∈ [v], the probability that Ui = U ′k and V ′k = Vj is at most δ2.

Pr[bad3b] ≤ 4µ2vδ2 .

bad4a and bad4b. The number of pairs (i, j) such that (i, j) ∈ [q]∗2 and Ni = Nj is at
most 4µ2. For a fixed i ∈ [q], the probability that Ui = Uj is at most δ. By the Markov
inequality, we have

Pr[bad4a] ≤ 4µ2δ

L
and similarly Pr[bad4b] ≤

4µ2δ

L
.

All in all, we have

Pr[Tid ∈ Γbad] ≤ Pr [bad1 ∨ bad2 ∨ bad3 ∨ bad4]

≤ 8µ2δ

2n + 8µ2δ3/2 + 8µ2δ

L
+ 4(v + 1)µ2δ2 + vδ . (10)

7For simplicity of analysis, one can assume that an adversary begins making verification queries after it
makes all the MAC queries.
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5.3 Concluding the Proof Using the Extended Mirror Theory
For any good transcript τ and nonce w, let G=

w denote the graph obtained by deleting all
6=-labeled edges from Gw. We can decompose G=

w into three subgraphs as follows.

G=
w = G=

w,1 t G=
w,2 t G=

w,3 ,

where G=
w,1 is the union of the components containing at least one trail of length two, G=

w,2
is the set of isolated edges, and G=

w,3 is the set of isolated vertices. We also decompose
G=
w,1 into connected components as follows.

G=
w,1 = (Vw,1, E=

w,1) = Cw,1 t · · · t Cw,kw
,

for some kw. Let cw,i = |Cw,i| for i ∈ [kw]. We will also write cw =
∣∣G=
w,1
∣∣ (= ∑kw

i=1 cw,i)
and c =

∑
w cw.

The probability of obtaining τ in the real world is computed over the randomness of
π̃ and π̃′. For a fixed nonce w, let π(·) = π̃(w, ·) and π′(·) = π̃′(w, ·). By Theorem 1
and Theorem 2, the number of possible ways of evaluating π and π′ at the unknowns in
Vw = Pw tQw (i.e., h∗(Gw)) is lower bounded by

(2n)|Pw|(2n)|Qw|

2nqw
(1− ε1(τ, w)) ,

where

ε1(τ, w) := c2w
22n

kw∑
i=1

cw,i
2 + cwq

2
w

22n + qw
2

22n + 4qw4

23n + 2vw
2n + 4qwvw

22n ,

for w such that qw ≥ 2, and
ε1(τ, w) := 2vw

2n
for w such that qw = 1. Since the probability that π (resp. π′) realizes each assignment is
exactly 1/(2n)|Pw| (resp. 1/(2n)|Qw|) and

Pr [Tid = τ ] = 1
|Kh|2 · 2nq

= 1
|Kh|2

∏
w

1
2nqw

,

we have
Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1−

∑
w

ε1(τ, w) ≥ 1− ε1(τ) , (11)

where

ε1(τ) := c2

22n

∑
w

kw∑
i=1

cw,i
2 + 4cµ2

22n + 4µ2

22n + 64µ4

23n + 2v
2n + 8µv

22n (12)

since the sum of all qw ≥ 2 is at most 2µ.
Upper Bounding c. We observe that each edge of E=

w,1 corresponds to a collision on U
or V . Therefore, we have

c =
∑
w

(
kw +

∣∣E=
w,1
∣∣) ≤ 2L+

∑
w

kw ≤ 3L . (13)

Taking the Expectation of ε1(τ, w). Let us define following three helpful random
variables,

NC1 =
∣∣{(i, j) ∈ [q]∗2 : Ni = Nj , and Ui = Uj

}∣∣ ,
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NC2 =
∣∣{(i, j) ∈ [q]∗2 : Ni = Nj , and Vi = Vj

}∣∣ ,
NC3 =

∣∣{(i, j, k) ∈ [q]∗3 : Ni = Nj = Nk, Ui = Uj , and Vj = Vk
}∣∣ .

Moreover, for each w and i ∈ [kw], let rw,i = |Cw,i ∩ P| and sw,i = |Cw,i ∩Q|. Then,

∑
w

kw∑
i=1

c2w,i =
∑
w

kw∑
i=1

(r2
w,i + 2rw,isw,i + s2

w,i)

≤
∑
w

kw∑
i=1

((rw,i)2 + (sw,i)2 + 2(rw,i − 1)(sw,i − 1) + 3cw,i)

≤ NC1 + NC2 + 2NC3 + 9L .

Since

E [NC1] ≤ 4µ2δ, E [NC2] ≤ 4µ2δ, and E [NC3] ≤ 8µ3δ2 ,

we obtain

E [ε1(τ)] ≤ 9L2(8µ2δ + 16µ3δ2 + 9L)
22n + 12Lµ2

22n + 4µ2

22n + 64µ4

23n + 2v
2n + 8µv

22n . (14)

We can set L = 2n/2

3 . Our bound in Theorem 3 follows then from (10), (11), (14) and by
applying Lemma 3.

6 Security Analysis of eHaT
Recall that eHaT computes a tag T for a tuple (N,M) following Algorithm 2 and Figure 1d.
Up to the tprp-security of Ẽ, the keyed tweakable permutation ẼK (resp. ẼK′) can be
replaced by a truly tweakable random permutation π̃ (resp. π̃′). For the i-th MAC query
(Ni,Mi), we define

Ui := HK1(Ni ‖Mi), Vi := H ′K2
(Ni ‖Mi), Xi := π̃(Vi, Ui), and Yi := π̃′(Ni, 0n) .

For the i-th verification query (N ′i ,M ′i , T ′i ), we define

U ′i := HK1(N ′i ‖M ′i), V ′i := H ′K2
(N ′i ‖M ′i), X ′i := π̃(V ′i , U ′i), and Y ′i := π̃′(N ′i , 0n) .

As a further step of simplifying our task, we introduce µ′ for the number of MAC queries
whose nonce repeats in other MAC queries. That is, µ′ includes the number of queries
with faulty nonces and the MAC queries with the initial occurrence of their respective
nonces. If µ is the number of faulty queries, it is easy to see that

µ < µ′ ≤ 2µ , (15)

where the equality µ′ = 2µ holds if every faulty nonce repeats exactly once and is strictly
lower if any nonce repeats twice or more times. We will call those nonce-repeating MAC
queries. The core task will be then to show the following theorem.

Theorem 4. Let δ > 0, H : K ×M → {0, 1}n be a δ-almost-universal hash function,
H ′ : K ×M → {0, 1}t be a δ′-almost-universal hash function, π̃, π̃′ ←$ TPerm(Ft2,Fn2 ),
and K1 ←$ K and K2 ←$ K′. For non-negative integers µ, q, and v, if µ = 0, adversaries
are nonce-respecting, we have

Advmac
eHaT[HK1 ,H

′
K2
,π̃,π̃′](0, q, v) ≤ v

2n − v + vδδ′ ,
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and if µ > 0, i.e., adversaries are nonce-misusing, we have

Advmac
eHaT[HK1 ,H

′
K2
,π̃,π̃′](µ, q, v) ≤ 2µ2δδ′ + 2µ2δ′

2n + (3µ+ 1)vδδ′ + v

2n

+ 2q 2
3 δ′ + 3v

2n − (2q 2
3 + v)

.

Proof of Theorem 4 for µ = 0. First, we consider the nonce-respecting case i.e., µ = 0.
This proof uses the mac security of the Wegman-Carter construction [WC81], because
eHaT represents an XOR sum of an n-bit random function π̃′(N, 0n) and a hash function
π̃(H ′K2

(N‖M), HK1(N‖M)). Following the analysis of the Wegman-Carter construction,
the mac security advantage is bounded by v times

max
W 6=W ′,Z

Pr
[
π̃(H ′K2

(W ), HK1(W ))⊕ π̃(H ′K2
(W ′), HK1(W ′)) = Z

]
.

Since HK1 and H ′K2
are δ- and δ′-almost universal, respectively, we have

Pr
[
HK1(W ) = HK1(W ′) ∧H ′K2

(W ) = H ′K2
(W ′)

]
≤ δδ′ .

If such collisions of HK1 and H ′K2
do not occur, as the number of solutions of π̃ is at least

2n − v, the maximum is at most 1/(2n − v). Thus we obtain the bound for µ = 0 given in
Theorem 4.

Proof of Theorem 4 for µ > 0. We consider the nonce-misuse case, i.e., µ > 0. We reorder
the queries into three disjoint parts: τn ∪ τµ′ ∪ τv. The former, τn, contains the nonce-
respecting MAC queries such that their nonce does not repeat over other MAC queries.
τµ′ contains all µ′ nonce-repeating MAC queries, i.e., MAC queries with and including
those whose nonces repeat among the q MAC queries in total. τv contains all verification
queries. After A has finished the interactions with its oracles but before it outputs its
decision bit, it is provided with the hash keys τh = {K1,K2}. Moreover, we employ a
trick to simplify the proof: for all nonce-repeating MAC queries i ∈ [q − µ′ + 1 .. q], we
provide A with the outputs of Yi = π̃′(Ni, 0n) at the same point of time as it is given the
hash keys. In the ideal world, Yi ←$ Fn2 is sampled uniformly at random once for each
new nonce. If the nonce had occurred before, its corresponding old Yi is used. Moreover,
we define b′i ∈ {0, 1} as the responses corresponding to either accept or reject for the i-th
verification query. So, the transcript looks like:

τn = (Ni,Mi, Ti)1≤i≤q−µ′ ,

τµ′ = (Ni,Mi, Ti, Yi)q−µ′+1≤i≤q ,

τv = (N ′i ,M ′i , T ′i , b′i)1≤i≤v ,

τh = {K1,K2} .

We further define τm = τn ∪ τµ′ as the compound transcript of all MAC queries. Note
that, given Ti and Yi, the adversary can compute Xi itself for all nonce-repeating queries.
Next, we partition the set of all attainable transcripts into two disjoint sets of good
transcripts GoodT, and bad transcripts Γbad. For fixed positive number vmax (to be
optimized later), a transcript τ is defined as bad if at least one of the following so-called
bad events occurs:

• bad1: There exist distinct MAC query indices i, j ∈ [q − µ′ + 1 .. q] such that
(Ui, Vi) = (Uj , Vj).

• bad2: There exist distinct MAC query indices i, j ∈ [q − µ′ + 1 .. q] such that
(Vi, Xi) = (Vj , Xj).
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• bad3: There exists a MAC query index i ∈ [q] and a verification query index j ∈ [v]
such that Mi 6= M ′j and (Ni, Ui, Vi) = (N ′j , U ′j , V ′j ).

• bad4: There exists a MAC query index i ∈ [q] and a verification query index j ∈ [v]
such that (Ni,Mi, Ti) = (N ′j ,M ′j , T ′j).

• bad5: There exists a MAC query index i ∈ [q − µ′ + 1 .. q] and a verification query
index j ∈ [v] such that Ni 6= N ′j and (Ui, Vi) = (U ′j , V ′j ).

• bad6: There exists a value V ∈ Ft2 whose multiplicity among all MAC queries is at
least vmax.

The bound in Theorem 4 follows from Lemma 3, 7, and 8. Lemma 7 and the proof are given
in Section 6.1, and Lemma 8 and the proof are given in Section 6.2. The bound in Lemma 7
contains µ′, hence we substitute it by 2µ′ for the number of faulty queries µ from (15).
and 8, so that these bounds are (closely) balanced. Our choice is vmax = 3

√
2q2. Then, the

term 2q2δ′/v2
max in Lemma 7 becomes 2q 2

3 δ′, and the term 1− v/(2n − (vmax − 1 + v)) in
Lemma 8 becomes v/(2n − (2q 2

3 + v)). Finally, summing there bounds, we have the bound
in Theorem 4 for µ > 0.

6.1 Bad Transcripts
Lemma 7. It holds that

Pr [Tid ∈ Γbad] ≤ µ′2δδ′

2 + µ′2δ′

2 · 2n + (µ+ µ′ + 1)vδδ′ + v

2n + 2q2δ′

v2
max

.

Proof. In the following, we upper bound the probabilities of the individual bad events in
the ideal world.
bad1. In this event, two distinct MAC queries with repeating nonces collide in both hash
outputs of HK1(Ni,Mi) = HK1(Nj ,Mj) as well as H ′K2

(Ni,Mi) = H ′K2
(Nj ,Mj). Thus,

we have at most
(
µ′

2
)
combinations. Since both hash functions over the choice of K1 and

K2 are δ- and δ′-almost-universal, respectively, it holds that

Pr [bad1] ≤ µ′2δδ′

2 .

bad2. Here, two distinct MAC queries with repeating nonces collide in the hash outputs
of H ′K2

as well as in Ti ⊕ Yi = Tj ⊕ Yj . Again, since H ′K2
over the choice of K2 is

δ′-almost-universal and the tags Ti and Tj are sampled uniformly and independently at
random from all n-bit values with probability 2−n, it holds that

Pr [bad2] ≤ µ′2δ′

2 · 2n .

bad3. In this event, MAC and verification queries with the same nonce collide in both hash
outputs of HK1(Ni,Mi) = HK1(N ′j ,M ′j) as well as H ′K2

(Ni,Mi) = H ′K2
(N ′j ,M ′j). For each

verification query (N ′j ,M ′j , T ′j), there can be at most one nonce-respecting query and µ
faulty queries with Ni = N ′j . Thus, we have at most (µ+ 1)v combinations. Since both
hash functions over the choice of K1 and K2 are δ- and δ′-almost-universal, respectively, it
holds that

Pr [bad3] ≤ (µ+ 1)vδδ′ .

bad4. This event considers the case of a verification query (N ′j ,M ′j , T ′j) that is rejected
in the ideal world, but is equal to a later MAC query (Ni,Mi, Ti) = (N ′j ,M ′j , T ′j) that is
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valid. Since MAC queries are no duplicates, there can exist at most one such MAC query
(Ni,Mi) that matches a prior verification query. Since Ti is random and independently
sampled from T ′j , their probability to match is given by 2−n. Thus, it holds that

Pr [bad4] ≤ v

2n .

bad5. In this event, nonce-repeating MAC and verification queries with the distinct nonces
collide in both hash outputs of HK1(Ni,Mi) = HK1(N ′j ,M ′j) as well as H ′K2

(Ni,Mi) =
H ′K2

(N ′j ,M ′j). Thus, we have at most µ′v combinations. Since both hash functions over
the choice of K1 and K2 are δ- and δ′-almost-universal, respectively, it holds that

Pr [bad5] ≤ µ′vδδ′ .

bad6. In this case, we can apply Corollary 1 to upper bound the probability that any value
V occurs more than vmax times by

Pr [bad6] ≤ 2q2δ′

v2
max

.

Lemma 7 follows from the sum of probabilities of all bad events.

6.2 Good Transcripts
It remains to study good transcripts.

Lemma 8. For an arbitrary attainable good transcript τ , it holds that
Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− 3v

2n − (vmax − 1 + v) .

Proof. In the following, we study the probability to obtain a good transcript in the ideal
and the real world, respectively. The difficult part will be to determine the probability in
the real world.
We define pH as the probability that the hash keys are compatible with τ . We further
define Nµ′ := {Ni : i ∈ [q − µ′ + 1 .. q]} as the set (not multi-set) of repeating nonces.
Moreover, let w := |Nµ′ | the number of repeating nonces in Nµ′ .

6.2.1 Probability in the Ideal World
In the ideal world, the probability to obtain the transcript is simply given as

Pr [Tid = τ ] = pH
(2n)q · (2n)w (16)

since the hash keys, and each out of q tags and each of w values Yi is sampled uniformly
and independently at random.

6.2.2 Probability in the Real World
It remains to lower bound the probability of obtaining τ in the real world. We consider
the partitioned transcript in the following. We define Tre = τi to refer to Tre produced the
(partial) transcript τi.
Probability of τµ′ . Firstly we evaluate the probability to obtain Yi for i ∈ [q−µ′+1 .. q]
in τµ′ . For each Ni ∈ Nµ′ , the probability of Yi = π̃′(Ni, 0) is 2−n also in the real world.
Since they are sampled independently and uniformly at random, we obtain

Pr [Yi : i ∈ [q − µ′ + 1 .. q]] = 1
(2n)w . (17)
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Note that, due to the absence of bad5, there is no contradiction from choosing Yi. Then
we evaluate the probability to obtain leftover values in τµ′ . For s ∈ {0, 1}t, let

µ′s := | {i ∈ [q − µ′ + 1 .. q] : Vi = s} | .

Thus, µ′s is the number of nonce-repeating queries whose tweak input to π̃ is equal to s,
i.e., V = s and

∑
s∈{0,1}t µ′s = µ′. Note that by the absence of bad1, a good transcript

avoids hash collisions in (Ui, Vi) = (Uj , Vj) for distinct i, j ∈ [q − µ′ + 1 .. q]. For each
tweak s, the number of solutions of π̃ with tweak inputs s is (2n)µ′s . Note that the absence
of bad1 and bad2 in good transcripts ensures that there is no hash value such that the
probability would become 0. Thus, it holds that

Pr [Tre = τµ′ | Yi : i ∈ [q − µ′ + 1 .. q]] = 1∏
s∈{0,1}t (2n)µ′s

≥ 1∏
s∈{0,1}t(2n)µ′s = 1

(2n)µ′ .

(18)

Probability of τn and τv. We define another useful partition of τn and τv,

• τn,0 := {(Ni,Mi, Ti) ∈ τn : exists j ∈ [q − µ′ + 1 .. q] s.t. (Ui, Vi) = (Uj , Vj)};

• τn,1 := τn \ τn,0;

• τv,0 := {(N ′i ,M ′i , T ′i ) ∈ τv : exists j, k ∈ [q] s.t. N ′i = Nj and (U ′i , V ′i ) = (Uk, Vk)};

• τv,1 := {(N ′i ,M ′i , T ′i ) ∈ τv : exists j ∈ [q] s.t. (U ′i , V ′i ) = (Uj , Vj)} \ τv,0;

• τv,2 := τv \ (τv,0 ∪ τv,1);

• Iµ′ := {j : (Nj ,Mj , Tj) ∈ τµ′};

• For i ∈ {0, 1}, In,i := {j : (Nj ,Mj , Tj) ∈ τn,i};

• For i ∈ {0, 1, 2}, Iv,i :=
{
j : (N ′j ,M ′j , T ′j) ∈ τv,i

}
.

For each (Ni,Mi, Ti) ∈ τn,0, the evaluation of Xi is already fixed by τµ′ , so the probability
that Pr[Yi = Xi ⊕ Ti] = 2−n. It follows that

Pr [Tre = τn,0 | Tre = τµ′ ] = 1
(2n)|τn,0|

. (19)

For each (Ni,Mi, Ti) ∈ τn,1, both Xi and Yi were not defined by τµ′ and τn,0. Let W be
the hash outputs (or namely, the inputs to π̃) in τn,1, i.e.,

W = {(Uj , Vj) : j ∈ In,1}

and we introduce an order on W , so W = (W1, . . . ,Wx) where x = |W| ≤ |τn,1|. For i ≤ x,
let

ri := |{j ∈ Iv,0 : ∃k ∈ In,1 s.t. Wi = (Uk, Vk) and N ′j = Nk} ∪ {j ∈ Iv,0 : Wi = (U ′j , V ′j )}|,
si := |{Vj : j ∈ (Iµ′ ∪ In,0) or ∃k < i,Wk = (Uj , Vj)}| ,

where ri counts the number of inequalities that π̃(Wi) should be satisfied and si counts
the number of available evaluations of π̃(Wi) assuming that we fixed π̃ on τµ′ , τn,0 and
Wj where j < i. Then,

Pr [Tre = τn,1, τv,0 | Tre = τµ′ , τn,0] ≥ 1
2n|τn,1|

∏
i∈[x]

2n − ri − si
2n − si

≥ 1
2n|τn,1|

(
1− 2v

2n − vmax

)
,

(20)
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where the last inequality comes from the inequalities
∑
i∈[x] ri ≤ 2v and si ≤ vmax.

For each i ∈ Iv,1, the X ′i is already fixed, so the probability that Pr [Y ′i = X ′i ⊕ T ′i ] = 2−n.
Also, for each i ∈ Iv,2, the real world fixes Y ′i = π̃′(N ′i , 0n) if it is not defined. For each
such i, the number of solutions for π̃(Vi, Ui) is at least 2n − (vmax − 1 + v) due to the
absence of bad6. Therefore, for i ∈ Iv,1 ∪ Iv,2,

Pr [X ′i = Y ′i ⊕ T ′i ] ≤
1

2n − (vmax − 1 + v) .

It follows that

Pr [Tre = τv,1, τv,2 | Tre = τµ′ , τn, τv,0] ≥
(

1− 1
2n − (vmax − 1 + v)

)|τv,1|+|τv,2|

≥ 1− v

2n − (vmax − 1 + v) . (21)

Note that for a verification query (N ′i ,M ′i , T ′i ), if there exists a MAC query (Nj ,Mj) such
that (N ′i ,M ′i) = (Nj ,Mj), π̃(Vj , Uj) (= π̃(V ′i , U ′i)) was defined so that it is not equal to
Y ′i ⊕ T ′i due to the absence of bad4.
Summing up. Multiplying all bounds from Equations (17) through (21) yields

Pr [Tre = τ ] ≥
pH · (1− 2v

2n−vmax
) · (1− v

2n−(vmax−1+v) )
(2n)w · (2n)µ′ · (2n)|τn,0|+|τn,1|

≥ 1
(2n)q+w ·

(
1− 3v

2n − (vmax − 1 + v)

)
· pH .

Together with Equation (16), we obtain that

Pr [Tre = τ ]
Pr [Tid = τ ] ≥

1
(2n)q+w ·

(
1− 3v

2n−(vmax−1+v)

)
· pH

1
(2n)q+w · pH

= 1− 3v
2n − (vmax − 1 + v) .

The bound in Lemma 8 follows.

6.3 Bound for µ > 0 without bad6

For a maximum message length in blocks `, if δ′ = `/2t, the term 2q 2
3 δ′ depends on the

message length. For ` < 2t/3, the security is not endangered before q reaches 2t. The term
2q 2

3 δ′ is introduced by the bad event bad6 that defines the maximum multiplicity of V for
MAC queries. Thus, removing bad6 from the bad events in the proof of Theorem 4 for
µ > 0 would allow us to remove the `-dependent term. In this case, the number of solutions
for π̃(Vi, Ui) in the analysis of τv in Subsection 6.2 changes – more precisely, vmax is replaced
with q. By the replacement, the lower bound in Eq. (21) becomes 1− 3v/(2n − (q + v)).
We thus get the `-free term 3v/(2n − (q + v)), which is valid as long as q < 2n. Adding
the term to the bound in Theorem 4 would yield the following corollary.

Corollary 2. Let δ, δ′ > 0, H : K ×M→ {0, 1}n be a δ-almost-universal hash function
and H ′ : K′×M→ {0, 1}t be a δ′-almost universal hash function, π̃, π̃′ ←$ TPerm(Ft2,Fn2 ),
and K1 ←$ K as well as K2 ←$ K′. For non-negative integers µ, q, and v, if µ > 0, i.e.,
adversaries are nonce-misusing, we have

Advmac
eHaT[HK1 ,H

′
K2
,π̃,π̃′](µ, q, v) ≤ 2µ2δδ′ + 2µ2δ′

2n + (3µ+ 1)vδδ′ + v

2n

+ min
{

2q 2
3 δ′ + 3v

2n − (2q 2
3 + v)

,
3v

2n − (q + v)

}
.



Wonseok Choi, Akiko Inoue, Byeonghak Lee, Jooyoung Lee, Eik List, Kazuhiko
Minematsu and Yusuke Naito 67

7 Conclusion
This work proposed NaT2 and eHaT, two highly secure nonce-based MACs. Taking
NaT and HaT proposed by Cogliati et al. [CLS17] as a baseline, we derive NaT2 and
eHaT with conceptually simple changes. Our proposals possess almost full security in
the nonce-respecting and beyond-birthday-bound security in the nonce-misusing setting.
Since neither NaT nor (a simple nonce-based variant of) HaT could achieve both properties
simultaneously, our constructions enhance their security guarantees well.
Our constructions NaT2 and eHaT provide the same level of security in the nonce-respecting
setting as NaT and HaT. However, in the nonce-misuse setting, NaT2 and eHaT provide
stronger security in terms of the threshold number of verification queries and MAC queries,
respectively. Few more possible future directions exist, most notably, studying the tightness
of the bounds or related MAC designs in the (ideal-)block cipher setting.
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