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Abstract. We investigate a non-contraction property of large perturbations

around intermediate entropic shock waves and contact discontinuities for the

three-dimensional planar compressible isentropic magnetohydrodynamics
(MHD). To do that, we take advantage of criteria developed by the author

and Vasseur in [6], and non-contraction property is measured by pseudo dis-

tance based on relative entropy.

1. Introduction. This article is devoted to the study of non-contraction property
of certain intermediate entropic shock waves and contact discontinuities for the
three-dimensional planar compressible inviscid isentropic MHD, which takes the
form in Lagrangian coordinates:

∂tv − ∂xu1 = 0
∂t(vB2)− β∂xu2 = 0
∂t(vB3)− β∂xu3 = 0
∂tu1 + ∂x(p+ 1

2 (B2
2 +B2

3)) = 0
∂tu2 − β∂xB2 = 0
∂tu3 − β∂xB3 = 0.

(1)

Here v denotes specific volume, and (u1, u2, u3) and (β,B2, B3) represent the three-
dimensional fluid velocity and magnetic field, respectively. Those only depend on a
single direction e1 measured by x, and no dynamics with respect to other variables.
Notice that β is constant due to the divergence-free condition of magnetic field of
full MHD. As an ideal isentropic polytropic gas, the pressure p is assumed to satisfy

p(v) = v−γ , γ > 1. (2)

The system (1) has a convex entropy η as

η(U) =

∫ ∞
v

p(s)ds+
1

2
(u21 + u22 + u23) +

1

2v
(q22 + q23)
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in terms of the conservative variables U := (v, q2, q3, u1, u2, u3) where qi := vBi for
i = 2, 3. In particular, η is strictly convex because we consider non-vacuum states
for MHD.

Using the entropy η, we define its relative entropy function by

η(u|v) = η(u)− η(v)−∇η(v) · (u− v).

It is well-known that the relative entropy η(·|·) is positive-definite, but looses the
symmetry unless η(u) = |u|2. Nevertheless the relative entropy is comparable to
the square of L2 distance for any bounded solutions. (See for example [6, 7, 11])
Recently in [11], Vasseur has shown contraction for large perturbations around ex-
tremal shocks (1-shock and n-shock) of the hyperbolic system of conservation laws
satisfying physical conditions, which is satisfied by Euler systems of gas dynamics.
In order to measure the distance between any bounded entropic solution and ex-
tremal shock, he used a spatially inhomogeneous pseudo-distance as follows: for a
given weight a > 0, the spatially inhomogeneous pseudo-distance da is defined by

da(u(t, x), S(t, x)) =

{
η(u(t, x)|ul) if x < σt,
aη(u(t, x)|ur) if x > σt,

where S(t, x) denotes a given extremal shock (ul, ur, σ), i.e.,

S(t, x) =

{
ul if x < σt,
ur if x > σt.

Based on this pseudo-distance, it has been shown in [11] that there exists suitable
weight a > 0 such that the extremal shock is contractive up to suitable Lipschitz
shift α(t) in the sense that for all bounded entropic solution u ∈ BVloc((0,∞)×R)n,∫ ∞

−∞
da(u(t, x+ α(t)), S(t, x))dx (3)

is non-increasing in time. On the other hand for intermediate admissible disconti-
nuities, the authors in [6] developed criteria to identify whether the intermediate
entropic shocks and contact discontinuities are contractive or not in the pseudo-
distance as above. Applying the criteria into the two-dimensional planar isentropic
MHD, it turns out in [6] that there is no weight for the contraction of certain
intermediate shock waves.

In this article, we use the criteria developed in [6] to show non-contraction of
certain intermediate shocks and contact discontinuities. More precisely, we prove
that there is no weight a > 0 such that the intermediate discontinuities satisfy
contraction in that sense (3) with weight a.

Concerning studies on stability of shock waves to the viscous model of (1), we
refer to [1, 2, 4, 5, 10], in which it turns out that the viscous shock waves (includ-
ing intermediate waves) are Evans stable under small perturbation. This implies
Lopatinski stability because Lopatinski stability condition is necessary for stability
of viscous profile (See [12]). Thus small BV -perturbations of the inviscid MHD
entropic shock waves are stable thanks to Lopatinski stability (See [3, 8, 9]). No-
tice that this is not in contradiction with our result on non-contraction, because
our framework is based on large perturbation around the entropic discontinuity,
thus our results says that some large perturbation can increase as time goes on.
In Remark 1, we explain more precisely a meaning of non-contraction for entropic
discontinuities in our framework.
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The rest of the paper is organized as follows. In Section 2, we present a criterion
developed in [6] and six characteristic fields of the 6× 6 system (1), which are used
to show non-contraction for intermediate entropic shock waves of (1) in Section 3,
and for contact discontinuities in Section 4.

2. Preliminaries.

2.1. Criteria on non-contraction of intermediate entropic discontinuities.
In this section, we present a criterion in [6] for non-contraction of admissible dis-
continuities of hyperbolic system of conservation laws:

∂tu+ ∂xf(u) = 0, t > 0, x ∈ R,
u(0, x) = u0(x).

(4)

For the system (4) satisfying Liu and Lax entropy conditions, the authors in [6] have
developed sufficient conditions to identify non-contraction of intermediate entropic
discontinuities as follows.

Theorem 2.1. For a fixed 1 < i < n, let (ul, ur, σl,r) be a given i-th entropic
discontinuity satisfying Liu and Lax entropy conditions. Assume that there are
1 ≤ j < i < k ≤ n such that j- and k-characteristic fields are genuinely nonlinear.
Then the following statements holds.

• (1) For 0 < a < 1, we assume that there is a C1 j-th rarefaction curve Rjul
(s)

with j < i such that Rjul
(0) = ul and the backward curve Rj,−ul

(s) of Rjul
(s),

i.e., λj(R
j,−
ul

(s)) < λj(ul), intersects with the (n− 1)-dimensional surface Σa.
Then, (ul, ur, σl,r) does not satisfy contraction in the sense (3) with weight a.

• (2) For a > 1, we assume that there is a C1 k-th rarefaction curve Rkur
(s)

with k > i such that Rkur
(0) = ur and the forward curve Rk,+ur

(s) of Rkur
(s),

i.e., λk(Rk,+ur
(s)) > λk(ur), intersects with the (n−1)-dimensional surface Σa.

Then, (ul, ur, σl,r) does not satisfy contraction in the sense (3) with weight a.
• (3) For a = 1, we assume that one of the assumptions of (1) and (2) is

satisfied. Then, (ul, ur, σl,r) does not satisfy contraction in the sense (3) with
weight a.

Remark 1. From the meaning of contraction as mentioned in (3), we see the
definition of non-contraction in our framework as follows. We say that an admissible
discontinuity (ul, ur, σ) does not satisfy contraction in the pseudo distance (3) with
weight a if for any Lipschitz curve α(t) with α(0) = 0, there are some entropy
solution ū and small constant T0 > 0 such that for all 0 < t < T0,∫ ∞

−∞
da(ū(t, x+ α(t)), S(t, x))dx >

∫ ∞
−∞

da(ū(0, x), S(0, x))dx. (5)

In fact, the authors in [6] constructed a specific (local) smooth solution ū satisfying
(5), which evolves from a smooth initial data

ū(0, x) =

 ū if x ∈ (−R,R) for some R > 0,
ul if x ∈ (−∞,−2R),
ur if x ∈ (2R,∞),

where ū is the point appeared in Theorem 2.1, which is the intersection point of
suitable rarefaction wave and surface Σa, thus ū depends on the weight a, thus on
the pseudo distance.
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2.2. Characteristic fields for the 6× 6 system (1). We here present six char-
acteristic fields of the system (1). For simplicity of computation, we use non-
conservative variable W := (v,B2, B3, u1, u2, u3) and rewrite (1) as a quasilinear
form:

∂tW +A∂xW = 0,

where the 6× 6 matrix A is given by

A :=



0 0 0 −1 0 0

0 0 0 B2

v −βv 0

0 0 0 B3

v 0 −βv
−c2 B2 B3 0 0 0

0 −β 0 0 0 0
0 0 −β 0 0 0

 .

where c :=
√
−p′(v) denotes the sound speed.

By a straightforward computation, we have the characteristic polynomial of A
as (

λ2 − β2

v

)(
λ4 −

( |B|2 + β2

v
+ c2

)
λ2 +

β2

v
c2
)

= 0,

where B := (B2, B3). This equation has solutions λ2 = β2

v , α−, α+, where α± solve
the quadratic equation

f(Λ) := Λ2 −
( |B|2 + β2

v
+ c2

)
Λ +

β2

v
c2 = 0,

i.e.,

α± :=
1

2

[ |B|2 + β2

v
+ c2 ±

√( |B|2 + β2

v
+ c2

)2
− 4β2

c2

v

]
.

Then since

f(Λ) = (Λ− β2

v
)(Λ− c2)− |B|

2

v
Λ

≤ (Λ− β2

v
)(Λ− c2), for Λ > 0,

(6)

we have

β2

v
, c2 ∈ [α−, α+].

If we consider the case of |B| 6= 0, then we have

β2

v
, c2 ∈ (α−, α+). (7)

Here we assume that β 6= 0. Thus we have six eigenvalues

λ1 = −√α+, λ2 = − β√
v
, λ3 = −√α−, λ4 =

√
α−, λ5 =

β√
v
, λ6 =

√
α+.
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By a straightforward computation, we have the corresponding eigenvectors

r1 =



v
α+

(α+ − β2

v )

−B2

−B3

v√
α+

(α+ − β2

v )

− βB2√
α+

− βB3√
α+


, r2 =


0

βB3

−βB2

0
β
√
vB3

−β
√
vB2

 , r3 =



v
α−

(β
2

v − α−)

B2

B3

v√
α−

(β
2

v − α−)
βB2√
α−
βB3√
α−


,

r4 =



− v
α−

(β
2

v − α−)

−B2

−B3

v√
α−

(β
2

v − α−)
βB2√
α−
βB3√
α−


, r5 =


0

βB3

−βB2

0
−β
√
vB3

β
√
vB2

 , r6 =



− v
α+

(α+ − β2

v )

B2

B3

v√
α+

(α+ − β2

v )

− βB2√
α+

− βB3√
α+


,

Then we can check that for each i = 1, 3, 4, 6, (λi, ri) are genuinely nonlinear whereas
(λ2, r2) and (λ4, r4) are linearly degenerate as follows. Indeed since

dλ1 · r1 =
1

2
√
α+

[
−∂vα+

v

α+
(α+ −

β2

v
)︸ ︷︷ ︸

I1

+ ∂B2α+B2︸ ︷︷ ︸
I2

+ ∂B3α+B3︸ ︷︷ ︸
I3

]
,

I1 =
1

2

[ |B|2 + β2

v2
+ p′′ +

( |B|
2+β2

v − c2)( |B|
2+β2

v2 − p′′) + 2|B|2c2
v2 + 2|B|2p′′

v√(
|B|2+β2

v − c2
)2

+ 4 |B|
2c2

v

]

× v

α+
(α+ −

β2

v
)

>
1

2

2|B|2c2
v2 + 2|B|2p′′

v√(
|B|2+β2

v − c2
)2

+ 4 |B|
2c2

v

v

α+
(α+ −

β2

v
)

> 0 by (7),

and for each i = 2, 3,

Ii =
[1

v
+

( |B|
2+β2

v − c2) 1
v + 2c2

v√(
|B|2+β2

v − c2
)2

+ 4 |B|
2c2

v

]
B2
i

>
2c2

v B
2
i√(

|B|2+β2

v − c2
)2

+ 4 |B|
2c2

v

≥ 0,

we have dλ1 · r1 > 0. Using the similar argument, we have dλi · ri > 0 for i = 3, 4, 6.
On the other hand, it is easy to get dλi · ri = 0 for i = 2, 5.

3. Non-contraction of shock waves. In this Section, we show that there is no
weight a > 0 such that certain entropic shock waves satisfy contraction in the sense
(3) with weight a.
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Let (Ul, Ur, σ3) be any 3-shock waves satisfying the Rankine-Hugoniot condition:

−[u1] = σ3[v],

−β[u2] = σ3[q2],

−β[u3] = σ3[q3],

[p] +
[ q22

2v2
+

q23
2v2

]
= σ3[u1],

−β
[q2
v

]
= σ3[u2],

−β
[q3
v

]
= σ3[u3],

(8)

where [f ] := fr − fl.
By Lax condition, dλ3 · r3 > 0 implies that −r3(Ul) is a tangent vector at Ul of

the 3-shock curve S3
Ul

issuing from Ul. Thus since dv ·(−r3) < 0 and du1 ·(−r3) < 0,
we have

[v] < 0 and [u1] < 0. (9)

This is true at least for weak shock. But, this relation can be justified for shock
waves of arbitrary amplitude. We give this justification in the Appendix for the
reader’s convenience.

On the other hand, since it follows from (8) that for each i = 2, 3, β2
[
qi
v

]
= σ2

3 [qi],

we have

Bi,r =
vl − β2σ−23

vr − β2σ−23

Bi,l,

equivalently,

Bi,r −Bi,l =
[v]

β2σ−23 − vr
Bi,l.

Moreover, since (7) and Lax condition yield

β2

vr
> α−(Ur) = λ23(Ur) > σ2

3 ,

and [v] < 0, we get

Bi,r −Bi,l =

 < 0 if Bi,l > 0
> 0 if Bi,l < 0
= 0 if Bi,l = 0.

(10)

Notice that we do not see the sign of vl − β2σ−23 , thus of Bi,r, because we have not
found the explicit formulation of the speed σ3. Based on the observation above,
we here consider the specific condition that the 3-shock wave satisfies one of the
following cases :

For each i = 2, 3, (Bi,l, Bi,r) satisfies one of

Bi,l > Bi,r ≥ 0 or Bi,l < Bi,r ≤ 0 or Bi,l = Bi,r = 0.
(11)

Remark 2. In the above assumption (11), when B2,l = 0 and B3,l = 0 simultane-
ously, it follows from (6) that

{β
2

vl
,−p′(vl)} = {α−(Ul), α+(Ul)}.
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If β2

vl
> −p′(vl), i.e., α+(Ul) = β2

vl
, then λ1(Ul) = λ2(Ul) = − β√

vl
But, the ei-

genspace corresponding to the eigenvalue − β√
vl

is spanned by independent two

eigenvectors:
(0, 1, 1, 0,

√
vl,
√
vl)

T , (0, 1,−1, 0,
√
vl,−

√
vl)

T .

This implies that dλ1(U) · r1(U) 6= 0 except for U = Ul as an umbilical point.

Likewise, if β2

vl
< −p′(vl), i.e., α−(Ul) = β2

vl
, then dλ3(U) · r3(U) 6= 0 except for

U = Ul. Thus for those singular cases, the 1- and 3-characteristic fields are still
genuinely nonlinear. Similarly for the case of B2,r = 0 and B3,r = 0, the 4- and
6-characteristic fields are genuinely nonlinear as well.

For a given 4-shock wave (Ũl, Ũr, σ4), using the same arguments as above, we
have [ṽ] > 0, [ũ] < 0, and

B̃i,l − B̃i,r =
[ṽ]

ṽl − β2σ−24

B̃i,l.

Since (7) and Lax condition yield

β2

vl
> α−(Ul) = λ24(Ul) > σ2

4 ,

we have

B̃i,l − B̃i,r =

 < 0 if Bi,r > 0
> 0 if Bi,r < 0
= 0 if Bi,r = 0.

Thus we consider the analogous condition that the 4-shock wave satisfies one of the
following cases :

For each i = 2, 3, (B̃i,l, B̃i,r) satisfies one of

B̃i,r > B̃i,l ≥ 0 or B̃i,r < B̃i,l ≤ 0 or B̃i,l = B̃i,r = 0.
(12)

We are now ready to show that for any a > 0, there is no a-contraction of such
intermediate shocks as follows.

Theorem 3.1. Let (Ul, Ur, σ3) be a given 3-shock wave of the system (1)-(2) sat-
isfying (11). Then there is no weight a > 0 such that (ul, ur) satisfies contraction
in the sense (3) with weight a. Likewise, this result holds for a given 4-shock wave

(Ũl, Ũr, σ4) satisfying (12).

Proof. • Case of 3-shock wave. First of all, we show that for any 0 < a < 1, the
backward 1-rarefaction wave R1,−

Ul
issuing from Ul intersects with the hypersurface

Σa (with dimension 5), i.e.,

Σa := {U | η(U |Ul) = aη(U |Ur)}.

Since dv · r1 = v
α+

(α+ − β2

v ) > 0, v is strictly monotone along the integral curve of

the vector field r1, which means that the 1-rarefaction wave can be parameterized
by v. Moreover since dλ1 · r1 > 0, −r1 is the tangent vector field of the backward 1-
rarefaction wave R1,−

Ul
, which implies that v decreases along R1,−

Ul
. That is, v+ ≤ vl

for all parameters v+ of R1,−
Ul

. Notice that R1,−
Ul

is well-defined for all v+ ∈ (0, vl],

because −r1(W ) is smooth for all W ∈ (0,∞)× R5.

In order to claim that R1,−
Ul

intersects with Σa for any a < 1, we use the fact that

for a < 1, η(U |Ul) ≤ aη(U |Ur) is equivalent to
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η(U) ≤ 1

1− a
(η(Ul)− aη(Ur)−∇η(Ul) · Ul

+ a∇η(Ur) · Ur + (∇η(Ul)− a∇η(Ur)) · U),
(13)

which is rewritten as∫ ∞
v

p(s)ds+
1

2
(u21+u22+u23)+

1

2v
(q22 +q23) ≤ c1+c2(v+q2+q3+u1+u2+u3), (14)

for some constants c1, c2. This implies that

η(U |Ul) ≤ aη(U |Ur)⇐⇒
v > c∗ and |q2|+ |q3|+ |u1|+ |u2|+ |u3| ≤ c∗ for some constants c∗, c

∗ > 0,

since
∫∞
0
p(s)ds = +∞, and all positive terms on ui and qi are quadratic in the

left-hand side, whereas linear in the right-hand side of (14). Therefore there exists
0 < v∗ � c∗ such that

η(R1,−
Ul

(v∗)|Ul) > aη(R1,−
Ul

(v∗)|Ur),

which implies that R1,−
Ul

intersects with Σa for a < 1, because R1,−
Ul

is a continuous

curve issuing from Ul ∈ {U | η(U |Ul) < aη(U |Ur)}.
On the other hand, we claim that the forward 6-rarefaction wave R6,+

Ur
issuing

from Ur intersects with the surface Σa for any a ≥ 1.

Since dλ6 · r6 > 0 and dv · r6 = − v
α+

(α+ − β2

v ) < 0,

r6 is the tangent vector of the forward 6-rarefaction wave R6,+
Ur

, (15)

and the parameter v+ decreases along R6,+
Ur

. Moreover R6,+
Ur

is well-defined for all
v+ ∈ (0, vr].

For any fixed a ≥ 1, we consider a continuous functional Fa defined by

Fa(U) := η(U |Ul)− aη(U |Ur).

We first show that the functional F1 (when a = 1) satisfies

F1(R6,+
Ur

(v∗)) < 0 for some v∗ ∈ (0, vr]. (16)

Since

∇η(U) =
(
− p− q22 + q23

2v2
,
q2
v
,
q3
v
, u1, u2, u3

)T
,

we use (15) to compute

dF1(R6,+
Ur

(v+))

dv+
= (∇η(Ur)−∇η(Ul)) ·

dR6,+
Ur

(v+)

dv+

=
(

[p] +
[q22 + q23

2v2

]) v+
α+

(α+ −
β

v+
) + [u1]

v+√
α+

(α+ −
β

v+
)

+

3∑
i=2

([qi
v

]qi+
v+
− [ui]

βqi+
v+
√
α+

)
.

(17)

Using (8), we have

dF1(R6,+
Ur

(v+))

dv+
= [u1](σ3 +

√
α+)

v+
α+

(α+ −
β

v+
) +

3∑
i=2

[qi
v

]qi+
v+

(
1 +

β2

σ3
√
α+

)
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= [u1]
(
v+
√
α+ −

β
√
α+

+ σ3(v+ −
β

α+
)
)

︸ ︷︷ ︸
I1

+

3∑
i=2

[qi
v

]qi+
v+

(
1 +

β2

σ3
√
α+

)
︸ ︷︷ ︸

I2

.

Since (2) and (7) yields

v+
√
α+ > v+

√
−p′(v+) =

√
γv−γ+1

+ →∞ as v+ → 0+, (18)

it follows from (9) that I1 → −∞ as v+ → 0+.
To control I2, we consider one of conditions in (11). If B2,l > B2,r ≥ 0, i.e.,[

q2
v

]
< 0, we have q2+ ≥ 0 along R6,+

Ur
(v+) because of q2,r = vrB2,r ≥ 0 and (15)

with

dB2 · r6 = B2 =

 > 0 if B2 > 0
< 0 if B2 < 0
= 0 if B2 = 0.

Moreover, since α+ → +∞ as v+ → 0+ by (18), we have[q2
v

]q2+
v+

(
1 +

β2

σ3
√
α+

)
≤ 0 for v+ � 1.

This is also true in the case of B2,l < B2,r ≤ 0, i.e.,
[
q2
v

]
> 0, because of q2+ ≤ 0 in

that case by the same arguments as above.
Likewise, we have[q3

v

]q3+
v+

(
1 +

β2

σ3
√
α+

)
≤ 0 for v+ � 1.

Thus the condition (11) yields

I2 ≤ 0 for v+ � 1,

which yields

dF1(R6,+
Ur

(v+))

dv+
→ −∞ as v+ → 0+,

which implies (16).

Therefore we conclude that R6,+
Ur

intersects with Σa for any a ≥ 1, because

Fa(Ur) > 0 and Fa(R6,+
Ur

(v∗)) < F1(R6,+
Ur

(v∗)) < 0 for all a ≥ 1.
Hence for all a > 0, the 3-shock wave (Ul, Ur, σ2) does not satisfies contraction

in the sense (3) with weight a thanks to Theorem 2.1.

• Case of 4-shock wave. Following the same arguments as above in a symmetric
way, we have the non-contraction for 4-shock wave (Ũl, Ũr, σ4) satisfying (12). More

precisely, we can show that the backward 1-rarefaction wave R1,−
Ũl

intersects with

Σ̃a := {U | η(U |Ũl) = aη(U |Ũr)} for any 0 < a ≤ 1,

and the forward 6-rarefaction wave R6,+

Ũr
intersects with Σ̃a for any a > 1. We omit

the details.
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Remark 3. In the proof of Theorem 3.1, we used the condition (11) only to ensure

the intersection of R6,+
Ur

with the hyperplane Σ1, and similarly the condition (12)

only for the intersection of R1,−
Ũl

with Σ̃1. In other words, R1,−
Ul

(resp. R1,−
Ũl

)

intersects with Σa (resp. Σ̃a) for a < 1, and R6,+
Ur

(resp. R6,+

Ũr
) intersects with Σa

(resp. Σ̃a) for a > 1 without the condition (11) (resp. (12)).

4. Non-contraction of contact discontinuities. We here show that there is no
weight a > 0 such that certain contact discontinuities satisfy contraction in the
sense (3) with weight a.

Let (Ul, Ur) be a given 2-contact discontinuity (or 5-contact discontinuity) of the
system (1)-(2). Since i-contact discontinuity (Ul, Ur) is a integral curve of the vector
field ri for each i = 2, 5, we have

[v] = 0 and [u1] = 0, (19)

which implies that [Bi] 6= 0 for some i = 2, 3, otherwise Ul = Ur.
Contrary to the case of shock waves, there is no sign of [B2] and [B3] because of

σ2
2 ≡

β2

vl
= β2

vr
, which is due to the degeneracy of contact discontinuity.

We here present non-contraction of contact discontinuities satisfying either (A)
or (B):

(A) : For each i = 2, 3, (Bi,l, Bi,r) satisfies one of

Bi,r > Bi,l > 0 or Bi,r < Bi,l < 0,

(B) : For each i = 2, 3, (Bi,l, Bi,r) satisfies one of

Bi,l > Bi,r > 0 or Bi,l < Bi,r < 0.

(20)

Theorem 4.1. Let (Ul, Ur) be a given 2-contact discontinuity (or 5-contact dis-
continuity) of the system (1)-(2). Then there is no weight a > 0 such that (ul, ur)
satisfies contraction in the sense (3) with weight a.

Proof. We follow the same arguments as the proof of Theorem 3.1. First of all, we
can see that the backward 1-rarefaction wave R1,−

Ul
issuing from Ul intersects with

Σa for a < 1, and the forward 6-rarefaction wave R6,+
Ur

issuing from Ur intersects
with Σa for a > 1.

In order to show that one of R1,−
Ul

and R6,+
Ur

intersects with the Σ1, we consider
a functional

F (U) := η(U |Ul)− η(U |Ur).

• Case (A). (For each i = 2, 3, (Bi,l, Bi,r) satisfies one of Bi,r > Bi,l > 0 or
Bi,r < Bi,l < 0)

In this case, we claim that the wave R1,−
Ul

parametrized as v+ intersects with Σ1.

First of all, using the same computation as (17) with(19), we have

dF (R1,−
Ul

(v+))

dv+
=

3∑
i=2

[qi
v

]qi+
v+

(
1− β2

σ2
√
α+

)
.

If B2,r > B2,l > 0, i.e.,
[
q2
v

]
> 0, since −r1 is the tangent vector field of the

backward 1-rarefaction wave R1,−
Ul

, and dB2 · (−r1) = B2, we have q2+
v+
→ ∞ as
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v+ → 0+, thus [q2
v

]q2+
v+

(
1 +

β2

σ2
√
α+

)
→∞ for v+ → 0+,

where we have used the fact that α+ →∞ as v+ → 0+ by (18).

This is also true in the case of B2,r < B2,l < 0, because of
[
q2
v

]
< 0 and

q2+
v+
→ −∞ as v+ → 0+. Likewise, we have[q3

v

]q3+
v+

(
1 +

β2

σ2
√
α+

)
→∞ for v+ → 0 + .

Thus we have
dF (R1,−

Ul
(v+))

dv+
→∞ as v+ → 0+,

which implies that R1,−
Ul

intersects with Σ1, because F (Ul) < 0 and F (R1,−
Ul

(v∗)) > 0
for some v∗ � 1.

• Case (B). (For each i = 2, 3, (Bi,l, Bi,r) satisfies one of Bi,l > Bi,r > 0 or
Bi,l < Bi,r < 0)

Using the same arguments as previous case, we see that R6,+
Ur

intersects with Σ1

under those constraints.

Appendix. We here present that the relations (9) holds true for 3-shock waves of
arbitrary amplitude. Using (8) and the entropy inequality with the entropy flux

G :=
(
p+

q22 + q23
2v2

)
u1 −

β

v
(q2u2 + q3u3),

we have

0 ≥ [G]− σ3[η]

= [u1]pl + u1,r[p] +

3∑
i=2

(1

2
[u1]

q2i,l
v2l

+ u1,r

[ q2i
2v2

])
− σ3[u1]

u1,r + u1,l
2

−
3∑
i=2

(
β
[qiui
v

]
+
σ3
2

[ui](ui,r + ui,l)
)
− σ3

2

3∑
i=2

[q2i
v

]
− σ3

∫ vl

vr

p(s)ds

= [u1]pl +
1

2
[u1]

3∑
i=2

q2i,l
v2l

+ u1,r[p] + u1,r

3∑
i=2

[ q2i
2v2

]
−
(

[p] +

3∑
i=2

[ q2i
2v2

])u1,r + u1,l
2

− β
3∑
i=2

(
[ui]

qi,l
vl

+
[qi
v

]
ui,r

)
+
β

2

3∑
i=2

[qi
v

]
(ui,r + ui,l)

+
σ3
2

3∑
i=2

( q2i,l
vrvl

[v]− [q]

vr
(qi,r + qi,l)

)
− σ3

∫ vl

vr

p(s)ds

= [u1]pl +
1

2
[u1]

3∑
i=2

q2i,l
v2l

+
[u1]

2
[p] +

[u1]

2

3∑
i=2

[ q2i
2v2

]
−

3∑
i=2

β[ui]
(qi,l
vl

+
1

2

[qi
v

])
+
σ3
2

3∑
i=2

( q2i,l
vrvl

[v]− [qi]

vr
(qi,r + qi,l)

)
− σ3

∫ vl

vr

p(s)ds,
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using (8) again,

= −σ3[v]pl +
σ3
2

[v]

3∑
i=2

q2i,l
v2l
− σ3

2
[v][p] +

σ3
4

[v]

3∑
i=2

[ q2i
v2

]
+

3∑
i=2

σ3[qi]
(qi,l
vl

+
1

2

[qi
v

])
+
σ3
2

3∑
i=2

( q2i,l
vrvl

[v]− [qi]

vr
(qi,r + qi,l)

)
− σ3

∫ vl

vr

p(s)ds

= −σ3
(( [v]

2
(pr + pl)−

∫ vr

vl

p(s)ds
)

+

3∑
i=2

( [v]

2

(q2i,r
v2r

+
q2i,l
v2l
−

q2i,l
vrvl

)
− [qi]

2

(qi,l
vl

+
qi,r
vr
− qi,r + qi,l

vr

)))
= −σ3[v]

(∫ 1

0

(
spr + (1− s)pl − p(svr + (1− s)vl)

)
ds+

3∑
i=2

1

4

(qi,r
vr
− qi,l

vl

)2)
.

Finally, using the convexity of p, we have

σ3[v] ≥ 0.

Thus by Lax condition σ3 < λ3(Ul) < 0, we have vr < vl, which yields ur < ul by
(8).
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