
Neyman-Pearson Detection of Gaus
Closed-Form Error Expone

Youngchul Sung and Lang Tong
School of Electrical and Computer Engineering

Cornell University
Ithaca, NY 14850, USA

Email:{ys87,ltong}@ece.cornell.edu

Abstract— The performance of Neyman-Pearson detection of correlated
stochastic signals using noisy observations is investigated via the error
exponent for the miss probability with a fixed level. Using the state-
space structure of the signal and observation model, a closed-form
expression for the error exponent is derived, and the connection between
the asymptotic behavior of the optimal detector and that of the Kalman
filter is established. The properties of the error exponent are investigated
for the scalar case. It is shown that the error exponent has distinct
characteristics with respect to correlation strength: for signal-to-noise
ratio (SNR) > 1 the error exponent decreases monotonically as the
correlation becomes stronger, whereas for SNR < 1 there is an optimal
correlation that maximizes the error exponent for a given SNR.

I. INTRODUCTION

We consider in this paper the detection of correlated stochastic
signals using noisy observations yi under the Neyman-Pearson for-
mulation. The corresponding null and alternative hypotheses are given
by

H0 : yi = wi, i = 1, 2, · · · , n,
H1 : yi = si + wi, i = 1, 2, · · · , n,

(1)

where {wi} is independent and identically distributed (i.i.d.)
N (0, σ2) noise with a known variance σ2, and {si} is a stationary
signal process correlated in time. Specifically, we assume that {si}
is a Gauss-Markov process following a state-space model given by

si+1 = asi + ui, i = 1, · · · , n, (2)

s1 ∼ N (0, Π0),

ui
i.i.d.∼ N (0, Q), Q = Π0(1 − a2),

where a and Π0 are known scalars with 0 ≤ a ≤ 1 and Π0 > 0. We
assume that the process noise {ui} is independent of the measurement
noise {wi} and the initial state s1 is uncorrelated with ui for all
i. Thus, the signal samples {si} form an autoregressive sequence.
Notice that the value of a determines the amount of correlation
between signal samples. For a = 0 we have i.i.d. signal samples.
On the other hand, a = 1 gives perfectly correlated signals. Notice
also that the noisy observations {yi} are not autoregressive under
H1; they follow the hidden Markov model. Due to the stationarity
of the signal, the signal-to-noise ratio (SNR) for the observations is
constant and is given by

SNR =
Π0

σ2
. (3)
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s paper, we are interested in the large-sample error perfor-
f the Neyman-Pearson detector for the hypotheses (1) with
level. In many cases, the miss probability PM with a fixed
ays exponentially as the sample size increases, and the error
t is defined as the rate of exponential decay, i.e.,

K
∆
= lim

n→∞
− 1

n
log PM (4)

he given size constraint (i.e., the false alarm probability
α). The error exponent is a good performance index for
s in the large sample regime since it gives an estimate of
ber of samples required for a given detector performance;

ecay rate implies that fewer samples are needed for a given
obability. For the case of i.i.d. samples where each sample
n independently from the common null probability density
lternative density p1, the error exponent under the fixed
straint is given by the Kullback-Leibler distance D(p0||p1)
the two densities p0 and p1 (C. Stein [23]). For more general
e error exponent is given by the asymptotic Kullback-Leibler
ned as the almost-sure limit of

1

n
log

p0,n

p1,n
(y1, · · · , yn) as n → ∞, (5)

0,n, where p0,n and p1,n are the null and alternative joint
s of y1, · · · , yn, respectively, assuming that the limit exists
]. However, the closed-form calculation of (5) is available
restricted cases. One such example is the discrimination be-
o autoregressive (AR) signals with distinct parameters under

hypotheses [26], [27]. In this case, the joint density, pj,n, is
ecomposed using the Markov property under each hypothesis,
calculation of the rate is straightforward. However, for the
of (1) this approach is not tractable since the observation
under the alternative hypothesis do not possess the Markov
due to the additive noise.

mary of Results

pproach to this problem is to exploit the state-space model.
te-space approach in detection is well established in calcu-
f the log-likelihood ratio (LLR) for correlated signals [6],
ith the state-space model, the LLR is expressed through
vations representation [9] and the innovations are easily
by the Kalman filter. The key idea for the closed-form

ion of the error exponent for the hidden Markov model is
n the properties of innovations. Since the innovations process
endent from time to time, the joint density under H1 is given
roduct of marginal densities of the innovations, and the LLR
by a function of the sum of squares of the innovations; this
al form facilitates the closed-form calculation of (5).



By applying this state-space approach, we derive a closed-form
expression for the error exponent K for the miss probability of the
Neyman-Pearson detector for (1) of fixed size α and interpret the
derived error exponent by making a connection with the empirical
distribution in a finite alphabet case. We also make a connection
between the state-space approach and the spectral domain approach
via the canonical spectral factorization.

We next investigate the properties of the error exponent via the
obtained closed-form expression. We show that the error exponent
K is a function of the SNR and the correlation, and has distinct
behavior with respect to (w.r.t.) the correlation strength depending on
the SNR. We show a sharp phase transition at SNR = 1: at high SNR,
K decreases monotonically as a function of the correlation, while at
low SNR, on the other hand, there exists an optimal correlation value
that yields the maximal K.

We also make a connection between the asymptotic behavior of the
Kalman filter and that of the Neyman-Pearson detector. It is shown
that the error exponent is determined by the asymptotic (or steady-
state) variances of the innovations under H0 and H1 together with
the noise variance.

B. Related Work

The detection of Gauss-Markov processes in Gaussian noise is a
classical problem. See [5] and references therein. Our work focuses
on the performance analysis as measured by the error exponent,
and relies on the connection between the likelihood ratio and the
innovations process as described by Schweppe [6]. In addition to
the calculation of the LLR, the state-space approach has been used
in the performance analysis in this detection problem. Exploiting
the state-space model, Schweppe obtained a differential equation
for the Bhattacharyya distance between two Gaussian processes [8],
which gives an upper bound on the average error probability under
a Bayesian formulation [7].

There is an extensive literature on the large deviations approach to
the analysis of the detection of Gauss-Markov processes [16]-[22].
Most of these results rely on the extension of Cramer’s theorem by
Gärtner and Ellis [13], [14], [15] and the properties of the asymptotic
eigenvalue distributions of Toeplitz matrices [11], [12]. To find the
rate function, however, this approach usually involves an optimization
that requires nontrivial numerical methods except in some simple
cases, and the rate is given as an integral of the spectrum of the
observation process; closed-form expressions are difficult to obtain
except for the case of a noiseless AR process in discrete-time and
its continuous-time counterpart, the Ornstein-Uhlenbeck process [20],
[21]. In addition, most results have been obtained for a fixed threshold
for the normalized LLR test, which results in expressions for the
rate as a function of the threshold. For ergodic cases, however, the
normalized LLR converges to a constant under the null hypothesis
and the false alarm probability also decays exponentially for a fixed
threshold. Hence, a detector with a fixed threshold is not optimal in
the Neyman-Pearson sense since it does not use the level constraint
fully; i.e., the optimal threshold is a function of sample size.

II. ERROR EXPONENT AND PROPERTIES

In this section, we present a closed-form expression of the error
exponent K of miss probability defined in (4) and examine the
properties of the error exponent w.r.t. correlation strength and the
SNR of observations.

Theorem 1 (Error exponent): For the Neyman-Pearson detector of
the hypotheses (1, 2) with level α ∈ (0, 1) (i.e. PF ≤ α) and 0 ≤

a ≤ 1,
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K = −1

2
log

σ2

Re
+

1

2

R̃e

Re
− 1

2
, (6)

e and R̃e are the steady-state variances of the innovation pro-
{yi} calculated under H1 and H0, respectively. Specifically,
R̃e are given by

e = P + σ
2
, (7)

e = σ
2

(
1 +

a2P 2

P 2 + 2σ2P + (1 − a2)σ4

)
, (8)

P =

√
[σ2(1 − a2) − Q]2 + 4σ2Q − σ2(1 − a2) + Q

2
, (9)

frequency domain,

K =
1

2π

∫ 2π

0

D(N (0, σ2)||N (0, Sy(ω))) dω, (10)

(·||·) is the Kullback-Leibler distance, and the spectrum
f {yi} under H1 is given by

Sy(ω) = σ2 +
Π0(1 − a2)

1 − 2a cos ω + a2
. (11)

ee [29]. �
em 1 follows from the fact that the almost-sure limit (5) of
alized log-likelihood ratio under H0 is the error exponent for

ergodic cases [24]-[27]. To obtain the closed-form calculation
exponent for the hidden Markov structure of {yi}, we express
likelihood ratio through the innovations representation [6]; the
lihood ratio is given by a function of the sum of squares of
vations on which the strong law of large numbers (SLLN)
d. The calculated innovations are true in the sense that they
independent sequence only under H1, i.e., when the signal
comes from the state-space model. It is worth noting that
e steady-state variance of the “innovations” calculated as if
rvations result from the alternative, but it is actually from
hypothesis. In this case, the “innovation” sequence becomes
ut of a recursive filter driven by an i.i.d. process {yi} since
an filter converges to the recursive Wiener filter for time-

t stable systems.

Innovations domain

p0 = N (0, R̃e
σ2 )

p1 = N (0, Re
σ2 )

, y2, · · ·

i = wi

i = si + wi

e1, e2, · · ·

Whitening

ndepdendent

IndepdendentFilter

R̃e

Re

σ2

at steady-state

K = H̄(p0) + D(p0||p1)

Fig. 1. Interpretation via whitening filter.

nnovations approach provides an interpretation for the error
t in Theorem 1. We can rewrite (6) as

K =
1

2
log

R̃e

σ2
+

(
−1

2
log

R̃e

Re
+

1

2

R̃e

Re
− 1

2

)
,

= H̄(p0) + D(p0||p1), (12)

he normalized entropy H̄(p0)
∆
= 1

2
log R̃e

σ2 so that the
tial entropy becomes zero when R̃e = σ2, and the normalized
l null and alternative distributions in the steady-state innova-
main p0 = N

(
0, R̃e

σ2

)
and p1 = N (

0, Re
σ2

)
. Now, consider

alphabet case where Xi is drawn i.i.d. from a distribution



Q defined on a set X = {a1, · · · , a|X|}. It is well known that

the probability that a sequence xn
∆
= {X1, · · · , Xn} has empirical

distribution Px is given by [4]

Pr{xn has empirical distribution Px} = 2−n(H(Px)+D(Px||Q)).
(13)

Note that the i.i.d. assumption is required only for the true underlying
distribution Q not for the empirical distribution Px in (13). In our
Neyman-Pearson problem the error exponent in Theorem 1 is for the
probability of a miss event for which the true distribution for yi is not
i.i.d. In the innovations domain,1 however, the observation process is
whitened and the variance of the innovation converges eventually so
that the innovations process becomes an i.i.d. sequence with variance
Re in the steady state under H1. Thus, the derived error exponent (12)
expressed by the marginal distributions in the steady-state innovations
domain matches the exponent in (13), which implies that the error
of missing can be viewed simply as the event that the observation
sequence (in the innovations domain) generated i.i.d. from N (

0, Re
σ2

)
(the alternative distribution) has empirical distribution N

(
0, R̃e

σ2

)
(the null distribution).

The frequency-domain result is obtained by representing the log-
likelihood ratio in terms of the eigenvalues of the autocovariance
matrix of observations and using the convergence of the eigenvalues
of Toeplitz matrices [11], [12]. The equivalence of the innovations
approach and spectral domain approach is shown by the canonical
spectral factorization. Note that the relationship between the error
exponent and the asymptotic properties of the Kalman filter is evident
in (6). The asymptotic variances of the innovations under the two
hypotheses determine the error exponent for the Neyman-Pearson
detector.

A. Properties of Error Exponent

First, it is easily seen from Theorem 1 that K is a continuous
function of the correlation coefficient a (0 ≤ a ≤ 1) for a given
SNR, and is positive for all values of SNR and 0 ≤ a < 1.

Theorem 2: The error exponent is positive for any SNR and 0 ≤
a < 1. Furthermore,

(i) for i.i.d. observations (a = 0), the error exponent reduces to the
Kullack-Leibler distance D(p0||p1) where p0 ∼ N (0, σ2) and
p1 ∼ N (0, Π0 + σ2);

(ii) for perfectly correlated signal (a = 1), the error exponent is
zero for any SNR, and the miss probability is bounded by(

1√
2π

− D

)
cn−1/2 ≤ PM ≤ 1√

2π
cn−1/2 (14)

for sufficiently large n, where c and D ∈ (0, 1√
2π

) are positive
constants.

Proof: See [29]. �
When a = 0 the theorem corresponds to Stein’s lemma for the i.i.d.

case. For the perfectly correlated case (a = 1), the miss detection
does not decay exponentially; it decays with Θ( 1√

n
).

Having obtained the behavior of the error exponent at two ex-
treme correlation cases, we now investigate the error behavior for
intermediate values of correlation, and show that the error exponent
has distinct characteristics in different SNR regimes.

Theorem 3 (K vs. correlation): The error exponent as a function
of correlation strength is characterized by the following:

1The output of the whitening filter provides a sufficient statistic for the
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fficient that achieves the maximal K, and a∗ is given by the
ution of the following equation.

[1 + a2 + Γ(1 − a2)]2 − 2(re +
a4

re
) = 0, (15)

ere re = Re/σ2. Furthermore, a∗ converges to one as SNR
reases to zero.
ee [29]. �
rst note that Theorem 3 implies that an i.i.d. signal gives
error performance for a given SNR > 1 with the maximal

ponent being D(N (0, 1)||N (0, 1 + Γ)). The intuition behind
lt is that the innovations (new information about the signal
provide more benefit to the detector than the noise averaging

resent for correlated observations since the signal component
bservation is strong at high SNR. Fig. 2 (left) shows the
ponent as a function of the correlation coefficient a. The
icity of the error exponent is clearly seen.
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ntrast, the error exponent does not decreases monotonically
< 1, and there exists an optimal correlation as shown in Fig.
). It is seen that the i.i.d. case no longer gives the best error
ance for a given SNR. The error exponent initially increases
reases, and then decreases to zero as a approaches one. As
further decreases (see the cases of -6 dB and -9dB) the error

t decreases for a fixed correlation strength, and the value of a
g the maximal error exponent is shifted closer to one. At low
noise in the observations dominates. So, intuitively, making

al more correlated provides the benefit of noise averaging.
r, excessive correlation does not provide new information by
tion, and the error exponent ultimately converges to zero as a
hes one, as predicted by Theorem 3 (ii). Notice that the ratio
rror exponent for the optimal correlation to that for the i.i.d.
omes large as SNR decreases. Hence, the improvement due
al correlation can be large for low SNR cases. Fig. 3 shows
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SNR = 1

Fig. 3. Optimal correlation a∗ vs SNR



the value of a that maximizes the error exponent as a function of
SNR. As shown in the figure, unit SNR is a transition point between
two different behavioral regimes of the error exponent with respect
to correlation strength, and the transition is very sharp; the optimal
correlation a∗ approaches one rapidly when SNR becomes smaller
than one.

Finally, we investigate the behavior of the error exponent with
respect to SNR.

Theorem 4 (K vs. SNR): The error exponent K increases mono-
tonically as SNR increases for a given correlation coefficient 0 ≤ a <
1. Moreover, at high SNR the error exponent K increases linearly
with respect to 1

2
log(1 + SNR(1 − a2)).

Proof: See [29]. �
The log SNR increase of K w.r.t. SNR is analogous to similar

error-rate behavior arising in diversity combining of versions of
a communications signal arriving over independent Rayleigh-faded
paths in additive noise, since the signal component is stochastic in
both cases. The log SNR behavior of the optimal Neyman-Pearson
detector for random signals applies to general correlations as well.
Comparing with the detection of a deterministic signal in noise,
where the error exponent is proportional to SNR, the increase of
error exponent w.r.t. SNR is much slower for the case of a stochastic
signal in noise. Fig. 4 shows the error exponent with respect to SNR
for a given correlation strength. The log SNR behavior is evident at
high SNR.
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Fig. 4. K versus SNR (a = e−1)

III. EXTENSION TO THE VECTOR CASE

In order to treat general cases in which the signal is a higher order
AR process or the signal is determined by a linear combination of
several underlying phenomena, we now consider a vector state-space
model, and extend the results of the previous sections to this model.
The hypotheses for the vector case are given by

H0 : yi = wi, i = 1, 2, · · · , n,
H1 : yi = hT si + wi, i = 1, 2, · · · , n,

(16)

where h is a known vector and si
∆
= [s1i, s2i, · · · , smi]

T is the
state of an m-dimensional process at time i following the state-space
model

si+1 = Asi + Bui, (17)

s1 ∼ N (0, Π0),

ui
i.i.d.∼ N (0, Q), Q ≥ 0.

We assume that the feedback and input matrices, A and B, are
known with the matrix A being stable, and the process noise {ui}
independent of the measurement noise {wi}. We also assume that
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ce Π0 satisfies the following Lyapunov equation

Π0 = AΠ0A
T + BQBT . (18)

e signal sequence {si} forms a stationary vector process. In
e the SNR is defined similarly to (3) as hT Π0h

σ2 . The error
t for the vector model is given by the following theorem.

em 5 (Error exponent ): For the Neyman-Pearson detector
hypotheses (16, 17) with level α ∈ (0, 1) (i.e. PF ≤ α)
table matrix A, the error exponent of the miss probability

by (6) independently of the value of α. The steady-state
s of the innovation process Re and R̃e calculated under H1

, respectively, are given by

Re = σ2 + hT Ph, (19)

is the unique stabilizing solution of the discrete-time
c Riccati equation

P = APAT + BQBT − APhhT PAT

hT Ph + σ2
, (20)

R̃e = σ2(1 + hT P̃h), (21)

is the unique positive-semidefinite solution of the following
v equation

P̃ = (A − Kph
T )P̃(A − Kph

T )T + KpK
T
p , (22)

= APhR−1
e .

ectral form, K is given by (10), where Sy(ω) is given by

[hT (ejωI−A)−1 1]

[
Q 0
0 σ2

] [
(e−jωI − AT )−1h

1

]
.

(23)
ee [29]. �
is vector model, simple results describing the properties of
r exponent are not tractable since the relevant expressions
on the multiple eigenvalues of the matrix A. However, (6,
provide closed-form expressions for the error exponent which
ly be explored numerically.

IV. SIMULATION RESULTS

onsidered the Neyman-Pearson detection of a first-order
essive signal described by (2). We considered SNR values
B and - 3 dB, and several values of a for each SNR. The
ity of false alarm was set at 0.1% for all cases. Fig. 5 shows
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Fig. 5. PM vs. number of samples (SNR=10dB)

probability as a function of number of samples for 10 dB



SNR. It is shown that the i.i.d. case (a = 0) has the largest slope
for error performance, and the slope of error decay is monotonically
decreasing as a increases to one. Notice that the error performance
for the same number of samples is significantly different for different
correlation strengths even for the same SNR, and the performance for
weak correlation is not much different from the i.i.d. case predicted
by Fig. 2 (left). (We can see that the slope decreases suddenly near
a = 1.) It is seen that the behavior of the miss probability for the
highly correlated case (a = 1) deviates considerably from exponential
decay. The error performance for SNR of -3 dB is shown in Fig. 6. It

20 80 140 200
10

−2

10
−1

10
0

Number of samples

P
M

a=0
a=0.3

a=0.6

a=0.9

a=1

Fig. 6. PM vs. number of samples (SNR=-3dB)

is seen that the slope increases as a increases from zero, and reaches
a maximum with a sudden decrease after the maximum. Notice that
the error curve is still not a straight line in the low SNR case due
to the o(n) term in the exponent. Since the error exponent increases
only with 1

2
log SNR, the required number of sensors for -3 dB SNR

is much larger than for 10 dB SNR for the same miss probability.
It is clearly seen that PM is still larger than 10−2 for 200 samples
whereas it is 10−4 with 20 samples for the 10 dB SNR case.

V. CONCLUSIONS

We have considered the detection of correlated signals in noisy
observations. We have derived the error exponent for the Neyman-
Pearson detector with a given level using the innovations and the
spectral domain approaches. We have also provided the error expo-
nent in closed form for a vector state-space model. We have further
examined the properties of the error exponent. We have shown that
the error exponent is a function of SNR and correlation strength,
and the behavior of the error exponent w.r.t. correlation strength is
sharply divided into two regions depending on SNR. For SNR > 1
the error exponent decreases monotonically as correlation becomes
stronger, whereas there exists a nonzero correlation strength that gives
the maximum slope when SNR < 1.
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